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Stony corals are among the most important calcifiers in the marine ecosystem as they
form the coral reefs. Coral reefs have huge ecological importance as they constitute the
most diverse marine ecosystem, providing a home to roughly a quarter of all marine
species. In recent years, many studies have shed light on the mechanisms underlying the
biomineralization processes in corals, as characterizing the calicoblast cell layer and genes
involved in the formation of the calcium carbonate skeleton. In addition, considerable
advancements have been made in the research field of coral immunity as characterizing
genes involved in the immune response to pathogens and stressors, and the revealing of
specialized immune cells, including their gene expression profile and phagocytosis
capabilities. Yet, these two fields of corals research have never been integrated. Here,
we discuss how the coral skeleton plays a role as the first line of defense. We integrate the
knowledge from both fields and highlight genes and proteins that are related to
biomineralization and might be involved in the innate immune response and help the
coral deal with pathogens that penetrate its skeleton. In many organisms, the immune
system has been tied to calcification. In humans, immune factors enhance ectopic
calcification which causes severe diseases. Further investigation of coral immune genes
which are involved in skeleton defense as well as in biomineralization might shed light on
our understanding of the correlation and the interaction of both processes as well as
reveal novel comprehension of how immune factors enhance calcification.

Keywords: stony corals, coral immune system, biomineralization, coral skeleton, immune genes,
calicoblasts, calcification
INTRODUCTION

Stony corals are among the most important calcifiers in the marine ecosystem. They hold significant
ecological importance as they are the main builders of one of the most diverse and productive
ecosystems in the ocean, the coral reefs (1, 2). Corals belong to the eumetazoan ancestor phylum
Cnidaria, which are among the earliest metazoans to have evolved (3). Hence, they are significant in
understanding the evolutionary origin as the early evolution of innate immunity (4, 5). Even though
cnidarians lack some of the components of the adaptive immune system that are found in
vertebrates, the sequencing of the first cnidarian genomes revealed a surprising immune
org February 2022 | Volume 13 | Article 8503381
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complexity and a striking resemblance to bilaterian immune
genes, with many ancestral immune components that have been
lost in other invertebrates, such as C. elegans, and D.
melanogaster (5, 6). Coral genome sequencing and comparative
genomics have highlighted the immune gene repertoires of corals
and underlined the evolution of specific immune genes in corals,
such as an increased number of Toll-interleukin (TIR) proteins,
and diversification of immune genes in different coral species,
thus suggesting diverse adaptive roles for innate immune
pathways in each species (7–9). Moreover, many studies
showed up-regulation of immune genes following exposure to
different stressors or pathogens (10–13), while others linked the
immunity response to coral-algae symbiosis and showed the
involvement of immune genes in the initiation of this symbiosis
as well as in coral bleaching (14–17). Another rapidly evolving
field is the coral microbiome which correlates coral health,
resilience, and immune response to the holobiont and its
microbiome (18–22). Even though the innate immune
response of corals was extensively studied, the existence of
immune cells in corals was an enigma. Although granular
amoebocytes were observed in a few corals around wounds
and lesions (16, 23), the genetic identification of specialized
immune cells has only recently been described in the single-cell
atlas of the coral Stylophora pistillata (24). The study revealed
two distinct cell types with molecular signatures indicative of
immune function. These cells express immune transcription
factors such as NAFT and IRFs, and many genes involved in
the innate immunity response such as the interleukin receptor,
LSP binding proteins, Perforin, endonucleases, prosaponins,
antimicrobial ApeC proteins, tyrosinase, and genes involved in
the inflammatory response (24). Following these findings, Snyder
et al. (25) identified and characterized phagocyte cells of the coral
Pocillopora damicornis and the sea anemone Nematostella
vectensis, and showed that the phagocytic cells engulf bacteria,
fungal antigens, and beads. In addition to the immune cells, the
innate immunity of corals involves other aspects of the defensive
mechanism such as the cnidocytes (i.e., stinging cells), venom-
producing gland cells (26–28), mucus secretion, and mucus-
associated bacteria involved in the antimicrobial activity on the
coral surface (21, 29–31). Another less studied aspect related to
the stony coral’s immune system is their calcium carbonate
exoskeleton that functions as an additional barrier to the
external marine environment and hence might play a crucial
role in the innate immune response. Stony coral polyps face the
water column while the aboral epithelium, referred to as the
calicoblastic layer, constantly produces the aragonite skeleton
(Figure 1) (32). Corals grow continuously, by budding new
polyps, and their aragonite skeleton expands accordingly. In
addition, new layers of aragonite are continuously deposited and
accumulate on top of the old layers. Although the exact
mechanism of the biomineralization process remains elusive,
our understanding of the molecular mechanism underlying this
process has greatly advanced (33–37). Proteomic analysis of the
skeletal organic matrix from three different coral species revealed
an assemblage of adhesion and structural proteins,
transmembrane proteins, proteins containing known
Frontiers in Immunology | www.frontiersin.org 2
extracellular matrix (ECM) domains, as well as highly acidic
proteins that were suggested to play a role in calcium carbonate
nucleation (38–41). Furthermore, the first stony coral single-cell
atlas characterized the gene expression profile of the cells
involved in the formation of the coral skeleton (calicoblasts)
and revealed more than 700 genes that are specifically expressed
in the calicoblasts of the juvenile primary polyp and the
adult coral.

Although research of both biomineralization and immunity
in corals have advanced considerably over recent years, as of yet,
these two fields have not been integrated. Here, we underline the
immunological basis of corals in a biomineralization context by
reviewing and integrating the knowledge in both fields as well as
highlighting immune genes expressed in the cells that form the
coral skeleton or found in the skeleton itself.
THE CORAL SKELETON AS THE FIRST
BARRIER AGAINST PATHOGENS

The coral life cycle involves a planktonic larva and a benthic
adult. These two phases are separated by settlement and
metamorphosis, two critical stages in coral development,
during which some of the epidermal cells are transformed into
calicoblast cells that immediately start with rapid skeleton
deposition (32). This rapid process is important for coral
adherence to the substrate, as well as in creating a protective
environment, in the form of an aragonite skeleton, for the soft
and vulnerable polyp (42). This process might be involved in the
production and secretion of anti-microbial factors to clear the
surface and prevent possible pathogenic infections. As in many
other marine organisms, the exoskeleton is a physical barrier that
protects the animal from the outside world and serves as the first
line of defense. When coral polyps sense a physical threat (e.g.,
predators, strong currents, suspended sediment), they contract
into their aragonite calyx in order to avoid the danger (43). In
addition to physical protection, exoskeletons constitute
biochemical protection, and in many organisms the
exoskeleton is rich in antimicrobial molecules, enzymes, and
toxins (44–47). Coral exoskeletons sustain diverse eukaryotic
and prokaryotic microorganisms such as fungi, endolithic algae,
viruses, and bacteria (Figure 1) (48–51). While these organisms
are part of the holobiont and can produce metabolites and
antimicrobial compounds that help the coral control its
skeleton microbiota, others can be pathogenic and might use
the skeleton to invade and penetrate the coral tissue (51, 52).
Thus, the exoskeleton and the calicoblastic layer aligned to it
(Figure 1B) might have an additional immune protection role
against the invaders. One element of immune protection found
in exoskeletons is melanin (53, 54). As a polymer, melanin can
strengthen tissue and exoskeletons and improve their ability to
act as physical barriers against the penetration of parasites (55).
Furthermore, melanin can introduce potent antimicrobial
ac t iv i ty by inhibi t ing ly t ic enzymes produced by
microorganisms (56). In Arthropods, melanin deposits in the
February 2022 | Volume 13 | Article 850338
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exocuticle play an important role in increasing the immune
protection of the exoskeleton (53). In stony coral, melanin has
been detected in granular cells and specifically in the tissue
around wounds, during the healing of wounds in the coral
Porites cylindrica (16). In the common sea fan Gorgonia
ventalina, melanin has been observed around tissue lesions
formed by the invasion of the pathogenic fungi Aspergillus
sydowii (23). The fungal hyphae have been observed in the
coral’s axial skeleton, with a thick melanin layer formed
around the infection that serves as a barrier preventing the A.
sydowii hyphae from contacting its tissue. In addition, an
increase in pigmented calcium carbonate sclerites (the skeletal
elements of soft corals) was observed, which gives the lesions
their distinct, dark coloration (23). Proteins involved in melanin
production such as tyrosinase have been detected in molluscan
mantle transcriptomes and shells and were suggested to be
involved in exoskeleton fabrication and hardening (57–59). In
S. pistillata, tyrosinase genes were found to be expressed in the
adult immune cells, while three different tyrosinase genes were
expressed in the juvenile primary polyp calicoblastic cells
(Figure 2B and Table S1) (24). One of these genes is a
tyrosinase-like (XP_022797084.1) that possesses four ShK toxin
domains, which are potassium channel blockers that were first
Frontiers in Immunology | www.frontiersin.org 3
isolated from the sea anemone Stichodactyla helianthus venom
(60). While most genes with ShK domains showed high
expression in S. pistillata cnidocytes (stinging cells) and gland
cells, two extracellular genes containing ShK domains showed
high specific expression in both adult and primary polyp
calicoblasts (Figure 2) (24). One is a homolog of the protein
meprin A (XP_022785469.1), a metallopeptidase with the ability
to cleave various substrates, degrade ECM proteins, process
proinflammatory cytokines, and promote leukocyte infiltration
(61). Therefore, it might have similar functions in remodeling the
corals’ skeletal organic matrix and initiating the inflammatory
response once pathogens are detected. The second gene is a
mucin-like protein with two Shk domains (XP_022806382.1),
which could be secreted into the skeletal organic matrix and
serve as a toxin.

Another toxic candidate gene, highly expressed in the
primary polyp calicoblasts, is Ntox44 (XP_022782305.1)
(Figure 2B) (24). This gene is a homolog of a bacterial
secreted RNase toxin with potential antimicrobial function.
Hence, it might play a role in clearing the substrate while the
larva metamorphoses into a primary polyp and starts calcifying
its initial skeleton. Ramos-Silva et al. (38) reported on an
additional toxin-like protein, (B7W114), found in the Acropora
FIGURE 1 | Coral tissue and skeleton layers and the diversity of organisms residing within the skeleton. (A) A cross-section of live S. pistillata coral. The polyp and
coral tissue are on top (transparent white). Green dots in the tissue are the symbiotic algae (Symbiodinium). On the bottom half, there are skeleton layers with a
diversity of microorganisms. (B) Illustration of the coral cell layers, and coral skeleton layers denoted in the white box in A, including the eukaryotic and prokaryotic
microorganisms within the skeleton. The cell layer aligned with the skeletal organic matrix is the calicoblastic cell layer, which is involved in skeleton formation and in
extracting molecules and proteins into the skeletal organic matrix.
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millepora skeletal proteome, which corresponds to a secreted
protein with high similarity to the SE-cephalotoxin from the
cephalopod Sepia esculenta.

In addition to the secretion of toxins and antimicrobial
compounds into the skeleton, the biomineralization process
can act as a direct immune defense mechanism. The most
familiar example is the pearl formation in mollusks, in which
the animal uses its calcification ability against irritant foreign
bodies, parasites, or other pathogens by creating a calcium
carbonate structure (62). As for corals, there is only one
document (as per our knowledge) of a calcification defense
mechanism shown in response to a fungal invasion (63). Le
Campion et al. demonstrated that the stony coral Porites lobata
responds to fungi penetrating its skeleton by the deposition of
calcium carbonate, to form skeleton thickness that will prevent
the fungi from reaching the polyp tissue (63). Further
Frontiers in Immunology | www.frontiersin.org 4
investigation of this interesting phenomenon in corals might
reveal the correlation between the self and non-self-recognition,
the innate immune response, and the calcification processes.
Additionally, further molecular investigation of this
phenomenon could shed light on genes which are involved in
both processes, the innate immune response and calcification.
GENES WITH POTENTIAL DUAL
FUNCTION IN THE CORAL’S INNATE
IMMUNE RESPONSE AND IN
BIOMINERALIZATION

In recent years, increasing evidence regarding the integration of
biomineralization and immunity has come to light, including
A

B

FIGURE 2 | Gene expression heatmap for selected genes that might play a dual role in biomineralization and immunity. Expression levels (fold-change) are shown
across all cell types of the stony coral S. pistillata. Calicoblast cells are in purple and are emphasized with a black box (A) Adult gene expression heatmap of selected
genes. (B) Primary polyp gene expression heatmap of selected genes. Heatmaps were created using the interactive database https://sebe-lab.shinyapps.io/
Stylophora_cell_atlas/ (24).
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proteins with dual function in both (64–66). In humans and other
mammalians, immunity and calcification have been tightly
connected, as many studies have shown that immune cells are
closely associatedwith ectopic calcificationas in the developmentof
atherosclerosis, vascular calcification, chronic kidneydisease, breast
cancer, etc (67–69). It has been demonstrated that vascular
calcification is part of the immune response and involves many
factors and genes of the innate and adaptive immune system (69–
71). The lack of effective therapy for ectopic calcification is an
indicator of the complexity of its mechanism as well as the
significance of understanding the interaction between the
immune response and calcification (69, 72). Uncovering
the individual contribution of immune genes to enhanced
calcification, would improve our understanding of the
inflammation dependent mechanisms of ectopic calcification, and
could offer new diagnosis tools as well as therapeutic treatments for
the involved diseases.

To the best of our knowledge, there are no studies that link
between the immune response and calcification in corals. To
create a database of genes with potential immune and
biomineralization functions, we explored the genes that are
expressed in the calicoblastic cells, (24), the proteins found in
the skeletal organic matrix proteomes of several corals (38, 40,
73) and searched the available literature for known functions of
their homologs in other organisms. This data can serve as a
database for further investigations of the molecular mechanisms
that underlie the response of corals to pathogens that penetrate
their skeleton. The whole gene list is available in Table S1.

We found that genes that are known to be involved in vascular
calcification, such as CD36, DOCK1, DSPP, and Perforin (74–76),
are expressed in the coral immune cells but not in the calicoblasts.
This might imply that these genes do not play a role in coral
calcification. However, immune cells that express these genes
might enhance calcification in corals in a similar manner to the
enhancement of vascular calcification by macrophages (69, 71). It
will be interesting to investigate this issue in corals, for example,
during the wound healing processes, in which immune cells might
migrate toward the wound (16), help repair the tissue and protect
it from pathogens and additionally enhance skeleton precipitation
to repair the damaged skeleton.

In addition, we found that many cathepsin genes are
expressed in both calicoblasts and in the immune Cells (Figure 2
and Table S1). Cathepsins are multifunctional enzymes involved
in many biological processes such as lysosomal protein recycling,
digestion, wound healing, bone remodeling, reproduction,
and innate immune response (77). Cathepsin L, which is
expressed in both immune and calicoblast cells, is known to be a
multifunctional protein involved in the immune response of
fish and mollusks (78–80), in biomineralization (81), and in
bone and cartilage resorption in humans (82); Cathepsin D,
which is expressed only in the immune cells of S. pistillata,
is a membrane-associated acidic protease, familiar with
macrophage endosomes (83), also involved in cardiovascular
calcification (84); and Cathepsin V, which is expressed only in
the calicoblasts, is known to promote vascular calcification in
humans (85).
Frontiers in Immunology | www.frontiersin.org 5
Another interesting protein is the ovotransferrin that was found
to have a dual role in avian eggshell formation (86). It was first
identified as an antibacterial and antifungal protein (87, 88) and
later was found to have a role in the biomineralization processes as it
was expressed in the initial stage of shell biomineralization and was
localized to the sites of calcite nucleation (44). Furthermore, the
addition of the purified protein in-vitro results in a large
modification of the calcium carbonate crystals morphology. In
cora l s , we found a homolog ovotrans ferr in gene
(XP_022780954.1) with high expression in both adult and
primary polyp calicoblasts (Figure 2 and Table S1) (24).
Therefore, we suggest that this gene potentially can be involved in
coral biomineralization and serves as a bacteriostatic filter.

Another protein that might have a dual function is Peroxidasin
(XP_022794431.1). In the human myofibroblasts, peroxidasin is
secreted into the extracellular space where it becomes organized
into a fibril-like network and colocalizes with fibronectin to form
theECM(89). It catalyzes sulfiliminebond formation in collagen IV
and catalyzes hydrogen peroxide (H2O2) into hypochlorous acid
(HOCl). An excessive peroxidasin activity, allows free oxidizing
hypohalous acid to accumulate and produce intended or
unintended toxicity (90). The high reactivity of the hypochlorous
acid toward a variety of biological molecules, cause oxidative
damage to pathogens proteins and contribute to the killing of
pathogens as was demonstrated in neutrophils (91). Since in S.
pistillata peroxidasin is specifically expressed in the adult and
primary polyp calicoblasts (Figure 2) (24), we suggest that it is
secreted into the skeletal organic matrix where it might generate
fibril-like network and in addition, produce hypohalous acids with
toxic activity.

Next, we explored all proteins found in scleractinian skeleton
proteomes (38, 40, 73) and looked for proteins with a possible
immune function. One such protein is the sacsin protein (40),
that acts as a regulator of the Hsp70 chaperone machinery (92,
93). While the mammalian sacsin was studied in association with
a neural disorder (92), the sacsin homolog in fish was reported to
be involved in the innate antiviral immune response in several
fish species (94–96).

A second protein is thioredoxin reductase 1, cytoplasmic
(XP_022804785.1), its human homolog mediates cell death
induced by a combination of interferon-beta and retinoic acid
(97). It also induces actin and tubulin polymerization, leading to
the formation of cell membrane protrusions (98). Cell membrane
protrusions were observed in the coral calicoblastic cell layer and
are thought to be essential structures for coral skeleton formation
(99, 100). In addition, this protein might be involved in the
induction of calicoblasts apoptosis, in case of infection.

Furthermore, a few proteases were found as well (38, 40, 73).
These proteases are thought to be involved in digestion and
modeling the skeletal organic matrix as a scaffold for the calcium
carbonate skeleton and in processing and activating other
bioact ive molecules and prote ins involved in the
biomineralization process (101, 102). Proteases and specifically
serine proteases are also known to be key mediators of the innate
immune response as they act as processing enzymes of pro-
inflammatory cytokines and other enzymes related to the
February 2022 | Volume 13 | Article 850338

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Levy and Mass Immunity and Biomineralization in Corals
inflammatory response (103–105). Additionally, many proteases,
including matrix metallopeptidases and protease inhibitors are
expressed in S. pistillata calicoblasts as well (Figure 2 and Table
S1) (24). Metalloproteases, such as MMP-25, regulate the innate
immune response through the NF-kB signaling in mice (106). A
homolog of MMP-25 is highly expressed in the adult calicoblasts
of S. pistillata (Figure 2A) (24). Since metallopeptidases
hydrolyze and process a large number of substrates, they might
be involved in remodeling the skeletal organic matrix scaffold of
the coral skeleton or in the interaction of the calicoblastic cell
layer with the skeleton ECM. In-addition, some of the
metalloproteases might be involved in processing and
activating factors involved in biomineralization such as the
acidic proteins involved in nucleation or factors involved in
the innate immune response such as pro-inflammatory cytokines
and chemokines, growth factors and other receptors’ ligands.
DISCUSSION

The coral skeleton serves as a firm structure for animal
protection, and as the first line of defense against invaders and
pathogens. In order to protect the animal from these parasites
and pathogens, the exoskeleton must include antimicrobial
molecules and toxins. Some are produced by the symbionts
inside the skeleton and help the coral control its skeleton biota.
Others, most likely, are extracted by the coral itself, through the
tissue that forms the skeleton, the calicoblastic layer. In this
review, we highlighted genes and proteins that might serve as
toxins or bacteriostatic molecules as well as genes and proteins
that are known to play a role in the immune response and are
found either in the calicoblastic cells or in the skeleton itself
(Figure 2 and Table S1). Further exploration of the role of these
genes along the process of biomineralization can illuminate how
corals deal with pathogens that penetrate their skeleton as well as
reveal immune genes that might be involved in the
biomineralization process or enhance calcification.

Stony corals belong to the Anthozoa class in the Cnidaria
phylum, a sister group of Bilateria. As stony corals are the only
Frontiers in Immunology | www.frontiersin.org 6
cnidarians that build an exoskeleton, they hold an interesting
and important key position in our understanding of the
evolution of the immune system and its involvement in
calcification. Understanding the mechanisms that correlate
immunity and calcification, and revealing the role of genes
shared by both, is a valid point that may help shed light on
these complex mechanisms. It can reveal novel etiologies of
ectopic calcification involved in severe diseases and chronic
disorders such as vascular calcification, atherosclerosis,
osteoarthritis, kidney stones and several cancers. Thus, it can
provide new tools for diagnosis and treatments for these
common pathologies.

As a whole, we tried to review and integrate the data obtained
in two important and enhanced fields in coral research and
create a valuable database for further research to better
understand how biomineralization and the innate immune
system are involved, and which factors are shared by both.
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Meistertzheim A-L, Tambutté E, et al. Innate Immune Responses of a
Scleractinian Coral to Vibriosis. J Biol Chem (2011) 286(25):22688–98. doi:
10.1074/jbc.M110.216358
February 2022 | Volume 13 | Article 850338

https://www.frontiersin.org/articles/10.3389/fimmu.2022.850338/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.850338/full#supplementary-material
https://doi.org/10.1016/S0921-8009(99)00009-9
https://doi.org/10.1038/nature22901
https://doi.org/10.1101/pdb.emo129
https://doi.org/10.1186/gb-2007-8-4-r59
https://doi.org/10.1186/gb-2007-8-4-r59
https://doi.org/10.1038/nature10249
https://doi.org/10.1038/nature10249
https://doi.org/10.1038/s41598-017-17484-x
https://doi.org/10.1038/s41598-018-34459-8
https://doi.org/10.1038/s41598-018-34459-8
https://doi.org/10.1074/jbc.M110.216358
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Levy and Mass Immunity and Biomineralization in Corals
11. Libro S, Kaluziak ST, Vollmer SV. RNA-Seq Profiles of Immune Related Genes
in the StaghornCoralAcropora Cervicornis InfectedWithWhite BandDisease.
PloS One (2013) 8(11):e81821. doi: 10.1371/journal.pone.0081821

12. Van De Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, Van
Oppen MJH. The Coral Immune Response Facilitates Protection Against
Microbes During Tissue Regeneration. Mol Ecol (2015) 24(13):3390–404.
doi: 10.1111/mec.13257

13. Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. RNA-Seq of the
Caribbean Reef-Building Coralorbicella Faveolata(Scleractinia-Merulinidae)
Under Bleaching and Disease Stress Expands Models of Coral Innate
Immunity. PeerJ (2016) 4:e1616. doi: 10.7717/peerj.1616

14. Kvennefors ECE, Leggat W, Kerr CC, Ainsworth TD, Hoegh-Guldberg O,
Barnes AC. Analysis of Evolutionarily Conserved Innate Immune
Components in Coral Links Immunity and Symbiosis. Dev Comp
Immunol (2010) 34(11):1219–29. doi: 10.1016/j.dci.2010.06.016

15. Palmer CV, Bythell JC, Willis BL. Levels of Immunity Parameters Underpin
Bleaching and Disease Susceptibility of Reef Corals. FASEB J (2010) 24
(6):1935–46. doi: 10.1096/fj.09-152447

16. Palmer CV, McGinty ES, Cummings DJ, Smith SM, Bartels E, Mydlarz LD.
Corals Use Similar Immune Cells andWound-Healing Processes as Those of
Higher Organisms. PloS One (2011) 6(8):e23992

17. Mohamed AR, Cumbo V, Harii S, Shinzato C, Chan CX, Ragan MA, et al.
The Transcriptomic Response of the Coralacropora Digitiferato a
Competentsymbiodiniumstrain: The Symbiosome as an Arrested Early
Phagosome. Mol Ecol (2016) 25(13):3127–41. doi: 10.1111/mec.13659

18. Bourne DG, Morrow KM, Webster NS. Insights Into the Coral Microbiome:
Underpinning the Health and Resilience of Reef Ecosystems. Annu Rev
Microbiol (2016) 70(1):317–40. doi: 10.1146/annurev-micro-102215-095440

19. Van Oppen MJH, Blackall LL. Coral Microbiome Dynamics, Functions and
Design in a Changing World. Nat Rev Microbiol (2019) 17(9):557–67. doi:
10.1038/s41579-019-0223-4

20. Connelly MT, McRae CJ, Liu P-J, Traylor-Knowles N. Lipopolysaccharide
Treatment Stimulates Pocillopora Coral Genotype-Specific Immune
Responses But Does Not Alter Coral-Associated Bacteria Communities.
Dev Comp Immunol (2020) 109:103717. doi: 10.1016/j.dci.2020.103717

21. Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, et al.
Coral Microbiome Composition Along the Northern Red Sea Suggests High
Plasticity of Bacterial and Specificity of Endosymbiotic Dinoflagellate
Communities. Microbiome (2020) 8(1):1–16. doi: 10.1186/s40168-019-0776-5

22. Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CS, Villela HD, et al.
Coral Microbiome Manipulation Elicits Metabolic and Genetic
Restructuring to Mitigate Heat Stress and Evade Mortality. Sci Adv (2021)
7(33):eabg3088. doi: 10.1126/sciadv.abg3088

23. Mydlarz LD, Holthouse SF, Peters EC, Harvell CD. Cellular Responses in Sea
Fan Corals: Granular Amoebocytes React to Pathogen and Climate Stressors.
PloS One (2008) 3(3):e1811. doi: 10.1371/journal.pone.0001811
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