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1  | INTRODUCTION

Pinus sylvestris (Scots pine) is one of the world's most widely dis‐
tributed and northern conifers reaching from the British Isles 
in the west to the Siberian taiga in the east. It is also found in 
the mountainous areas of Mediterranean peninsulas in Southern 

Europe. It is especially competitive in poor soils and in dry and ex‐
tremely cold environments, and compared to many other Pinus, its 
ecological niche is wide (Rehfeldt et al., 2002; Svenning, Normand, 
& Kageyama, 2008). Especially in the northern part of its dis‐
tribution, it is a dominant tree in forested areas (Durrant, Rigo, 
& Caudullo, 2016) and has an important role as a part of forest 
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Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for 
both forestry and evolutionary studies. Its patterns of adaptive variation and role 
in forest economic and ecological systems have been studied extensively for nearly 
275  years, detailed demography for a 100  years and mating system more than 
50 years. However, its reference genome sequence is not yet available and genomic 
studies have been lagging compared to, for example, Pinus taeda and Picea abies, two 
other economically important conifers. Despite the lack of reference genome, many 
modern genomic methods are applicable for a more detailed look at its biological 
characteristics. For example, RNA‐seq has revealed a complex transcriptional land‐
scape and targeted DNA sequencing displays an excess of rare variants and geo‐
graphically homogenously distributed molecular genetic diversity. Current DNA and 
RNA resources can be used as a reference for gene expression studies, SNP discov‐
ery, and further targeted sequencing. In the future, specific consequences of the 
large genome size, such as functional effects of regulatory open chromatin regions 
and transposable elements, should be investigated more carefully. For forest breed‐
ing and long‐term management purposes, genomic data can help in assessing the ge‐
netic basis of inbreeding depression and the application of genomic tools for genomic 
prediction and relatedness estimates. Given the challenges of breeding (long genera‐
tion time, no easy vegetative propagation) and the economic importance, application 
of genomic tools has a potential to have a considerable impact. Here, we explore how 
genomic characteristics of P. sylvestris, such as rare alleles and the low extent of link‐
age disequilibrium, impact the applicability and power of the tools.
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ecosystems as a global carbon reservoir and also via interactions 
with soil microbes and fungi (Högberg et al., 2001; Lindén et al., 
2014; Pan et al., 2011). Economically, it is an important tree spe‐
cies in Northern Eurasia as raw material for paper and pulp indus‐
try and as timber (Durrant et al., 2016; Gardner, 2013; Mason & 
Alía, 2000; Mullin et al., 2011). It is widely planted for timber out‐
side its natural range. P. sylvestris is estimated to cover over 145 
million hectares of forest in Eurasia (Durrant et al., 2016; Mason & 
Alía, 2000; Mullin et al., 2011).

Very rough estimates of the actual population census size can be 
made by combining distribution and density information. In commer‐
cial P. sylvestris forests, there are about 2000 stems per hectare after 
precommercial thinning (Fahlvik, Ekö, & Pettersson, 2005; Väisänen, 
Kellomäki, Oker‐Blom, & Valtonen, 1989), which yields an estimate 
of population census size of 290 × 109 trees. P. sylvestris is not glob‐
ally under threat in terms of species viability as such (Gardner, 2013). 
However, its dominant role in large forest ecosystems means that 
any changes in its distribution or mortality are likely to have large 
ecological and economic consequences.

Multiple subspecies and varieties of P. sylvestris have been 
described based on morphological and phenological differences 
(Molotkov & Patlaj, 1991; Pravdin, 1969; Ruby & Wright, 1976), but 
groupings are not consistent across studies and vary depending on 
the studied traits (Shutyaev & Giertych, 2000). Often the under‐
lying phenotypic differences have more clinal rather than discrete 
distribution and the description of separate varieties reflects more 
the sampling design and silvicultural purposes than true biological 
groups (Langlet, 1971; Shutyaev & Giertych, 2000). At the genome‐
wide level, molecular genetic differentiation among sampling loca‐
tions at nuclear loci is low (FST = 0.02) in most parts of the distribution 
(Karhu et al., 1996; Kujala & Savolainen, 2012; Muona & Harju, 1989; 
Prus‐Głowacki, Urbaniak, Bujas, & Curtu, 2012; Pyhäjärvi et al., 
2007; Tyrmi et al., 2019).

Due to its dominance and economical importance, phenotypic 
variation of P. sylvestris has been of interest since the early days of 
biological sciences. The first studies of phenotypic and adaptive dif‐
ferences among populations originating from different geographic 
regions were motivated by shipbuilding and forestry (Alberto et al., 
2013; Engler, 1913; Langlet, 1971; Morgenstern, 1996). The first ev‐
idence of P. sylvestris provenance (common garden) trials in France 
comes from as early as 1745 (Langlet, 1971). Later, several variably 
documented national (Eiche, 1966; Heikinheimo, 1950) and inter‐
national (Giertych & Oleksyn, 1992; Shutyaev & Giertych, 1998; 
Wiedemann, 1930) provenance trials have been established mainly 
for silvicultural purposes, also outside its natural range (Wright & Ira, 
1962). Even though not originally designed for the purpose, these 
data have proved valuable for evaluating the level of ecological ad‐
aptation (Savolainen, Pyhäjärvi, & Knürr, 2007) and making predic‐
tions on responses to climate change (Persson, 1998; Rehfeldt et al., 
2002). In the 20th century, very detailed studies on reproductive 
biology (Koski, 1970; Lönnroth, 1926; Sarvas, 1962) formed a solid 
basis for modern applied and evolutionary genetic research of P. 
sylvestris.

The extensive distribution, large effective population size (Ne), 
efficient gene flow, predominantly outcrossing nature, and large 
22 Gbp genome, yet strong phenotypic differentiation in adaptive 
traits, make P. sylvestris an intriguing system to examine adaptive 
processes of polygenic traits. Lack of significant longitudinal struc‐
ture allows replicating sampling along latitudinal transects and in‐
specting whether the same loci or variants are participating in the 
adaptive trait variation throughout the distribution or whether the 
adaption has emerged via different combinations of adaptive al‐
leles. In comparison with, for example, the North American interior 
spruce complex (Yeaman et al., 2016), P. sylvestris does not signifi‐
cantly hybridize with other species (see, however, Wachowiak & 
Prus‐Głowacki, 2008), likely because most close relatives have small 
distributions or do not overlap with P. sylvestris. Lack of hybridiza‐
tion should further facilitate understanding of the genetic basis of 
local adaptation. The species is also known to harbor large number 
of lethal equivalents (Kärkkäinen, Koski, & Savolainen, 1996; Koski, 
1971), which allows examining the joint effects of deleterious varia‐
tion with adaptive and phenotypic variations.

In comparison with farm animals, crops, and vegetables, many 
coniferous forest trees gene pools have not been extensively 
changed by humans, natural regeneration is common in large part of 
the distribution, and breeding is conducted in a handful of countries 
(Mullin et al., 2011). In Finland and Sweden, breeding efforts on P. 
sylvestris were started in the late 1940s by collecting phenotypically 
superior plus trees from natural and cultivated forests. Plus trees 
were used to establish seed orchards for seed production. Later, the 
genetic quality of the seed orchards has been improved by selection 
among plus trees based on progeny testing, forming the “1.5 gener‐
ation” seed orchards (Haapanen, Hynynen, Ruotsalainen, Siipilehto, 
& Kilpeläinen, 2016; Jansson, Hansen, Haapanen, Kvaalen, & 
Steffenrem, 2017). With traditional breeding methods, genetic gains 
up to ~25% for growth traits like volume, and reduction in rotation 
times have been obtained and resulted in significant economic gains 
in Finland and Scandinavia (Ahtikoski, Ojansuu, Haapanen, Hynynen, 
& Kärkkäinen, 2012; Jansson et al., 2017).

Given the low number of breeding cycles conducted so far, there 
should be plenty of functional genetic variation, and thus, large 
genetic gains can be expected. By adding genomic methods to the 
available tools, we can expect further economic gains per unit of 
time. Genomic information can improve the breeding efforts in P. 
sylvestris through genomewide association analyses (GWAS), infer‐
ence of genetic relatedness, and by genomic prediction (Isik, 2014; 
Isik et al., 2016; Meuwissen, Hayes, & Goddard, 2001). So far, efforts 
to make P. sylvestris to flower at earlier age have not been successful. 
Traits that can be measured only on adult trees hold greatest poten‐
tial in terms of shortening the breeding cycle (Isik, 2014). Genomic 
prediction can deal with the highly polygenic basis of trait variation 
(with unknown underlying loci) unlike other breeding methods, such 
as gene editing, requiring detailed molecular information.

Given its economical (Praciak, 2013) and ecological impor‐
tance, and the long record of research and knowledge (Giertych 
& Matyas, 1991), it is unfortunate that a whole genome sequence 
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assembly of P. sylvestris has not yet been presented. Even though in 
many other ways, it is one of the most thoroughly studied conifers 
(Figure 1); from genomics point of view, it is still a nonmodel organ‐
ism. However, whole genome sequencing and reference genomes 
are not a prerequisite for using current methodologies for genomic 
analysis of P. sylvestris.

In this review, we consider biological, life history, and genomic 
characteristics that are relevant for future applications of genomic 
information in P. sylvestris. We will address (a) mating system and in‐
breeding depression, (b) genetic diversity and linkage disequilibrium, 
(c) population structure, history, and allele frequency distribution, 
(d) adaptive variation at trait and molecular level, (e) genome size 
and architecture, and (f) application of genomics in breeding and 
conservation.

2  | MATING SYSTEM AND INBREEDING 
DEPRESSION

Pinus sylvestris, as many other forest trees, is wind‐pollinated, diploid, 
and predominantly outcrossing. The selfing rate measured in mature 
seeds is about 5%–10% (Muona, Yazdani, & Rudin, 1987; Rudin, 
Muona, & Yazdani, 1986). P. sylvestris is also known to display high 
inbreeding depression, also a common observation in forest trees. 
Inbreeding depression is normally measured by comparing the per‐
formance of selfed (or other inbred) offspring to that of controlled 
outcrossed or open‐pollinated offspring. In pines, embryonic mortal‐
ity can be evaluated by examining the proportion of empty seeds 

from different types of crosses (Kärkkäinen et al., 1996; Koski, 1971). 
The average mortality in selfed seeds is 75%–85% (Kärkkäinen et al., 
1996; Koelewijn, Koski, & Savolainen, 1999; Koski, 1971), compared 
to 20%–30% for open‐pollinated seed. Based on these kinds of 
data, with simplifying assumptions, the number of embryonic lethal 
equivalents in P. sylvestris has been estimated to be 9.4 (Koski, 1971). 
The level is much higher than in most animals and angiosperms and 
similar to many other conifers, such as Picea abies, Picea glauca, or 
Pseudotsuga menziesii, while some pines with limited distributions 
have much lower levels (e.g., Pinus radiata and Pinus resinosa; Lynch & 
Walsh, 1998; Williams & Savolainen, 1996). The selfing rate at fertili‐
zation is thus much higher than at the mature seed stage. Further, the 
selfing rate at fertilization can be even higher because of polyzygotic 
(simple) polyembryony: An ovule may contain up to four embryos, 
which can be of selfed or outcrossed origin. These embryos share 
their maternal haplotype but have been fertilized by different pollen. 
Only one dominant embryo will survive (Hedrick & Muona, 1990; 
Koski, 1970; Sorensen, 1982). Inbred mortality during early embryo‐
genesis and replacement by outcrossed progeny results in reduced 
loss of maternal resources, thus reducing post‐seed‐maturation in‐
breeding depression (Kärkkäinen & Savolainen, 1993; Sarvas, 1962).

Other studies (Koelewijn et al., 1999; Muona et al., 1987; 
Yazdani, Muona, Rudin, & Szmidt, 1985) have shown that the low 
fitness of selfs continue during later years, such that already in a 
few years old seedlings and especially in young adults, the selfed 
progeny has been mostly eliminated and the genotypes are in 
Hardy–Weinberg equilibrium. The results on conifers in general 
suggest that the overall inbreeding depression is due to a large 
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number of deleterious, partially recessive alleles (Williams & 
Savolainen, 1996). Lande, Schemske, and Schultz (1994) showed 
that the lethals can be maintained in the population despite the 
selfing when there is a high per genome per generation mutation 
rate to the deleterious alleles. In addition, stabilizing selection on 
quantitative traits can interfere in complex ways with selection on 
lethals and either increase or decrease the probability of purging 
(Lande & Porcher, 2017).

Genomics can shed light on the genetic architecture of inbreed‐
ing depression by characterizing the numbers and effect sizes of 
deleterious alleles, for example, by mapping (Hedrick & Muona, 
1990; Ritland, 1996), and by analyzing heterozygosity of the selfed 
progeny, as in Eucalyptus grandis (Hedrick, Hellsten, & Grattapaglia, 
2016): In the selfed progeny, heterozygosity was much higher than 
the neutral expectation, suggesting that overall selection against ho‐
mozygotes in selfed offspring was very high (s = 0.47). Furthermore, 
inbreeding depression likely was due to partially deleterious alleles 
at more than 100 loci, even if overdominance effects could not be 
fully excluded. Similar methods could help to identify genomic areas 
with lethals also in conifers. So far, various functional and evolu‐
tionary prediction models of allelic substitution have been used to 
identify deleterious alleles. This has then allowed comparisons of 
allelic and genotypic frequencies between populations or species, as 
in Populus (Zhang, Zhou, Bawa, Suren, & Holliday, 2016) or in Picea 
(Conte et al., 2017). Estimation of the distribution of fitness effects 
also allows conclusions on the nature of deleterious alleles. Allele 
frequency spectrum (AFS) of some 400 loci suggested that P. syl‐
vestris has fewer slightly deleterious alleles and a larger proportion 
of more highly deleterious alleles than other conifers and plants in 

general (Grivet et al., 2017; Hodgins, Yeaman, Nurkowski, Rieseberg, 
& Aitken, 2016).

While mating between relatives can be an important breeding 
tool for some species, in conifers deleterious alleles are so numerous 
that breeding strategies using inbreeding will often lead to fixation 
of deleterious alleles, as shown in simulations by Wu, Hallingbäck, 
and Sánchez (2016). However, in some cases, variation in levels of 
inbreeding depression may allow using mating between relatives 
(Ford, McKeand, Jett, & Isik, 2014). Because of the mostly harmful 
effects of mating between relatives, it is important to manage in‐
breeding levels in breeding programs by measuring relatedness with 
genetic tools.

3  | GENETIC DIVERSITY AND LINKAGE 
DISEQUILIBRIUM

In many aspects, patterns of genetic diversity in P. sylvestris match 
the expectations for a wind‐pollinated tree with large population 
size. Population structure is almost nonexistent, linkage disequilib‐
rium (LD), the nonrandom association of alleles generally does not 
extend far, and genotypes are in Hardy–Weinberg equilibrium as ex‐
pected under random mating (Kujala & Savolainen, 2012; Muona & 
Szmidt, 1985; Pyhäjärvi et al., 2007; Tyrmi et al., 2019; Wachowiak, 
Salmela, Ennos, Iason, & Cavers, 2011).

Comparative studies have indicated that Pinus in general do 
not have particularly low nucleotide diversity compared to other 
plants (Chen, Glémin, & Lascoux, 2017; Eckert et al., 2013; Figure 2). 
Silent site diversity in the P. sylvestris genic regions (based on Sanger 
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sequencing) seems to converge to 0.006/bp (Dvornyk, Sirviö, 
Mikkonen, & Savolainen, 2002; García‐Gil, Mikkonen, & Savolainen, 
2003; Grivet et al., 2017; Kujala & Savolainen, 2012; Pyhäjärvi et al., 
2007; Wachowiak et al., 2011), and the first genomewide estimate 
of silent, fourfold degenerate sites genetic diversity is 0.004/bp 
(Tyrmi et al 2019). This estimate is slightly lower than the variation 
observed in other Pinus at fourfold degenerate sites (Eckert et al., 
2013) and also slightly lower than diversity observed in silent sites 
of P. sylvestris in earlier studies. Note that even silent and fourfold 
degenerate nucleotide diversity and mutation rate estimates for P. 
sylvestris are based on data derived from genic regions. The overall 
patterns of diversity further away from genes may be very different 
and likely higher.

As for many other species, there is a mismatch between the 
observed nucleotide diversity and the census size in P. sylves‐
tris (Lewontin, 1974). Under the assumption of standard neutral 
equilibrium, 4Neμ (where Ne is the effective population size and μ 
is mutation rate per site per generation) is expected to equal the 
pairwise nucleotide diversity, θ (Tajima, 1983). Ne can then be es‐
timated with Ne = θ/(4μ). The mutation rates per bp per year vary 
from 0.22 to 1.3 × 10−9 (Buschiazzo, Ritland, Bohlmann, & Ritland, 
2012; De La Torre, Li, Peer, & Ingvarsson, 2017; Pyhäjärvi et al., 
2007; Willyard, Syring, Gernandt, Liston, & Cronn, 2007). Together 
with silent nucleotide diversity of 0.004/bp and assuming genera‐
tion time of 20 years, this yields population size estimates ranging 
from 38,000 to 230,000 individuals. Yet, the actual census size is 
in the scale of billions of individuals in a seemingly random mating 
population. Clearly, some of the above‐mentioned assumptions are 
violated. Potential reasons for the discrepancy are as follows: (a) un‐
even fecundity among individual trees, which would increase the al‐
lele frequency variance across the generations, leading to increased 
drift, and deviations from the assumed Wright–Fisher population 
model; (b) much lower mutation rate than estimated based on fossil 
record and Picea–Pinus divergence; (c) nonequilibrium population 
history reducing the long‐term Ne; and (d) effect of linked selection 
permeating most of the genic areas, thus reducing genetic diversity 
(Charlesworth, Morgan, & Charlesworth, 1993; Maynard Smith & 
Haigh, 1974).

These potential explanations do not exclude each other. It is 
likely that offspring number of P. sylvestris does not follow the as‐
sumed Poisson distribution with mean number of offspring  =  1. 
Mature P. sylvestris trees have high fecundity, and thus, single trees 
have a potential to make a large contribution to next generation. This 
can lead to Moran model like multiple‐merger population coalescent 
processes, reduced diversity in relation to population census size, 
and also to an excess of rare alleles due to star‐shaped gene genealo‐
gies (Eldon & Wakeley, 2006). In seed orchard conditions, significant 
variation in offspring number has indeed been identified among gen‐
otypes (Gömöry, Bruchánik, & Longauer, 2003; Gömöry, Bruchanik, 
& Paule, 2000; Kang, Bila, Harju, & Lindgren, 2003; Savolainen, 
Kärkkäinen, Harju, Nikkanen, & Rusanen, 1993). In fully natural con‐
ditions, this variance is expected to be even larger. The AFS indi‐
cates nonequilibrium population history (Kujala & Savolainen, 2012; 

Pyhäjärvi et al., 2007), which also reduces the amount of genetic 
diversity. Linked selection has been shown to affect a wide spectrum 
of species (Charlesworth & Charlesworth, 2018), and evaluating its 
importance in P. sylvestris is one of the major evolutionary questions 
that more genomic data will help us to tackle. Grivet et al. (2017) 
observed both high efficiency of purifying selection and high rate 
of positive selection in P. sylvestris and Pinus pinaster, in accordance 
with gymnosperms in general (De La Torre et al., 2017), supporting 
linked selection as a likely explanation for low genetic diversity in P. 
sylvestris genic areas. Evaluation of the overall effect of linked se‐
lection on genetic diversity requires a dense genetic map combined 
with the physical map because a correlation between nucleotide di‐
versity and recombination rate is expected. Current estimates sug‐
gest that LD in P. sylvestris in general decays fast, often within few 
hundred bp (however, see detailed discussion on LD below), which 
would predict local effects of linked selection nearby genic regions, 
as observed, for example, in maize that also has low LD (Beissinger et 
al., 2016). However, the partial selfing may generate some opportu‐
nity for linked selection, but this has not yet been studied.

Note that different genetic estimates and measures of nucle‐
otide diversity may have apparent discrepancy due to scale. Some 
estimates such as nucleotide diversity are estimated at base‐pair 
resolution. However, other observations, such as lethal equivalents, 
reflect whole genome‐level phenomena. The genomewide mutation 
rate to deleterious alleles can be high even with low per base‐pair 
mutation rate level, if the mutational target size is large.

The recombination rate per bp (c) and extent of LD are critical fac‐
tors in breeding as they determine how selection on a subset of loci 
will affect other nearby loci and essentially determines the genomic 
resolution of many breeding efforts. In an equilibrium situation, LD 
depends on both c and Ne and the population‐level recombination 
parameter ρ = 4Nec be estimated from LD patterns. Further, c can 
be independently estimated with genetic mapping. In a practical 
context, it is good to remember that c affects the precision of, for 
example, QTL and other genetic mapping efforts, whereas ρ is more 
significant for association studies.

As mentioned above, P. sylvestris appears to have relatively low 
LD, when measured by r2, squared correlation coefficient, extending 
the level above 0.2 often only just few hundreds of base pairs (Kujala 
& Savolainen, 2012; Pyhäjärvi et al., 2007; Tyrmi et al., 2019). The 
extent of LD measured with r2 is useful for many applications, such 
as genomic prediction, because it directly informs about the power 
of a locus to predict the allelic state of another locus (Hahn, 2018). 
However, as all measures of LD, it is dependent on the marginal al‐
lele frequencies. When there are many low‐frequency SNPs, as in P. 
sylvestris, r2 tends to be low not only due to high recombination but 
also due to low allele frequencies. P. sylvestris LD measured as |D′| 
(LD measure scaled by its maximum value given the allele frequen‐
cies) that is more informative about the recombination rate suggests 
more extensive LD than the value from the overall r2 decay (Kujala 
& Savolainen, 2012).

As in most species, LD patterns in conifers are probably hetero‐
geneous among different genomic regions (Pavy, Namroud, Gagnon, 
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Isabel, & Bousquet, 2012). Despite the general trend of rapid LD 
decay (Pyhäjärvi et al., 2007; Wachowiak, Balk, & Savolainen, 2009), 
there is considerable variation along the genome in P. sylvestris at 
the gene level LD (Kujala & Savolainen, 2012; Pyhäjärvi, Kujala, & 
Savolainen, 2011). For example, Pyhäjärvi et al. (2011) found that 
several allozyme coding loci have strong LD, not showing signs of 
decay even over a 12‐kbp region. Also in P. taeda, earlier data sug‐
gested that LD decays rapidly (Brown, Gill, Kuntz, Langley, & Neale, 
2004), but some recent work suggests large variation in the extent of 
LD in the genome (Lu et al., 2016, see, however, Acosta et al., 2019).

The overall recombination rate in conifers, estimated based on 
genetic maps, is in general low (Jaramillo‐Correa, Verdú, & González‐
Martínez, 2010) and the same applies to P. sylvestris. The estimated 
map length is 1,500 cM (Komulainen et al., 2003) and with the ge‐
nome size 22 × 109 bp results in recombination rate of 0.07 cM/Mb 
or c = 0.7 × 10−9 per bp per generation. Thus, assuming Ne 38,000–
230,000 obtained from nucleotide diversity data yields ρ estimates 
0.0001–0.0006, whereas some ρ‐estimates obtained from the 
nucleotide diversity data are much higher ranging from 0 to 0.04 
(Kujala & Savolainen, 2012; Pyhäjärvi et al., 2007, 2011; Wachowiak 
et al., 2009). The apparent discrepancy of low LD and low recom‐
bination rate can be explained by low minor allele frequencies, rel‐
atively high Ne and potential for low recombination and extensive 
LD in intergenic regions. Currently, LD estimates of P. sylvestris are 
available within genes and between pairs of coding areas. Evidence 
for LD in intergenic areas is rare, and studies at an intermediate 
range are missing in P. sylvestris. A study on Cryptomeria japonica 
has indeed shown that noncoding regions of conifer genomes can 
harbor extensive LD (Moritsuka et al., 2012). Better genome assem‐
blies combined with extensive resequencing efforts are required to 
get a fuller picture of LD across P. sylvestris genome. Long read se‐
quencing combined with, for example, optical and genetic mapping 
will allow identifying regions where physical and genetic distances 
have most discrepancies. Identifying these regions is important for 
breeding and understanding adaptive variation as large fragments of 
genome are dragged along when responding to selection.

4  | POPULATION STRUCTURE , HISTORY, 
AND ALLELE FREQUENCY DISTRIBUTION

Pinus sylvestris has efficient wind pollination with potential for very 
long‐distance pollen dispersal. In addition, female flowering pre‐
cedes the male flowering by two to five days (Koski, 1970; Varis, 
Pakkanen, Galofré, & Pulkkinen, 2009). Pinus sylvestris pollen dis‐
persal distribution has a “fat‐tailed” leptokurtic shape allowing spo‐
radic long‐distance dispersal events. Most pollen comes from nearby 
sources (Koski, 1970; Muona & Harju, 1989; Torimaru, Wang, Fries, 
Andersson, & Lindgren, 2009), but nonlocal airborne germinable 
pollen is often observed during the female flowering, and northern 
populations receive some southern pollen potentially from hundreds 
of kilometers away before the local pollen is available (Varis et al., 
2009). In Robledo‐Arnuncio and Gil (2005), 4.3% of the pollen came 

outside the isolated P. sylvestris stand despite an estimated average 
pollen dispersal distance of only 135 m (Robledo‐Arnuncio & Gil, 
2005). Even rare long‐distance dispersal can have an important role 
in homogenizing the distribution of genetic variation and result in, 
for example, suboptimal phenotypic variation. Seeds are also dis‐
persed by wind, but not as extensively as pollen, distances peaking in 
<10 m (Kellomäki, Hänninen, Kolström, Kotisaari, & Pukkala, 1987).

The dispersal biology is reflected in the geographic distribution of 
genetic diversity. In nuclear genes that are dispersed by both pollen 
and seeds, the genetic differentiation is consistently low (FST = 0.02) 
in the more continuous part of the distribution (Karhu et al., 1996; 
Kujala & Savolainen, 2012; Prus‐Głowacki et al., 2012; Pyhäjärvi et 
al., 2007). Maternally inherited mitochondrial markers have a more 
restricted geographic distribution of alleles (GST  =  0.66; Naydenov, 
Senneville, Beaulieu, Tremblay, & Bousquet, 2007; Pyhäjärvi, Salmela, 
& Savolainen, 2008). The eastern part of the distribution is less stud‐
ied in terms of nuclear markers, but isozyme studies imply that ge‐
netic differentiation is also low (Dvornyk, 2001; Goncharenko, Silin, & 
Padutov, 1994). As in many other species, subtle geographic structure 
can be observed at the range margins and even in the main distri‐
bution when a large number of nuclear loci are observed (Kujala & 
Savolainen, 2012; Tyrmi et al.,2019; Wachowiak et al., 2011). In sum‐
mary, the nuclear polymorphisms and continuous distribution indicate 
a lack of actual discrete populations, and in many analyses, P. sylvestris 
within most of Europe can be treated as a single panmictic population.

Pinus sylvestris distribution is continuous in the north, whereas in 
the southern margin, the distribution consists more of fragmented 
and isolated populations. Mediterranean peninsulas and Turkish 
populations harbor mitochondrial haplotypes that have rarely or 
never been observed outside these isolated populations (Cheddadi 
et al., 2006; Naydenov et al., 2007; Pyhäjärvi et al., 2008; Sinclair, 
Morman, & Ennos, 1999; Soranzo, Alia, Provan, & Powell, 2000; 
Wójkiewicz, Cavers, & Wachowiak, 2016). This reflects the existence 
of limited seed dispersal and Mediterranean refugia during the Last 
Glacial Maximum (LGM) and still ongoing postglacial changes in suit‐
able habitats, but also contemporary land use and level of forested 
areas in general. In addition to contemporary gene flow, part of the 
low nuclear differentiation in higher latitudes could be explained by 
colonization process combined with a long juvenile stage (Austerlitz, 
Mariette, Machon, Gouyon, & Godelle, 2000).

Analysis of population genetic structure, measured as FST or 
inferred using STRUCTURE type approaches (Falush, Stephens, & 
Pritchard, 2003), is based on model of discrete populations. In real‐
ity, given the dispersal biology of P. sylvestris, the among‐population 
covariance structure is probably more of isolation‐by‐distance (IBD) 
type. Bradburd, Coop, and Ralph (2018) presented a promising new 
method to account for IBD patterns in genetic population structure 
analysis. When applied to nuclear P. sylvestris data, the spatial model 
with IBD has a better predictive accuracy than nonspatial (cluster) 
model (Tyrmi et al., 2019). The spatial model identifies a genetic com‐
ponent that is only present in an isolated Spanish population, consis‐
tent with previous work (Figure 3). However, in the spatial model the 
genetic makeup of the rest of the sampling sites remains continuous 



     |  17PYHÄJÄRVI et al.

in contrast to the nonspatial model that assigns a proportion of west‐
ern populations to the Spanish‐type cluster (Figure 3). These results 
support including IBD‐type spatial patterns in further analyses af‐
fected by population structure of P. sylvestris such as GWAS.

Nucleotide diversity studies have revealed a nonequilibrium pat‐
tern in the distribution of allele frequencies of P. sylvestris through‐
out its distribution, which is a common observation in forest trees 

(Figure 4; Heuertz et al., 2006; Ingvarsson, 2008; Mosca et al., 2012; 
Zhou, Bawa, & Holliday, 2014). The observed excess of rare variants 
is consistent with a bottleneck whose timing is uncertain but much 
earlier than the LGM (Kujala & Savolainen, 2012; Pyhäjärvi et al., 
2007).

As for many other conifers, the evolutionary timescales that 
influence both phenotypic and molecular genetic diversity in P. 

F I G U R E  3  Application of spatial and nonspatial population structure model (Bradburd et al., 2018) with K = 2 to Pinus sylvestris exome 
capture data from (Tyrmi et al., 2019). Geographic distribution of layer contributions for each population under spatial (a) and nonspatial 
models (c). The proportion of layer contributions in each population for spatial (b) and nonspatial models (d). Sampling locations are ordered 
according to longitudes
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sylvestris can be very extensive, potentially reaching millions of 
years (Pyhäjärvi et al., 2007). This is a combined property of its long 
generation time and large Ne. Therefore, observing the signatures 
of post‐LGM population expansion would require large amount of 
data, exceeding the sample sizes used in most published studies. 
Simple coalescent simulations show that, for example, doubling 
the population size from 25  ×  106 to 50  ×  106 individuals during 
the past 20,000 years (1,000 generations) hardly shifts the distri‐
bution of Tajima's D from the equilibrium population expectations 
(Figure 5). The large Ne results in long expected coalescence times, 
and thus, most of the observed diversity reflects the time before 
LGM. However, recent expansion could partly explain the observed 
low nucleotide diversity (Figure 5). It is noteworthy that during ad‐
aptation in rapidly growing populations, the current population size 
governs the adaptive process, whereas overall molecular diversity is 
defined by long‐term Ne, which can be considerably lower (Messer 
& Petrov, 2013). Larger sample sizes, allowed by more affordable se‐
quencing, will provide a better resolution on addressing more recent 
demographic events as, for example, in Keinan and Clark (2012).

The skewed AFS also has practical consequences. The general 
utility and information content of a given polymorphism depends 
on its allele frequency. Rare alleles are informative only in a small 
number of populations and families. Common alleles are generally 
considered more useful in, for example, paternity analysis, breeding, 
genetic mapping, genomic prediction, and genomewide association 
analysis. However, in some cases, ignoring the rare alleles may lead 
to biased conclusions. It will result in biased estimates of diversity 
and may lead to ignoring important functional variation (De La Torre 
et al., 2017, 2019; Fahrenkrog et al., 2017; Manolio et al., 2009).

5  | ADAPTIVE VARIATION AT TRAIT AND 
MOLECULAR LEVEL

The extent of local adaptation and distribution of adaptive variation 
among geographic areas, genomes, and individuals is a core question 
in evolutionary genetics and also has impacts on conservation and 

breeding efforts. The ultimate proof of local adaptation is the supe‐
rior fitness of a local population in comparison with nonlocal popu‐
lations (Kawecki & Ebert, 2004). So far, the strongest evidence for 
local adaptation in P. sylvestris has been obtained at the phenotypic 
level, but modern tools contribute to connecting phenotypic with 
molecular variation. Many of the potentially adaptive traits display a 
continuous, nearly normal within‐population distribution indicative 
of polygenic basis of inheritance (Mather, 1943). Phenotypic varia‐
tion is often also continuous at a geographic scale so that traits are 
correlated with, for example, altitude or latitude in a linear, clinal 
manner, caused by an interplay of selective gradient and gene flow in 
continuous space (Huxley, 1938). While many other conifer species 
have also been extensively characterized in terms of adaptive phe‐
notypic variation, P. sylvestris is among the few for which extremely 
little population structure at genomewide level within a very large 
continuous distribution is coupled with high QST values, measure 
of phenotypic differentiation among populations. These properties 
provide a relatively straightforward theoretical setup to study the 
dynamics of adaptive variation (Adrion, Hahn, & Cooper, 2015).

Barton (1999) suggests that a part of the loci affecting the clinal 
phenotypic variation should form strong allele frequency clines by 
the time population is approaching an equilibrium. Another sugges‐
tion emphasizes selection on favorable allele combinations across 
adaptive loci (allelic covariation) with only weak selection pressure 
on individual loci, instead of notable allele frequency clines. This 
could be especially important in the early phases of selection (Latta, 
1998; Le Corre & Kremer, 2003, 2012). Further, phenotypes could 
well be genetically redundant, and allelic effects, transient (Barghi et 
al., 2019; Yeaman, 2015).

Over decades, P. sylvestris has been extensively characterized 
in terms of possible adaptive trait variation. In a comparison of 
27 European conifer species, P. sylvestris had one of the highest 
QST values on height increment, bud flush, and bud set (Alberto 
et al., 2013; see also Savolainen et al., 2007). Extensive pheno‐
typic variation has been observed, for example, in phenology 
(Beuker, 1994; Clapham, Ekberg, Eriksson, Norell, & Vince‐Prue, 
2002; Kujala et al., 2017; Mikola, 1982; Notivol, García‐Gil, Alia, 

F I G U R E  4   Example of an allele 
frequency spectrum in Pinus sylvestris 
(Tyrmi et al.,2019). Observed 4‐fold and 
0‐fold degenerate sites are plotted as 
bars, and the expected values (Nordborg 
et al., 2005) under neutral equilibrium are 
indicated by line
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& Savolainen, 2007; Salmela, Cavers, Cottrell, Iason, & Ennos, 
2013), cold tolerance (Hurme, Repo, Savolainen, & Pääkkönen, 
1997), drought (Palmroth et al., 1999; Semerci et al., 2017), wa‐
terlogging stress (Donnelly, Cavers, Cottrell, & Ennos, 2018), root 
(Zadworny, McCormack, Mucha, Reich, & Oleksyn, 2016), seed 
(Reich, Oleksyn, & Tjoelker, 1994) and needle (Donnelly, Cavers, 
Cottrell, & Ennos, 2016) characteristics, and carbohydrate and 
nutrient dynamics (Oleksyn, Reich, Zytkowiak, Karolewski, & 
Tjoelker, 2003; Oleksyn, Zytkowiak, Karolewski, Reich, & Tjoelker, 
2000). For example, northern populations are more cold tolerant, 
have earlier growth cessation, and grow less during the growing 
season, consistent with the gradient in environmental conditions 
and local adaptation.

Wealth of data on survival and growth serving as proxies for 
fitness exists in provenance trials (reviewed by Langlet (1971)). 
Savolainen et al. (2007) used such data to identify local adaptation. 
Comparison of fitness of transferred populations to the fitness of 
local populations based on relative survival and height showed, for 
example, that P. sylvestris populations in central Sweden are locally 

adapted. This implies that tree populations have obviously had time 
to evolve to match the new habitats exposed by the retreating con‐
tinental ice retreat (Davis & Shaw, 2001). Rapid adaptation is con‐
cordant with the theoretical expectation that selection is efficient 
in large populations.

The molecular genetic basis of the adaptive clinal variation can 
be identified with two basic approaches: association mapping that 
identifies genetic polymorphisms correlated with a given pheno‐
typic variation, or by methods that rely solely on genotypic data. 
Association studies, especially when both the between‐population 
and within‐population variation can be addressed, can reveal im‐
portant polymorphisms underlying adaptation. At the same time, 
the clinal setup poses a challenge for controlling population struc‐
ture when it occurs along the same environmental gradient. Kujala 
et al. (2017) address this problem with latitudinal variation in timing 
of bud set in the first‐year seedlings of P. sylvestris. In this Bayesian 
approach, the presence of a within‐population association signal is 
required across different populations to exclude spurious associa‐
tions. Other new promising methods, akin to QST−FST comparisons, 

F I G U R E  5   Tajima's D (a) and 
nucleotide diversity (b) distributions for 
constant size (SNM) and exponentially 
(EXP) growing population. Coalescent 
simulations were conducted with Coala 
package in R (Staab & Metzler, 2016) 
with the following parameters. SNM: 
N0 = 50 × 10

6, μ = 0.004/bp and locus 
length 1,000 bp and sample size 50. EXP: 
as in SNM but exponential growth started 
at time 0.00002
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for identification of polygenic adaptation rely on principal compo‐
nents of relatedness derived from genomic data and phenotype data 
obtained from common garden studies (Berg & Coop, 2014; Josephs, 
Berg, Ross‐Ibarra, & Coop, 2019, see however Berg et al., 2019). This 
type of analysis should also be now feasible in P. sylvestris, utilizing 
one of the available high‐throughput genotyping methods. The ben‐
efit of the Josephs et al. (2019) method is that it does not require a 
priori grouping of individuals into discrete populations and may be 
another solution to some of the analytical problems deriving from 
overcorrecting the population structure.

In P. sylvestris, association methods have been used to search for 
variants related to clinal variation in timing of bud set (Kujala et al., 
2017). Most marker effects were small (<2 days), in line with most 
other genotype–phenotype association studies on growth cessa‐
tion‐related traits in trees (Holliday, Ritland, & Aitken, 2010; Ma, Hall, 
St. Onge, Jansson, & Ingvarsson, 2010; Mahony et al., 2019; Olson et 
al., 2013; Prunier et al., 2013; Yeaman et al., 2016). Interestingly, in 
the P. sylvestris study, different markers were associated in northern 
and central European populations, suggesting genetic heterogeneity 
within this trait. While some sharing of the associated loci with other 
species has been found, the between‐species molecular conver‐
gence will be addressed in more detail in the upcoming association 
studies with higher genome coverage.

Divergence outlier methods (Beaumont & Nicholson, 1996; 
Excoffier, Hofer, & Foll, 2009; Foll & Gaggiotti, 2008) and deviations 
from the expected AFS have been used to identify loci indicating local 
adaptation or directional selection. However, inference of the effect 
of natural selection in P. sylvestris has been complicated by potential 
nonequilibrium demographic history. This has been accommodated 
by contrasting observed patterns of presumably neutral variation 
to a set of loci potentially under selection (Wachowiak et al., 2009). 
Another approach has been to build a demographic background 
model and derive expected patterns of neutral variation from that 
with coalescent simulations (Kujala & Savolainen, 2012; Pyhäjärvi et 
al., 2007). Even though most of these studies have been conducted 
on candidate genes, the number of outliers has usually been small 
(Kujala & Savolainen, 2012; Pyhäjärvi et al., 2007; Tyrmi et al., 2019; 
Wachowiak et al., 2009). However, despite moderate signals of selec‐
tion at individual loci, Grivet et al. (2017) concluded that P. sylvestris, 
along with P. pinaster, have in general slightly higher substitution rates 
of adaptive mutations in comparison with many other plant species.

Genomes also carry evidence of very long‐term selection, for 
example, in dN/dS ratios, as also identified in P. sylvestris (Palme, 
Pyhäjärvi, Wachowiak, & Savolainen, 2009; Palmé, Wright, & 
Savolainen, 2008). Identifying these kinds of “long‐term” selected 
loci is not necessarily helpful in current breeding efforts, but they 
will inform about the long‐term evolutionary forces shaping molec‐
ular patterns of, for example, divergence and transferability of the 
findings across species (Yeaman et al., 2016).

Very few nucleotide polymorphisms so far have indicated a 
clinal allele frequency pattern (Kujala & Savolainen, 2012; Tyrmi et 
al., 2019), and the overall lack of population‐level adaptive signal at 
molecular level is in strong contrast with the observed patterns of 

clinal phenotypic variation. This observation is consistent with the 
allelic covariation hypothesis, which would also explain the scar‐
city of other molecular level signal of adaptation. Alternatively, the 
clinal patterns could reside in yet‐unexplored genes or their regu‐
latory regions. In the similarly adapted P. abies, some examples of 
latitudinal allele frequency variation have been found (Chen et al., 
2012). A recent study on Pinus contorta shows that joint multivar‐
iate analysis of environment with gene co‐expression networks is 
a promising avenue to better grasp the architecture of polygenic 
clinal adaptation because in reality populations are adapting to 
different environmental dimensions at the same time, especially 
in complex landscapes (Lotterhos, Yeaman, Degner, Aitken, & 
Hodgins, 2018).

6  | GENOME SIZE AND ARCHITECTURE

A major aspect of P. sylvestris genetics is its large genome size, 
22 × 109 bp (Bennett & Leitch, 2012). Assuming the composition is 
similar to the closely related Pinus taeda reference genome (Wegrzyn 
et al., 2014), only about 0.2% of its genome consists of coding re‐
gions. Pinus genomes have high repetitive content, extremely long 
introns (Stival Sena et al., 2014), large gene families, and potentially 
more than 50,000 genes (Stevens et al., 2016; Wegrzyn et al., 2014). 
A recent de novo transcriptome also indicates high complexity with 
more than 1.2 × 106 distinct transcripts observed when multiple tis‐
sues and genotypes are combined (Ojeda Alayon et al., 2018).

The annotation of pine reference genomes is still far from com‐
plete (Wegrzyn et al, in the same issue). Current P. taeda (v. 2.01) 
and P. lambertiana annotations (Box ) reach at most 58% gene space 
completeness (Stevens et al., 2016) in terms of essential single‐copy 
genes in Embryophyta (Simão, Waterhouse, Ioannidis, Kriventseva, 
& Zdobnov, 2015). In contrast, more than 80% of the same essential 
genes are transcribed, for example, in the P. sylvestris tissues (Ojeda 
Alayon et al., 2018). The discrepancy is caused by still fragmented 
assemblies, extremely long introns, intronless genes, pseudogenes, 
and the inability of annotation algorithms to identify conifer genes 
(Neale et al., 2014; Nystedt et al., 2013; Stevens et al., 2016; Stival 
Sena et al., 2014; Wegrzyn et al., 2014). The incompleteness can 
cause biased results in downstream genetic analysis. For example, 
when read mapping of P. sylvestris is conducted using P. taeda as a 
reference, assuming polymorphisms in nonannotated sites to be in‐
tergenic or neutral may lead to biased estimates of genetic diversity 
or prevalence of natural selection.

In addition to protein coding regions, conifers with large genomes 
may have relatively large functional space compared to, for example, 
angiosperm trees. There is likely a wealth of regulatory variation 
outside the coding region. Recent theory on the role of genome size 
suggests that large genomes have more potential for adaptive vari‐
ation in noncoding region than small genomes (Mei, Stetter, Gates, 
Stitzer, & Ross‐Ibarra, 2018) and that the difference in mutational 
target can affect the expected dynamics of adaptation (Höllinger, 
Pennings, & Hermisson, 2019), which may partly explain why strong 
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signals of adaptive variation in P. sylvestris genetic polymorphism 
(mostly targeting coding regions) have not been identified. Even 
though the genomic resources at the moment for P. sylvestris are lim‐
ited, new techniques, such as ATAC‐seq, allow targeting the open 
chromatin and therefore access the regulatory regions of even large 
plant genomes (Buenrostro, Wu, Chang, & Greenleaf, 2015; Maher 
et al., 2018). The mutation rate per bp per year in Pinus is not ex‐
tremely high (Buschiazzo et al., 2012), but the large functional space 
may also explain the large number of lethal equivalents (Koelewijn 
et al., 1999; Lande et al., 1994; Williams, 2009). The findings of both 
Avia, Kärkkäinen, Lagercrantz, and Savolainen (2014) and Alakärppä 
et al. (2018) on population‐specific expression patterns in P. sylves‐
tris genes related to photoperiod circadian clock functions provide 
evidence of the importance of differential regulation. Interestingly, 
Alakärppä et al. (2018) also identified population‐specific expression 
patterns of DNA methyltransferase (DNMT) genes, encouraging fur‐
ther studies on expression regulations role in local adaptation.

Recently, the effects of transposable elements (TEs) on trait 
and adaptive variation via regulating gene expression have be‐
come evident across a wide variety of species (Chuong, Elde, 
& Feschotte, 2017). In large genomes filled with TEs, it is likely 
that adaptive mutations happen by TE movement and conse‐
quent epigenetic changes in regulatory regions (Mei et al., 2018). 

Transposable element sequences make up 80% of Pinus genomes 
in general (Stevens et al., 2016; Wegrzyn et al., 2014). Even if TEs 
are generally thought to be old and inactive, some are actively 
transcribed in certain tissues and conditions in Pinus (Cañas et 
al., 2017; Voronova, Belevich, Jansons, & Rungis, 2014). Similarly 
to other Pinus, IFG‐7a_PTa is the most abundant LTR family in P. 
sylvestris (Voronova, Belevich, Korica, & Rungis, 2017). Some 
families, such as PtAngelina, are especially abundant in P. sylves‐
tris (Voronova et al., 2017), and several low copy retrotransposon 
family abundancies vary among P. sylvestris individuals. The intra‐
specific variation in TE abundancies indicates that they also have 
potential to relate to other intraspecific variation in, for example, 
adaptive traits or levels of inbreeding depression. Even though 
whole genome resequencing is still relatively expensive, a com‐
bination of low depth DNA sequencing and RNAseq can be used 
in more detailed studies on relative abundances of TEs and their 
activity across tissues, genotypes, and geographic regions.

One promising method for accessing genomic diversity in P. syl‐
vestris is targeted sequencing where custom‐designed baits are used 
to target the regions of interest, such as exons in the genome. Baits 
can be designed by combining transcriptome data with informa‐
tion from reference genomes (Rellstab, Dauphin, Zoller, Brodbeck, 
& Gugerli, 2019; Suren et al., 2016). Tyrmi et al. 2019 have applied 

Box 1 Current genomic resources relevant for Pinus sylvestris
Draft genome of P. sylvestris (ftp://plant​genie.org/Data/ConGe​nIE/Picea_abies/​v1.0/FASTA/​Genom​eAsse​mblie​s/Psylv​estris_1Kbp.
fa.gz, Nystedt et al. (2013)) contains 881,136 > 1 kbp unannotated contigs. 454 and Illumina raw data are downloadable in ENA database 
(project ERP002572).
De novo P. sylvestris transcriptomes are available for needles, pollen, vegetative buds, phloem, and various developmental stages of 
embryos and megagametophytes (Höllbacher, Schmitt, Hofer, Ferreira, & Lackner, 2017; Merino et al., 2016; Ojeda Alayon et al., 2018; 
Wachowiak, Trivedi, Perry, & Cavers, 2015). The haploid‐guided Trinity assembly combining data from multiple tissues and genotypes 
has the highest completeness (https​://pinus_sylve​stris_trans​cript​ome_public_data.object.pouta.csc.fi/Pinus_sylve​stris_transc riptomes_
Ojeda_2018.tar).
TreeGenes (https​://treeg​enesdb.org, Wegrzyn et al., 2008) provides access to several (including P. taeda and P. lambertiana) tree ge‐
nomes, annotations, transcriptomes, and other resources and tools. It also provides P. sylvestris data obtained from NCBI for ESTs, cDNA, 
and TSA (Transcriptome Shotgun Assembly) databases. Somewhat overlapping with ConGenie.
ConGenie (http://conge​nie.org, Nystedt et al.) allows access to multiple conifer reference sequences, annotated genes, transcriptomes, 
and ESTs.
PIER database (Pine Interspersed Element Resource, https​://www.treeg​enesdb.org/FTP/Genom​es/Pita/Repea​ts/Pine_Inter​spers​ed_
Repea​ts_%28PIE​R%29_v1.0.fa, Wegrzyn et al.) contains sequence information on 19,194 repeats first identified in P. taeda.
Gymno PLAZA 1.0 (https​://bioin​forma​tics.psb.ugent.be/plaza/​versi​ons/gymno-plaza/​, Proost et al., 2015) is a comparative genomics 
platform for 11 conifer species, including P. sylvestris. Information on gene families and orthological relationships among genes and 
species.
A set of single‐copy genes in gymnosperms, including P. sylvestris (http://bioin​forma​tics.psb.ugent.be/suppl​ement​ary_data/zheli/​gbe/, Li 
et al., 2017).
cpDNA genome and fragmented mtDNA genome sequences (https​://www.ebi.ac.uk/ena/data/view/PRJEB​18435​, Donnelly et al., 2016, 
https​://www.ncbi.nlm.nih.gov/nucco​re/JN854​158.1, Parks et al., 2012) can be used, for example, to identify sequencing reads originating 
from organellar genomes.
STAPLER Pipeline maker (Tyrmi, 2018) has been developed in conjunction with P. sylvestris exome capture workflow and functions with, 
for example, large P. taeda reference genome.

ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/GenomeAssemblies/Psylvestris_1Kbp.fa.gz
ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/GenomeAssemblies/Psylvestris_1Kbp.fa.gz
https://pinus_sylvestris_transcriptome_public_data.object.pouta.csc.fi/Pinus_sylvestris_transc
https://treegenesdb.org
http://congenie.org
https://www.treegenesdb.org/FTP/Genomes/Pita/Repeats/Pine_Interspersed_Repeats_%28PIER%29_v1.0.fa
https://www.treegenesdb.org/FTP/Genomes/Pita/Repeats/Pine_Interspersed_Repeats_%28PIER%29_v1.0.fa
https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/
http://bioinformatics.psb.ugent.be/supplementary_data/zheli/gbe/
https://www.ebi.ac.uk/ena/data/view/PRJEB18435
https://www.ncbi.nlm.nih.gov/nuccore/JN854158.1
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the method successfully in P. sylvestris and obtained good‐quality 
SNP data from 80,000 SNPs and 109 individuals with 30 Illumina 
HiSeq 2000 lanes. Even this approach has its challenges. With larger 
genomes, the off‐target sequence and paralog regions are harder to 
exclude (Rellstab et al., 2019). However, applying filtering for excess 
heterozygosity and deviations from expected read ratios have been 
successfully used to identify paralog mapping (different gene copies 
mapping to a single reference locus) in, for example, Pinus cembra 
(McKinney, Waples, Seeb, & Seeb, 2017; Rellstab et al., 2019).

As already done in reference genome sequencing and transcrip‐
tome sequencing (Ojeda Alayon et al., 2018; Stevens et al., 2016), it 
is advisable to utilize sequence data from the haploid megagameto‐
phyte tissue in the quality control, as no heterozygotes are expected, 
and paralog problems can be avoided. Heterozygous calls are not ex‐
pected in haploid material, and they can be used to remove regions 
with paralog mapping issues. Utilizing haploid tissue also facilitates 
genotype calling with comparatively smaller average depth (10×) as 
there is no need to identify heterozygotes reliably.

RNA sequencing can also be used to identify polymorphisms 
(Ojeda Alayon et al., 2018; Wachowiak et al., 2015). However, one 
should proceed with caution in making detailed estimates of genetic 
diversity and AFS based on RNA‐seq due to, for example, allele‐spe‐
cific expression. Ojeda Alayon et al. (2018) provide multiple P. sylves‐
tris reference de novo transcriptome assemblies of which some are 
more suitable for use in gene expression studies and others for pop‐
ulation genetic analysis, SNP identification, and, for example, exome 
capture bait design.

Pinus taeda can be used as a mapping reference for P. sylvestris, as 
the species have a rather low estimated sequence divergence of 3% 
at silent sites (Grivet et al., 2017; Palmé et al., 2008). Compared to 
P. sylvestris transcriptome and the draft genome sequence (Box ), it 
is probably the most comprehensive reference especially in the case 
when, for example, read data from targeted sequencing contain a lot 
of off‐target sequence not present in the transcriptome. Mapping to 
a diverged reference is bound to lead to some extent of reference 
bias and, for example, exclusion of highly diverged, potentially evo‐
lutionarily important genomic regions (Kronenberg et al., 2018 for 
an example in primates). This effect is likely to be even more seri‐
ous in noncoding areas and further complicates identifying adaptive 
regulatory alleles that may be especially important in species with 
large genomes (Mei et al., 2018). P. sylvestris‐specific genome assem‐
bly would improve the quality of inference based on DNA sequence 
data and widen the available analytical repertoire (e.g., identification 
of copy number and structural variants, haplotype structure, and 
long‐distance LD). Box is a collection of useful genomic resources 
and databases available for P. sylvestris at the moment.

7  | APPLICATION OF GENOMICS IN 
BREEDING AND CONSERVATION

Combining the phenotypic information from the phenotype and the‐
ory‐based knowledge with modern genomic technologies provides 

an opportunity for improved breeding methods and better pre‐
dictions of P. sylvestris response to future environmental changes. 
Predicting responses to artificial or natural changes requires an 
understanding of both basic biological properties, evolutionary pro‐
cesses and genomic basis of adaptive trait variations, combined with 
practical aspects and reality of breeding and conservation activities. 
Two main methods, GWAS and genomic prediction, hold most po‐
tential to link genomic and phenotypic data together for application 
purposes.

GWAS uses large genomewide polymorphism and phenotypic 
data from typically large population samples to identify genomic vari‐
ants associated with variation in a given trait and is based on tight LD 
between the marker and the causative locus (Risch & Merikangas, 
1996; for trees, see Neale & Savolainen, 2004). So far, the associa‐
tion analyses in P. sylvestris have been based on a limited number of 
mostly candidate loci. Exome capture and transcriptome sequenc‐
ing methods have now identified enough SNPs to enable design of 
efficient and affordable chip‐based genotyping methods (Stephen 
Cavers, personal communication). Also, genotyping‐by‐sequencing 
(Elshire et al., 2011) and other restriction‐based high‐throughput 
methods facilitate genotyping of hundreds of individuals for large 
amounts of SNPs. However, these methods have most power to 
detect SNPs in the genic, nonrepetitive part of the genome. If ge‐
netic basis of trait variation is highly polygenic and outside coding 
region, whole genome resequencing and targeted sequencing of ac‐
tive chromatin are the methods that offer better resolution. Both of 
these methods are still economically and technically challenging for 
conifers.

In a typical association study, the effects of rare variants are con‐
sidered extremely hard to capture due to power issues. The lower 
the frequency of the variant is, the more samples are needed to 
reach sufficient power given a certain effect size. As the number of 
tests grows, the significance threshold grows due to corrections for 
multiple testing (however, note multilocus approaches, e.g., Kujala et 
al. (2017)). However, when the AFS is very skewed, and a minor allele 
frequency cutoff used, much genomic information is lost with rare 
variants, and the effects (small or large) of low‐frequency variants 
will not be evaluated at all (Auer & Lettre, 2015; Sazonovs & Barrett, 
2018). The young variants are not efficiently tagged by older nearby 
variants due to the allele frequency difference (Auer & Lettre, 2015; 
Paulose, Hermisson, & Hallatschek, 2019; Sazonovs & Barrett, 2018; 
Wainschtein et al., 2019). Family‐based association methods, where 
the alleles that are rare in the general population are “amplified” 
within a given family (Laird & Lange, 2006), extreme phenotype 
sampling from the edges of the trait distribution (Guey et al., 2011; 
Li, Lewinger, Gauderman, Murcray, & Conti, 2011) or variance‐com‐
ponent tests (Lee, Abecasis, Boehnke, & Lin, 2014; Wu et al., 2011) 
can be used to increase power and efficiency in case of rare variants.

Genomic prediction is based on the idea that a limited number 
of genetic markers can inform about areas of the genome respon‐
sible for trait variation. It relies on extensive LD between genetic 
markers and the causal polymorphism, typically not observed at the 
population‐level samples. However, reduced Ne and family structure 
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in breeding populations can increase the extent of LD. The ob‐
served LD patterns and empirical results in other conifers suggest 
that genomic prediction is feasible in cases where selection takes 
place within families (Chen et al., 2018; Lenz et al., 2017). P. sylvestris 
breeding, for example, in Finland is conducted in such a setting and 
allows genomic prediction to be developed.

The low success of transferring genomic prediction models across 
different breeding populations is due to differences in the patterns 
of LD between populations. This limitation has been observed in 
trees (Isik, 2014), as well as in other species (Meuwissen, Hayes, & 
Goddard, 2016). A dual strategy could alleviate this problem; instead 
of using an array consisting only of anonymous genotypic markers, 
one could allow more emphasis on markers in functionally relevant 
genes (Meuwissen et al., 2016; Nicolae et al., 2010; Wang et al., 
2018; Zhang et al., 2015, 2010), for example, from well‐known path‐
ways (such as pinosylvin biosynthesis; Lim et al., 2016). However, 
only those functional markers that have an impact on the variation 
across different populations would serve this purpose; markers with 
more locally distributed effects in contrary might enhance misinfer‐
ence. The above‐cited methods can however help to improve the 
genomic predictions within populations, too. Polymorphisms indi‐
cated in association studies in conifers are expected to be very close 
to the causal loci due to low LD, and these markers could thus be 
also given higher weight in genomic prediction. The excess of rare 
alleles is a challenge but also an opportunity for P. sylvestris breeding. 
Recent studies have shown that rare alleles may account for a con‐
siderable proportion of phenotypic variation and that some of these 
rare alleles may be deleterious, maintained by mutation‐selection 
balance (Wainschtein et al., 2019). There is definitely call for identi‐
fying and using rare variants also in plant breeding (Bernardo, 2016; 
Crossa et al., 2017). Further, they give highly accurate estimates of 
true genetic relationships and level of inbreeding (Eynard, Windig, 
Leroy, Van Binsbergen, & Calus, 2015). Jannink (2010) and Liu, 
Meuwissen, Sørensen, and Berg (2015) have shown that weighting 
low‐frequency favorable alleles increases the long‐term genetic gain 
in genomic prediction. The effect comes through reducing the odds 
of losing rare variation through genetic drift. This comes at the ex‐
pense of short‐term genetic gain, but maintaining variation in the 
breeding populations is of high importance, too.

In P. sylvestris, each family or other subsample will have their 
unique set of rare variants. They are likely to be missed by, for ex‐
ample, general purpose SNP chips and can only be identified by 
sequencing‐based methods. Population stratification in rare alleles 
is likely to differ from the pattern observed with more common al‐
leles as they often show more spatial clustering. Therefore, more 
rigorous methods to deal with the fine spatial structure are needed 
when working with rare variants (Mathieson & McVean, 2012). On 
the other hand, rare variants offer a way to learn more about the 
potential fine‐scale spatial structure in P. sylvestris, a topic not well 
covered so far.

Warming temperatures are already causing range shifts both 
at the northern and southern distribution limits of species, includ‐
ing P. sylvestris (Dyderski, Paź, Frelich, & Jagodziński, 2018). This is 

expected to increase growth rates of P. sylvestris in northern areas 
(Bärring, Berlin, & Andersson Gull, 2017; Bergh et al., 2003; Kellomäki 
et al., 2018). However, for this growth increase to be realized, forest 
reproductive materials with appropriate adaptive characteristics 
must be used (Beuker, 1994; Persson, 1998; Persson & Beuker, 1997; 
Rehfeldt et al., 2002) taking into account the complicated joint ef‐
fects of abiotic and biotic changes (Matías & Jump, 2012). In some 
other areas, growth and survival may be reduced (Reich & Oleksyn, 
2008). New combinations of photoperiod and temperature create 
selection pressure to efficiently utilize the increased potential for 
growth by correct interpretation of climatic signals (Saikkonen et al., 
2012). When the genetics and relationship of phenotypic variation 
to environmental variation are understood, it is possible to predict 
and evaluate responses (Kuparinen, Savolainen, & Schurr, 2010; 
Savolainen, Bokma, García‐Gil, Komulainen, & Repo, 2004) and uti‐
lize this information, for example, in assisted migration design.

Along with the longer growth periods, also many forest distur‐
bance effects are likely to take place. According to Seidl et al. (2017), 
temperature‐related disturbances will be highest in the boreal biome, 
especially in coniferous forests. Drought effects will be significant 
in both southern and northern regions, flooding will likely be an 
increasing problem, and new pests and pathogens will be encoun‐
tered. It should be of high priority to assess the levels of within‐spe‐
cies and within‐population variation for adaptive potential against 
the predicted disturbances, at both phenotypic and genomic levels. 
Identification of the adaptive genomic regions, and diversity within 
those regions, albeit not an easy task, should be seen as an important 
task. Genetic analyses can also inform us, for example, about the ex‐
tent of correlation among adaptively important traits, deriving either 
from pleiotropic effects or tight LD (Aitken, Yeaman, Holliday, Wang, 
& Curtis‐McLane, 2008; Savolainen et al., 2004). Further, genomic 
prediction may contribute to climate change responses helping meet 
goals of carbon neutrality (Cuny et al., 2015; Pan et al., 2011; Pool & 
Aquadro, 2007; Varho, Rautiainen, Peltonen, Niemi, & Ovaska, 2018) 
and alleviate associated disturbances (Alberto et al., 2013; Fady et al., 
2016; Jansson et al., 2017; Savolainen et al., 2004; Seidl et al., 2017).

In summary, new genetic technologies and the molecular diver‐
sity they reveal—DNA polymorphisms, expression changes, struc‐
tural, and repetitive element variation—are opening many venues 
to take a new look into questions identified by earlier P. sylvestris 
research and also applicable to many other forest trees. Bridging 
the artificial gap between quantitative, population, and evolutionary 
genetics is necessary for an in‐depth understanding of causes and 
consequences of, for example, clinal adaptive variation, inbreeding 
depression, large genome size, and skewed AFS in P. sylvestris.
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