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Abstract: Monitoring and characterizing species biodiversity is essential for germplasm preservation,
academic studies, and various practical applications. Duckweeds represent a group of tiny aquatic
plants that include 36 species divided into 5 genera within the Lemnaceae family. They are an
important part of aquatic ecosystems worldwide, often covering large portions of the water reservoirs
they inhabit, and have many potential applications, including in bioremediation, biofuels, and
biomanufacturing. Here, we evaluated the biodiversity of duckweeds in Ukraine and Eastern China
by characterizing specimens using the two-barcode protocol with the chloroplast atpH–atpF and
psbK–psbI spacer sequences. In total, 69 Chinese and Ukrainian duckweed specimens were sequenced.
The sequences were compared against sequences in the NCBI database using BLAST. We identified
six species from China (Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna minor,
Lemna turionifera, and Wolffia globosa) and six from Ukraine (S. polyrhiza, Lemna gibba, Lemna minor,
Lemna trisulca, Lemna turionifera, and Wolffia arrhiza). The most common duckweed species in the
samples from Ukraine were Le. minor and S. polyrhiza, accounting for 17 and 15 out of 40 specimens,
respectively. The most common duckweed species in the samples from China was S. polyrhiza,
accounting for 15 out of 29 specimens. La. punctata and Le. aequinoctialis were also common in China,
accounting for five and four specimens, respectively. According to both atpH–atpF and psbK–psbI
barcode analyses, the species identified as Le. aequinoctialis does not form a uniform taxon similar
to other duckweed species, and therefore the phylogenetic status of this species requires further
clarification. By monitoring duckweeds using chloroplast DNA sequencing, we not only precisely
identified local species and ecotypes, but also provided background for further exploration of native
varieties with diverse genetic backgrounds. These data could be useful for future conservation,
breeding, and biotechnological applications.
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1. Introduction

Monitoring and characterizing species biodiversity is essential for germplasm preser-
vation, academic studies, and various practical applications [1]. Duckweed is an important
element in aquatic ecosystems worldwide, often covering large portions of the still water
surface they inhabit. This group of tiny aquatic plants is composed of 36 species divided into
five genera in the Lemnaceae family [2,3], an early diverging family of monocotyledonous
plants [4].

Duckweeds are a diverse group and provide many opportunities for genetic, phys-
iological, biochemical, and practical research [5,6]. After being important model plants
in the 1950s–1970s, duckweeds became popular again in the 2010s, primarily due to their
potential as a biofuel feedstock because of their high biomass growth rate, low lignin
content, and high starch content [7,8]. In addition to starch, duckweed biomass is rich in
proteins, carbohydrates, crude fiber, minerals, and lipids. This biomass composition makes
duckweed a potential food source for animals, fish, and humans [9]. Duckweeds have also
been studied for their use in wastewater treatment [10,11], biosensing [12,13], and phytore-
mediation of water reservoirs contaminated with various toxic chemicals [14,15]. Several
duckweed species have been genetically engineered with the eventual aim of producing
pharmaceutical proteins such as antigens, peptide hormones, and antibodies [16–18].

The multiple potential applications of duckweed have led to an increasing interest in
duckweed genetics, molecular evolution, and diversity. The genome size of duckweeds
varies by 14-fold, from 160 Mb in great duckweed (Spirodela polyrhiza (L.) Schleid) to
≈2.2 Gb in Wolffia arrhiza (L.) Horkel ex Wimm [19]. Researchers have sequenced the whole
genomes of two representative ecotypes of Spirodela polyrhiza [20,21] and Spirodela intermedia
W. Koch [22], as well as genomes of Lemna minor L. [23] and Wolffia australiana (Benth.)
Hartog and Plas [24]. Moreover, there are ongoing whole-genome sequencing projects for
Landoltia punctata (G.Mey.) Les and D.J.Crawford and Lemna gibba L. [25]. Four biannual
international conferences specifically on duckweed have taken place since 2012, and there
has been a tremendous surge in diverse academic and applied studies of various aspects of
duckweed biology [5,26–29].

Duckweeds include the smallest known flowering plants and often have reduced mor-
phology, making some species difficult to identify using traditional botanical approaches,
not even mentioning ecotypes [30]. Recently, molecular methods have been developed to
aid in identifying duckweed species and distinguishing ecotypes [31]. The Consortium for
the Barcode of Life (CBOL) [32] recommends seven chloroplast DNA (cpDNA) barcodes
to identify land plants simply and reliably [33]. The recommended barcodes have been
adapted for identification of duckweeds supported by the constantly growing number of
reference sequences deposited in DNA sequence databases. Most of these sequences came
from studies of the samples deposited at the world’s largest live duckweed depository at
the Rutgers University’s Duckweed Stock Cooperative (RDSC) in New Brunswick, NJ, USA
(www.ruduckweed.org, accessed on 31 March 2022), with the rest coming from smaller col-
lections or random samplings. Additionally, 12 chloroplast genome sequences, representing
7 duckweed species [34–37], have been sequenced and deposited in the NCBI database.

In many parts of the world, including Ukraine and China, farmers practicing intensive
agriculture use substantial amounts of fertilizers. Fertilizer that is not fully utilized by crops
eventually ends up in water reservoirs surrounding agricultural fields. Due to its ability
to quickly assimilate nitrogen, phosphorous, and other nutrients, duckweed can rapidly
grow, producing on average of 13–38 dry tons of biomass/hectare/year [38], converting
agricultural and municipal wastewater into clean water and a high-value biomass ideal
for animal/fish feed and numerous other applications [5]. In both Ukraine and China,
duckweed is the dominant vegetation in ponds and lakes. In contrast to China, where
different aspects of duckweed research are relatively well developed (for example, the
RDSC collection hosts more than 200 duckweed ecotypes originated from China), there is
rather scarce information on duckweed in Ukraine and Eastern Europe in general.

www.ruduckweed.org


Plants 2022, 11, 1468 3 of 14

In this work, we evaluated the biodiversity of duckweed in different regions of Eastern
China and Ukraine on the basis of the two-barcode protocol for sequencing the chloroplast
atpH–atpF (ATP) and psbK–psbI (PSB) spacers in the collected duckweed specimens. With
this approach, we precisely identified local species and ecotypes. Our results provide a
foundation for further exploring native varieties with diverse genetic backgrounds and for
duckweed breeding and biotechnological applications.

2. Results
2.1. Genotyping of the Duckweed Specimens

We collected 69 duckweed specimens from across Ukraine and southeastern China.
Several locations contained more than one species, as illustrated in Figure 1. From these
specimens, plus RDSC clone 8656, we obtained 140 representative sequences, which we
deposited in GenBank (Table S1). Because the PCR primers for the atpH–atpF spacer are
located further into the corresponding atpH and atpF gene sequences compared to psbK–psbI
spacer, the ATP barcodes contain longer portions of the coding sequences compared to PSB.
The high reliability of the represented barcodes is based on sequences generated using both
forward and reverse primers following careful nucleotide validation.

Figure 1. Location of duckweed sampling sites in Ukraine and China.Dot colors correspond to
different species: red, S. polyrhiza; green, La. punctata; light blue, Le. minor; dark blue, Le. aequinoctialis
Welw.; pink, Le. gibba; black, Le. trisulca; grey, Le. turionifera; yellow, W. arrhiza; and brown, W. globosa.
The image at the bottom was taken at a pond in Huai’an, China. It illustrates a community of three
different species, S. polyrhiza (S), Le. aequinoctialis (L), and W. globosa (W), growing together. The exact
GPS coordinates of the sites are listed in Table S2. Geographic maps were taken from the websites
located at https://www.d-maps.com/m/asia/china/chine/chine58.gif (accessed on 11 February 2022)
and https://www.d-maps.com/m/europa/ukraine/ukraine50.gif (accessed on 11 February 2022).

2.1.1. Great Duckweed, Spirodela polyrhiza

Barcoding showed that 15 of the 39 specimens collected in Ukraine and 15 of the
30 specimens collected in China were S. polyrhiza. The S. polyrhiza ATP sequences from our
study and the reference sequences from the whole chloroplast genome of U.S. S. polyrhiza
ecotype 7498 [35,37] had high sequence conservation. The main detected sequence varia-
tions were T↔C transitions at defined positions along the sequence and a couple of T↔A

https://www.d-maps.com/m/asia/china/chine/chine58.gif
https://www.d-maps.com/m/europa/ukraine/ukraine50.gif
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transversions, with no biases related to the specimen’s geographic origins (Figure S1A).
The PSB sequences showed similar low sequence diversity but with different sequence
polymorphisms, including single-nucleotide polymorphisms (SNPs), insertion/deletions
(InDels), and more random nucleotide transitions/transversions (Figure S1B) compared
to the ATP sequences. Our PSB sequences also contained single-nucleotide insertions
of additional A nucleotides at positions 25 and 354 and an additional T at position 402,
compared to the reference sequence of S. polyrhiza ecotype 7498.

2.1.2. Dotted Duckweed, Landoltia punctata

By chloroplast DNA barcoding, we identified five La. punctata ecotypes. Two ecotypes
were collected near the Hongze lake (Jiangsu province, China) and kept in our in vitro
collections (NB0014 and NB0022). Ecotype Ya3 was collected from Yanling and Gu1 from
Guilin; the ecotype RDSC EL019 collected earlier in Kuhming was obtained from the RDSC
(New Brunswick, USA). As La. punctata inhabits tropical areas [29], we did not find it in
Ukraine. Sequence alignments showed a high stability of both the ATP and PSB sequences
in La. punctata. The ATP sequences of the six ecotypes only shared two A↔G transitions,
both in Gu1, and a single nucleotide deletion (Figure S2A); the six PSB sequences differed
by a single G→T transversion in Ya3 (Figure S2B).

2.1.3. Common Duckweed, Lemna minor

Lemna minor was the most represented duckweed species in the Ukraine specimens.
We identified 17 of the 39 specimens collected in Ukraine as Le. minor. We also identified
one specimen from China, Ya2 collected in Yangling, as Le. minor. The ATP and PSB
sequences of the Le. minor ecotypes had very low sequence divergence, with near 100%
similarity to the corresponding 29 and 31 GenBank ATP and PSB sequences representing
Le. minor ecotypes, respectively. We compared the sequences of our specimens with
the corresponding sequences of a Russian ecotype for which the chloroplast genome
was sequenced [34] and found only three nucleotide substitutions in the PSB sequences
(Figure S3A) and five G→A transition and a single T→G transversion in the ATP sequences
(Figure S3B).

2.1.4. Star Duckweed, Lemna trisulca

We identified four duckweed specimens from Ukraine as Le. trisulca. They had a 100%
similarity (Figure S4A) to the ATP sequences previously reported for ecotypes from the USA
and Canada [39]. However, alignment of PSB sequences clearly distinguished Ukrainian
ecotypes from the North American ones on the basis of the duplication of an AT-rich 23-bp
long DNA sequence in the North American ecotypes (Figure S4B). Moreover, alignment of
a few Le. trisulca ATP and PSB sequences [39] revealed distinct variants in strain UTCC 399
of unknown origin, characterized by short 4–6-nucleotide insertions/deletions as compared
to the Ukrainian and North American ecotypes.

2.1.5. Turion Duckweed, Lemna turionifera

We identified one specimen from Ukraine (from the southeast) and two collected from
China (from near Hongze lake) as Le. turionifera. The ATP and PSB sequences of these
specimens showed no sequence variation when aligned with Le. turionifera sequences from
Canada, the Czech Republic, and Lake Tai in China [40]. The only variation we found was
a single nucleotide deletion in the ATP sequence of the accession from the Czech Republic
(Figure S5).

2.1.6. Swollen or Fat Duckweed, Lemna gibba

We identified one specimen from Ukraine (DW102) as Le. gibba. The PSB sequence
showed homology with the corresponding sequences of four Le. gibba strains from the
USA, Italy, Ethiopia, and Japan [39], as well as strain RDSC 5504, which originated from
Shanghai, China. The ATP sequence of DW102 differed in two positions, a single insertion
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of A (which was also in the sequence of the Shanghai strain) and a unique C→T transition
(Figure S6).

2.1.7. Lesser Duckweed, Lemna aequinoctialis

Lemna aequinoctialis had the highest variation in ATP and PSB sequences among the
species analyzed in this study. We collected four Le. aequinoctialis strains: two from Huai’an
city (I2 and NB0017), one from Shanghai (NB0007), and one from Fuzhou (Fu94). We
divided the strains into two groups on the basis of their barcode sequences (Figure S7).
Strains NB0017 and NB0007 differed from I2 and Fu94 by two tandem duplications of
21 and 5 bp, three specific SNPs in their PSB sequences (positions 71, 117, and 162), and
five SNPs (positions 12, 189, 359, 364, and 395) in their ATP sequences. These two groups
aligned with three American Le. aequinoctialis strains [39], with NB0017 and NB0007 having
similar sequences to those of strains 6612 (Centerville, CA, USA) and 8656 (Argentina),
whereas I2 and Fu94 aligned with strains 6746 (Plainsburg, CA, USA) and 7126 (Texas,
USA) (Figure S7). All four Chinese strains had three specific SNPs in their PSB sequences
(positions 357, 401, 444) compared to the three American strains.

To examine polymorphism in Le. aequinoctialis barcodes in more detail, we analyzed
the phylogeny of the 21 ATP sequences available in NCBI GenBank together with our
five sequences. We included two La. punctata accessions as an outgroup. In total, there
were 513 characters, of which 453 were constant. Of the variable characters, 18 were
parsimony uninformative and 42 were parsimony informative. Parsimony and Bayesian
analyses yielded the same topology but with lower bootstrap percentages than posterior
probabilities. A heuristic search found most-parsimonious trees that were 70 steps long
(consistency index 0.9143, retention index 0.9259). The resultant dendrogram from this
analysis is shown in Figure 2. All sequences were divided into four subclades: two with
very strong support and two with little support. Our accessions are subordinate to the
two strongly supported clades.

2.1.8. Least Duckweed, Wolffia arrhiza, and Watermeal Duckweed, Wolffia globosa

We identified two Ukrainian specimens as W. arrhiza and two Chinese specimens
as W. globosa. Both specimens from Ukraine, DW32 and DW35, had high ATP sequence
similarity with the homologous sequence of African and Italian specimens, but a high
level of nucleotide mismatches with the sequence from a W. arrhiza specimens from Brazil
(Figure S8A). There was 100% similarity between the PSB sequences of the two Ukrainian
specimens, with the sequence blasting revealing a single hit in GenBank (Figure S8B).

There were more hits for W. globosa compared to W. arrhiza; 31 for ATP and 14 for
PSB. The Chinese strains C2 and NB0015 (characterized in this study), together with
strains DW2101-4 (Acc. KJ630544.1; Hainan) and LC49 (Lake Chao) [41], were more closely
grouped with a specimen from the USA [39] than with those from other Asian countries
India, Japan, and Thailand (Figure S9). This grouping was based on nucleotide substitutions
at positions 248, 253, and 383 in the ATP sequence (Figure S9A) and, even more profoundly,
by multiple SNPs and three deletions/insertions of short nucleotide sequences in the PSB
sequence (Figure S9B).
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Figure 2. Bayesian consensus tree based on analysis of atpH–atpF intergenic spacer sequences of
Lemna aequinoctialis and Landoltia punctata as an outgroup. Bayesian posterior probabilities (BPP)
and maximum parsimony bootstrap values (MP BS) are shown above and below the branches,
respectively. Strongly supported clades (MP BS > 90% and BPP > 0.95) are indicated with black circles
at the branchpoints. For the origin of specimens, see Table S2.

2.2. Phylogenetic Analysis

Phylogenetic analysis of our 69 duckweed specimens using ATP and PSB sequences
separately showed no conclusive results. Therefore, we performed a combined ATP and
PSB analysis of 70 taxa, including Pistia stratiotes [42] as an outgroup species. The combined
data matrix included 1197 characters divided in two partitions: 1–560 for ATP and 561–1197
for PSB, of which 751 were constant, 103 were parsimony uninformative, and 343 were
parsimony informative.

Parsimony and Bayesian analyses yielded the same topology but with lower bootstrap
percentages than posterior probabilities. The heuristic search found most-parsimonious
trees that were 635 steps long (consistency index 0.8551, retention index 0.9691). The
resultant dendrogram from this analysis is shown in Figure 3. All species studied built
monophyletic and mostly not polymorphic clades, with few exceptions. The S. polyrhiza
clade had several small subclades with weak support, and the clade with L. aequinoctialis
accessions was divided into two subclades with strong support. Overall, this phylogeny of
Lemnaceae is congruent with previous studies [3,43–45].
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Figure 3. Bayesian consensus tree based on analysis of the combined chloroplast DNA dataset
(atpH–atpF and psbK–psbI intergenic spacers) of Lemnaceae taxa and Pistia stratiotes as an outgroup.
Bayesian posterior probabilities (BPP, top value) and maximum parsimony bootstrap values (MP BS,
bottom value) are shown at the branches. Strongly supported clades (MP BS > 90% and BPP > 0.95)
are indicated with black circles at the branchpoints.

3. Discussion

As the smallest known flowering plants, duckweeds have a reduced morphology,
which makes them difficult to identify using traditional botanical approaches [30]. There-
fore, molecular approaches [2] offer valuable alternatives for species monitoring of this
ancient group of plants. Here, to provide additional data supporting molecular approaches
for duckweed identification, as well as to examine duckweed diversity, we collected
39 duckweed specimens from Ukraine and 30 from China. Using DNA barcoding, we
identified six duckweed species among the Ukrainian specimens (S. polyrhiza, Le. gibba,
Le. minor, Le. trisulca, Le. turionifera, and W. arrhiza) and six species from China (S. polyrhiza,
La. punctata, Le. aequinoctialis, Le. minor, Le. turionifera, and W. globosa). These species
represent four out of the five genera in the Lemnaceae family (Figure 4). The only genus
not represented was Wolffiella, which only occurs in the Americas and Africa [29].
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Figure 4. Four genera of the Lemnaceae plant family were represented by duckweed species in
Ukraine and China. Species that were found in Ukraine and China are highlighted green, those found
only in Ukraine are highlighted yellow, and those found only in China are highlighted blue. A, B, C,
and D are representative images of Spirodela polyrhiza, Landoltia punctata, Lemna minor, and Wolffia
globose, respectively, from the in vitro collection of Huaiyin Normal University.

The distribution of duckweed species in this study generally matched previously
identified duckweed distributions, with S. polyrhiza, Le. Minor, and W. arrhiza being the
most common species in Europe and S. polyrhiza, La. Punctate, Le. aequinoctialis, and
W. globoza the usual species in China [29,46]. However, there is little information on
duckweed biodiversity in Eastern Europe in general and in Ukraine in particular [47,48].
To the best of our knowledge, this study is the first chloroplast-barcoding-based record of
duckweed biodiversity in an Eastern European country. Compared to Ukraine, duckweed
biodiversity in China is relatively well investigated [31,40,41], and there are numerous
ecotypes from China deposited in the RDSC world collection in the USA (New Brunswick,
NJ) and in different institutions in China [49,50].

Our molecular identification of randomly sampled specimens agrees that the great
duckweed, S. polyrhiza, is the most cosmopolitan of the 36 duckweed species recognized
worldwide [29]. It was the most dominant species in East China and in Ukraine. Although
the phylogenetic analysis demonstrated a certain degree of clustering of the S. polyrhiza
specimens on the basis of the limited barcode sequence variations (Figure 3), it did not
show any clear links to the geographic origin of the specimens. Generally, the ATP and PSB
sequences of our specimens had almost 100% similarity with the corresponding sequences
of strain 7498 [37], with a low sequence variability between the specimens. Similarly,
S. polyrhiza nuclear genomes sequenced from 63 specimens collected worldwide had high
sequence conservation [51].

La. punctata is the only representative of the genus Landoltia. It is considered to be
closely related to Spirodela [36] but is not as widely distributed as S. polyrhiza. It mostly
inhabits tropical and subtropical areas [29]. Therefore, it is not surprising that we collected
La. punctata specimens in China but none in Ukraine. Genetic analysis of the six Chinese
La. punctata specimens revealed few nucleotide substitutions. This stability of ATP and
PSB sequences was also observed among specimens from different geographic origins,
including India, Africa, America, and Australia (Figure S2).

We identified five Lemna species among the specimens collected from Ukraine and
China. The common duckweed, Le. minor, was the most predominant duckweed species in
Ukraine, represented by 17 out of 40 specimens, closely followed by S. polyrhiza (15 speci-
mens) (Figure 1). However, we only identified one specimen from China as Le. minor, a
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specimen that was collected in north-central China. Lemna turionifera was a minor species
in both China and Ukraine [40,45]. We identified Le. gibba and Le. trisulca only in Ukraine,
and Le. aequinoctialis only in China (Figure 1).

Three Lemna species, Le. minor, Le. gibba, and Le. turionifera, have stable species-specific
ATP and PSB sequences as reflected in the phylogenetic dendrogram (Figure 3), with very
few variations compared to their counterparts from other parts of the world available
in GenBank. The three Le. trisulca specimens from Ukraine had perfect ATP sequence
similarity; however, there were clear differences in PSB sequences compared (Figure S4)
with specimens from the USA and Canada [39]. The differences were due to a 23 bp
duplication.

The most intriguing results from this study were on the phylogeny of Le. aequinoctialis.
On the basis of the ATP and PSB sequences, we grouped the four Le. aequinoctialis specimens
(collected in Fuzhou, Shanghai, and Huai’an) into two clades (Figure S7). Sequences of
these clades were aligned with the ATP sequences of Le. aequinoctialis strain DW0101-3
(Hainan, China; Acc. KJ630511.1) and strain LC42 (Lake Chao, China) [41]. We constructed
a phylogeny based on all Le. aequinoctialis ATP sequences in GenBank, and the resulting
tree was complex (Figure 2). On the basis of these results, we suggest that the status of this
species needs further careful examination.

We identified two Wolffia species in our study: W. arrhiza, a common species in Europe
and Africa, and W. globosa, which inhabits Southeast Asia [29], were identified in Ukraine
and China, respectively. The W. arrhiza sequences showed high sequence similarity with
other W. arrhiza sequences of specimens from Europe and Africa (Figure S8). The W. globosa
sequences had several characteristic SNPs, both in the ATP and PSB sequences, compared
with sequences of specimens from India, Japan, and Thailand (Figure S9); however, they
had a higher similarity to sequences of specimens from the USA [39]. The USA specimen is
likely a recent invasion in addition to the native Wolffia columbiana [29].

4. Materials and Methods
4.1. Plant Material

Duckweed specimens were collected from various still water reservoirs, lakes, and
ponds across eastern China and Ukraine during 2016–2019. Prior to genotyping, most
specimens from China were sterilized and kept under aseptic conditions on agar medium ac-
cording to previously described methods [43]. These specimens were kept at the duckweed
in vitro collection recently organized at Huaiyin Normal University, Hui’an, China [47], bar-
coded and used in our previous studies [11,18,52,53]. The Ukrainian duckweed specimens
were collected from water reservoirs, sorted according to their morphological characteris-
tics, and directly subjected to DNA extraction for further chloroplast DNA barcoding. All
analyzed duckweed specimens and locations are listed in Table S2.

4.2. DNA Extraction, Fragment Amplification, Sequencing, and Alignment

Total DNA was extracted from plant tissue using a modified CTAB method [54].
The PCR amplifications were carried out as recommended by the CBOL Plant Work-
ing Group [32], described in [39], using primers 5′-TTAGCATTTGTTTGGCAAG and 5′-
AAAGTTTGAGAGTAAGCAT for the psbK–psbI intergenic spacer and 5′-ACTCGCACACA
CTCCCTTTCC and 5′-GCTTTTATGGAAGCTTTAACAAT for the atpH–atpF intergenic
spacer. Following amplification, the DNA fragments were sent to Sangon Biotech (Shanghai,
China) for purification and sequencing. The raw sequences were preliminarily optimized
using the ‘Online Analysis Tools’ package (http://molbiol-tools.ca, accessed on 25 March
2022), in particular, the program MAFFT, version 7 (https://mafft.cbrc.jp/alignment/
server/ accessed on 25 March 2022). Multiple DNA sequence alignments were generated
with ClustalW software [55], and the alignments were subsequently corrected manually in
MEGA 5 [56].

For BLAST alignment analyses, a duckweed reference barcode set was compiled from
ATP and PSB sequences that were generated in this study and those available from the

http://molbiol-tools.ca
https://mafft.cbrc.jp/alignment/server/
https://mafft.cbrc.jp/alignment/server/
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NCBI database as of January 2022. Queried sequences were trimmed to include only
intergenic regions and used in BLASTN (version 2.2.26+) searches to identify homologies
to other barcode sequences in the set. The number of top hits for each query are presented
in Table S1.

4.3. Phylogenetic Analysis

Phylogenetic analysis was carried out on individual and combined ATP and PSB
sequences using parsimony and Bayesian methods. Pistia stratiotes, from the Araceae
family, was used as an outgroup for the Lemnaceae family. Parsimony analysis was per-
formed with PAUP* 4.0b10 [57] using heuristic searches with tree bisection–reconnection
and 100 random additional sequence replicates. Bootstrap support (BS) [58] was esti-
mated with 100 bootstrap replicates, each with 100 random addition sequence searches.
Bayesian analyses were implemented with MrBayes 3.1.23 [59]. Sequence evolution models
were evaluated using the Akaike information criterion (AIC) with the aid of jModelTest2
v2.1.6 [60]. Two independent runs each of eight chains and 10 million generations, sampling
every 1000 generations, were executed, and 25% of initial trees were discarded as burn-in.
The remaining 15,000 trees were combined into a 50% majority-rule consensus tree.

5. Conclusions

Our survey of the duckweed species in Ukraine and China makes a solid contribution
to monitoring the biodiversity of aquatic flora in these countries. In addition to precisely
identifying six major species and their geographic distribution in each these countries
by double chloroplast DNA barcoding, our data highlighted the need to re-examine the
phylogenetic status of one of those species, Lemna aequinoctialis. The study added 138 new
chloroplast ATP and PSB barcodes to the 1754 corresponding barcodes for these species
available in the NCBI database as of March 2022 (Table S1). These new resources might
fuel future research on plant molecular evolution, biodiversity conservation, breeding, and
various biotechnological applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11111468/s1, Figure S1: Nucleotide alignment of atpH–
atpF and psbK–psbI spacers sequences of Spirodela polyrhiza collected in Ukraine and China (for ecotype
details see supplemental Table S2). Matching residues are shown as dots. A. Nucleotide alignment of
atpH–atpF barcodes including representative sequences of S. polyrhiza specimens available in Gen-
Bank: MN419335, USA; GU454201, Hong Kong; GU454202, India; GU454203, Malaysia; GU454204,
USA; GU454205, Mexico; GU454206, Canada; GU454208, Europe. B. Nucleotide alignment of psbK-
psbI barcodes including representative sequences of S. polyrhiza specimens available in GenBank:
MN419335, USA; GU454297, Hong Kong; GU454298, India; GU454299, Malaysia; GU454300, USA;
GU454301, Mexico; GU454302, Canada; GU454304, Europe. Figure S2: Nucleotide alignment of
atpH-atpF and psbK-psbI spacers of Landoltia punctata (for ecotypes details see supplemental Table S2).
Matching residues are shown as dots. A. Nucleotide alignment of atpH-atpF barcodes including the
representative sequences of La. punctata from different parts of the world available in the GenBank:
GU454209, South Africa; GU454211, India; GU454212, USA; GU454213, Australia. B. Nucleotide
alignment of psbK-psbI barcodes including the representative sequences of La. punctata from different
parts of the world available in the GenBank: GU454305, South Africa; GU454307, India; GU454308,
USA; GU454309, Australia. Figure S3: Nucleotide alignment of atpH-atpF and psbK-psbI spacers of
Lemna minor (for ecotypes details see supplemental Table S2). Matching residues are shown as dots.
A. Nucleotide alignment of atpH-atpF barcodes including the representative sequences of Le. minor
from different parts of the world available in the GenBank: DQ400350, Russia; GU454226, Turkey;
GU454227, USA; GU454228, South Africa; GU454229, Japan; GU454230, Finland; GU454231, Germany.
B. Nucleotide alignment of psbK-psbI barcodes including the representative sequences of Le. minor
from different parts of the world available in the GenBank: DQ400350, Russia; GU454322, Turkey;
GU454323, USA; GU454324, South Africa; GU454325, Japan; GU454326, Finland; GU454327, Germany.
Figure S4: Nucleotide alignment of atpH-atpF and psbK-psbI spacers of Lemna trisulca (for ecotypes
details see supplemental Table S2). Matching residues are shown as dots. A. Nucleotide alignment
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of atpH-atpF barcodes including the representative sequences of Le. trisulca from different parts of
the world available in the GenBank: GU454236, Canada; GU454237, USA; GU454237, UTCC 399.
B. Nucleotide alignment of psbK-psbI barcodes including the representative sequences of L. trisulca
from different parts of the world available in the GenBank: GU454332, Canada; GU454333, USA;
GU454334, UTCC 399. Figure S5: Nucleotide alignment of atpH-atpF and psbK-psbI spacers of Lemna
turionifera (for ecotypes details see supplemental Table S2). Matching residues are shown as dots. A.
Nucleotide alignment of atpH-atpF barcodes including the representative sequences of Le. turionifera
from different parts of the world available in the GenBank: KF726146, China; MG000422, Canada;
GU454240, Czech. B. Nucleotide alignment of psbK-psbI barcodes including the representative se-
quences of Le. turionifera from different parts of the world available in the GenBank: MG000496,
Canada; GU454335, China; GU454336, Czech. Figure S6: Nucleotide alignment of atpH-atpF and
psbK-psbI spacers of Lemna gibba, ecotype DW102 (Supplemental Table S2). Matching residues are
shown as dots. A. Nucleotide alignment of the DW102 atpH-atpF barcode with the representative
sequences of Le. gibba from different parts of the world available in the GenBank: KX212889, China;
GU454219, USA; GU454220, Italy; GU454221, Ethiopia; GU454222, Japan. B. Nucleotide alignment of
the DW102 psbK-psbI barcode with the representative sequences of Le. gibba from different parts of the
world available in the GenBank: GU454315, USA; GU454316, Italy; GU454317, Ethiopia; GU454318,
Japan. Figure S7: Nucleotide alignment of atpH-atpF and psbK-psbI spacers of Lemna aequinoctialis
(for ecotypes details see supplemental Table S2). Matching residues are shown as dots. A. Nu-
cleotide alignment of atpH-atpF barcodes including the representative sequences of Le. aequinoctialis
from different parts of the world available in the GenBank: GU454215, USA, California, Centerville;
GU454216, USA, California, Plainsburg; GU454217, USA, Texas, Austin. B. Nucleotide alignment
of psbK-psbI barcodes including the representative sequences of Le. aequinoctialis from different
parts of the world available in the GenBank: GU454311, USA, California, Centerville; GU454312,
USA, California, Plainsburg; GU454313, USA, Texas, Austin. Figure S8: Nucleotide alignment of
atpH-atpF and psbK-psbI spacers of Wolffia arrhiza (for ecotypes details see supplemental Table S2).
Matching residues are shown as dots. A. Nucleotide alignment of atpH-atpF barcodes including
the representative sequences of W. arrhiza from different parts of the world available in the Gen-
Bank: MG812317, Kenya; MG775412, Italy; MG775413, Brazil. B. Nucleotide alignment of psbK-psbI
barcodes including the representative sequence of W. arrhiza available in the GenBank: GU454364,
Hungary. Figure S9: Nucleotide alignment of atpH-atpF and psbK-psbI spacers of Wolffia globosa (for
ecotypes details see supplemental Table S2). Matching residues are shown as dots. A. Nucleotide
alignment of atpH-atpF barcodes including the representative sequences of W. globosa from different
parts of the world available in the GenBank: GU454281, USA; KJ630544, China; KP017660, China;
MG812325, India; MN881100, Japan. B. Nucleotide alignment of psbK-psbI barcodes including the
representative sequences of W. globosa from different parts of the world available in the GenBank:
GU454378, USA; GU454379, Thailand; MG812330, India; MN881100, Japan. References [61–71] are
cited in the supplementary materials.
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