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ABSTRACT As a major component of genomic variation, copy number variations (CNVs) are considered as
promising markers for some phenotypic and economically important traits in domestic animals. Using
a custom-designed 1M array CGH (aCGH), we performed CNV discovery in 12 pig samples from one Asian
wild boar population, six Chinese indigenous breeds, and two European commercial breeds. In total, we
identified 758 CNV regions (CNVRs), covering 47.43 Mb of the pig genome sequence. Of the total porcine
genes, 1295 genes were completely or partially overlapped with the identified CNVRs, which enriched in
the terms related to sensory perception of the environment, neurodevelopmental processes, response to
external stimuli, and immunity. Further probing the potential functions of these genes, we also found a suite
of genes related important traits, which make them a promising resource for exploring the genetic basis of
phenotype differences among diverse pig breeds. Compared with previous relevant studies, the current
study highlights that different platforms can complement each other, and the combined implementation of
different platforms is beneficial to achieve the most comprehensive CNV calls. CNVs detected in diverse
populations herein are essentially complementary to the CNV map in the pig genome, which would be
helpful for understanding the pig genome variants and investigating the associations between various
phenotypes and CNVs.
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Copy number variations (CNVs), defined as gains and losses of ge-
nomic sequence greater than 50 bp between two individuals of a species
(Mills et al. 2011) have been considered as a major source of genomic
variation. Since the milestone works by Iafrate et al. (2004) and Sebat

et al. (2004), CNVs have attracted extensive attention in genomic
studies of human and other species (Tuzun et al. 2005; Redon et al.
2006; Alkan et al. 2009; Sudmant et al. 2010).

In domestic animals, a suite of genes with copy number alteration
were found contributing to variation of either phenotypic variability
or disease susceptibility, such as the KIT gene for white coat pheno-
type in pigs (Giuffra et al. 2002), SOX5 gene for the pea-comb phe-
notype in chickens (Wright et al. 2009), and STX17 gene for hair
greying and susceptibility to melanoma in horses (Rosengren Pielberg
et al. 2008). Additionally, the study by Seroussi et al. (2010) indicated
there were close associations between CNVR#456, located on BTA18,
and index of total merit and genetic evaluations for protein produc-
tion, fat production, and herd life in Holstein cattle. These demon-
strated that CNVs can be considered as promising markers for some
phenotypic and economically important traits or diseases in domestic
animals.

Pig is not only one of the most economically important livestock
worldwide, but it represents one of the most important research
models for various human diseases (Meurens et al. 2012). In the past
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few years, many efforts have been made to detect CNVs in pig genome
based on three types of technologies, i.e., array comparative genomic
hybridization (aCGH) (Fadista et al. 2008; Li et al. 2012; Wang et al.
2014), SNP genotyping array (Ramayo-Caldas et al. 2010; Chen et al.
2012; Wang et al. 2012; Wang et al. 2013), and genome re-sequencing
(Rubin et al. 2012; Paudel et al. 2013; Jiang et al. 2014). Among these
technologies, because of their accuracy and cost-effectiveness, aCGHs
have remained the most frequently used methods for CNVs identifi-
cation and genotyping of personal CNVs (Pinkel et al. 1998; Feuk
et al. 2006; Carter 2007). Currently, Roche NimbleGen and Agilent
Technologies are the major manufacturers of whole-genome aCGH.
Because of their different probe distributions, probe numbers, and
workflow, it was found that sensitivity, total number, size range,
and breakpoint resolution of CNV calls were different among aCGH
platforms (Haraksingh et al. 2011).

In our previous studies, we have conducted relevant studies using
a custom-designed 2.1M aCGH (Wang et al. 2014) and read depth
(RD) based on genome re-sequencing (Jiang et al. 2014) with samples
from diverse pig breeds. To enrich the CNV calling and compare the
detection performance between different platforms, we performed an
alternative aCGH-based CNV identification by a custom-designed 1M
aCGH produced by Agilent Technologies. Identified CNVs herein are
essentially complementary to the CNV map in the pig genome, which
would be helpful for understanding the pig genome variants and in-
vestigating the associations between various phenotypes and CNVs.

MATERIALS AND METHODS

Ethics statements
The whole procedure for collection of the ear tissue samples of all
animals was performed in strict accordance with the protocol approved
by the Institutional Animal Care and Use Committee (IACUC) of
China Agricultural University.

Selection of pig breeds and animals
In the present study, one Duroc individual was used as the reference,
whereas the other 12 individuals selected from diverse populations
were used as the test samples. These 12 individuals included one Asian
wild pig, two pigs from Yorkshire and Landrace as the representatives
of European commercial breeds, and nine unrelated individuals
selected from six Chinese indigenous breeds (two Tibetan pigs, two
Diannan small-ear pigs, two Meishan pigs, one Min pig, one Daweizi
pig, and one Rongchang pig). The illustration of the features of six

Chinese indigenous breeds is detailed elsewhere (Zhang et al. 1986).
Genomic DNA for each of 13 individuals was extracted from the ear
tissue using Qiagen DNeasy Tissue kit (Qiagen, Germany).

Array CGH design, hybridization, and CNV calling
The 1M aCGH was designed and produced by Agilent (Agilent
Technologies, Santa Clara, CA, USA) based on the newest build of
porcine genome (Sscrofa 10.2) (http://www.animalgenome.org/
repository/pig/). It covered 18 autosomes and two sex chromosomes
containing 965,080 oligonucleotide probes (60 mers) with a median
and average intervals of 2191 bp and 2632 bp, respectively. Genomic
DNA labeling, hybridization, and array scanning were performed
according to the manufacturer’s instructions.

Raw data were first normalized (algorithm: LOWESS) using Fe-
ature Extraction software 10.7 (Agilent technologies). Then, Agilent
Genomic Workbench Standard Edition 6.5 software (Agilent Tech-
nologies) was used to perform CNV interval detection. The QC
metrics motif of Workbench 6.5 ensured adequate quality control of
the hybridization data. In present study, an array signal, which met
the requirements of intensity value .50 and signal-to-noise ratio
.25, was included in the analysis. The Aberration Detection Method
2 algorithm (ADM2), with threshold of 6, bin of 10, and a centraliza-
tion threshold of 6, was used to identify genomic variation given the
log2 ratio of fluorescent signals between test and reference DNA
samples. Fuzzy zero correction was carried to prevent inclusion of
aberrant segments with low average log2 ratios. Additionally, we ap-
plied a relatively stringent postanalysis filter—5 probes, 0.5 log ratio—
to ignore small, spurious, or low-quality aberrations. Finally, CNV
regions (CNVRs) were determined by aggregating overlapping CNVs
identified across all samples according to the criteria previously de-
scribed (Redon et al. 2006).

The raw data generated from aCGH and the sequence information
of probes involved in the aCGH designed in our study have been
deposited into the GenBank GEO database (GSE49299) (http://www.
ncbi.nlm.nih.gov/geo/).

Quantitative real-time PCR confirmation
Quantitative real-time PCR (qPCR) was used to validate 19 CNVRs
identified herein. Primers were designed with the Primer3 web
tool (http://frodo.wi.mit.edu/primer3/). The glucagon gene (GCG)
is highly conserved between species and has been approved to have
a single copy in animals (Ballester et al. 2004), and one segment of
it was chosen as the control region. To keep the same amplification

n Table 1 Pig sample information and CNVs detected in every individual

Types Breed Sample ID Sex CNV No. Total Length (Mb)

Reference European commercial breed American Duroc D4 Female — —

Test samples Asian wild boar population — A1 Female 180 13.52
South China type Diannan small-ear pig DN1 Male 144 11.90

DN5 Female 229 12.64
North China type Min pig M2 Female 153 12.14
Lower Changjiang River Basin type Meishan pig MS7 Female 211 9.92

MS8 Female 224 9.98
Southwest type Rongchang pig R2 Male 262 10.78
Central China type Daweizi pig W1 Female 118 8.30
Plateau type Tibetan pig Z2 Female 291 14.26

Z5 Female 260 12.05
European commercial breed Landrace C3 Female 139 9.78
European commercial breed Yorkshire Y2 Female 65 10.23
Mean 189.67 11.29
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efficiencies between target and control primers, the PCR efficiencies
for all primers used in the study were required to be 1.95–2.10. All
qPCR were performed using LightCycler 480 SYBR Green I Master
on Roche LightCycler 480 instrument following the manufacturer’s
guidelines and cycling conditions. For each sample, we performed
validation in duplicate to improve the accuracy of PCR. The second
derivative maximum algorithm included within the instrument soft-
ware was used to determine cycle threshold (Ct) values for each re-
gion. The copy number for each test region was calculated using the
22DDCt method (Livak and Schmittgen 2001), which compares the
DCt (Ct of the target region minus Ct of the control region) value of
samples with CNV to the DCt of the reference sample.

Gene content and functional analyses
Pig CNVRs were annotated using NCBI gene information (ftp://ftp.ncbi.
nih.gov/genomes/Sus_scrofa/mapview/seq_gene.md.gz; ftp://ftp.ncbi.nlm.
nih.gov/gene/DATA/GENE_INFO/Mammalia/Sus_scrofa.gene_info.
gz). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed with the DAVID
bioinformatics resources 6.7 (http://david.abcc.ncifcrf.gov/). Because the
number of annotated genes in the pig genome is limited so far, we first
converted the pig Ensembl IDs to orthologous human Ensembl IDs by
BioMart (http://www.biomart.org/) ahead of GO and pathway analyses.
Statistical significance was assessed by using the P value of a modified

Fisher’s exact test and Benjamini correction for multiple testing. Ad-
ditionally, to test whether genes exhibited a different selective con-
straint among CNV and non-CNV regions, the dN/dS ratio compared
with those human species was computed for each gene, and Wilcoxon
rank-sum test was used to test the difference of dN/dS ratios between
copy numbers’ varied genes and monomorphic ones.

A clustering analysis for all test samples was performed consid-
ering the identified CNVR as genetic makers based on the method
reported previously (Gazave et al. 2011; Tian et al. 2013). Specifically,
we first built a scoring matrix of the CNVR data for each individual by
encoding a value of “0” or “1” according to the absence or presence of
any given CNVR. A hierarchical agglomerative clustering was applied
on this matrix of individual vectors using the pvclust function from
the pvclust R package (Suzuki and Shimodaira 2006). The agglomer-
ative method chosen was unweighted pair-group method with arith-
metic mean (UPGMA). Additionally, 10,000 bootstraps were used to
assess the robustness of branches.

RESULTS

Genome-wide CNVs identified among diverse
pig breeds
In total, we identified 2276 CNVs, with 189.67 CNVs per individual.
After merging the overlapping CNVs across different samples, a total

Figure 1 Genomic distribution of CNVRs on 18 chromosomes and chromosome X of pigs. The chromosomal locations of 758 CNVRs are
indicated by lines. Y-axis values are chromosome names and X-axis values are chromosome position in Mb, which are proportional to the real size
of swine genome sequence assembly (10.2) (http://www.ensembl.org/Sus_scrofa/Info/Index).

Figure 2 Number and length percentage of
CNVRs on the pig chromosomes.
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of 758 CNVRs (Supporting Information, Table S1) were finally de-
termined, covering 47.43 Mb of the pig genome and corresponding to
1.69% of the genome sequence. The length of these CNVRs ranged
from 7.02 kb to 2635.29 kb, with a mean or a median of 62.58 kb or
20.93 kb, respectively.

The results in Table 1 show that the numbers of CNVR are uneven
distributed across the genome of individuals surveyed. The average of
CNVs per individual was 189.67, ranging from 65 (Y2) to 291 (Z2).
Additionally, out of the 758 CNVRs identified in the study, 55% of
them were identified in only one sample, confirming that segregating
CNVs exist among these individuals tested. However, there was also
a considerable proportion of CNVR (12.01%) with frequency $50%.
In particular, 11 CNVRs harboring 46 CNVs were found among all
test samples (Table S2). Compared with our previous CNV study
using the read depth (RD) method based on sequencing (Jiang et al.
2014), these CNVRs with 100% frequency in the test samples were
reflected by the inherent copy number alteration in the genome of the
reference pig per se.

In our study, stringent criteria with mean |log2 ratio| . 0.5 and five
consecutive probes were used to call high-confidence CNVs according to
the previous studies (Liu et al. 2010; Li et al. 2012). Among 12 test
samples, two of them (DN1 and R2) were male and the reference (D4)
was female. Based on the two sex-mismatched arrays, we assessed the
false-positive rate produced under the criteria using a similar method as
reported previously (Fadista et al. 2010). Theoretically, all segments on
chrY should be gains, and all segments on chrX should be loss in the male
individuals. Consistent with this theoretic inference, all segments on chrY
were actually detected as gains in our analyses. As for chrX, 17 segments
(1.05 Mb) were identified with the log-intensity ratio .0, resulting in
a false-positive rate of 0.36% [1,045,770/(144,288,218�2)]. This indicates
very few false-positive CNVs produced under the current criteria.

Pattern and size distribution of CNV regions
Figure 1 illustrates the location and characteristics of all CNVRs iden-
tified on the 18 autosomes and chromosome X. Figure 2 further
demonstrates that the proportions of CNVR differ greatly across the
chromosomes ranging from 0.84% (Chr.4) to 3.49% (Chr.16), with the
average of 1.94%. In particular, the proportion of CNVRs in chrX was
1.81%, similar to those in autosomes. Among all 758 CNVRs, the
number of loss, gain, and both events (loss and gain within the same
region) were 529 (69.79%), 200 (26.39%), and 29 (3.83%), respectively.
Loss events were approximately 2.65-fold more common than gain
events, but slightly smaller than the size of gain regions on average
(45.48 kb vs. 80.00 kb). The size distribution of CNVRs (Figure 3)
clearly demonstrated that most CNVRs fell into the length interval
between 10 kb and 20 kb, and the frequency of CNVRs tends to
decrease with the increase of the length.

Gene content and functional analyses
We sifted out a total number of 1295 porcine genes (Table S3) that
were completely or partially overlapped with CNVRs, including 921

Figure 3 Size distribution of CNVRs identified by aCGH.

Figure 4 Dendrogram generated by clustering of all the individuals tested on the basis of their CNVR similarities. Numbers at the upper left and
upper right of the node and beneath the nodes indicate P value, bp values, and edge numbers, respectively.
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protein-coding genes, 343 pseudo genes, 5 miscRNA genes, and 26
genes with other types. These genes overlapped with 355 out of the
758 total identified CNVRs. We further tested the dN/dS ratios for
orthologous genes of pig with those of human (Table S4). The results
showed that CNVR-related genes have dN/dS ratios significantly
higher than those with normal copy numbers by Wilcoxon rank-
sum tests (P , 6.2E-18).

We further explored if CNVRs identified herein were within
duplicated sequence regions or single copy sequence regions with high
evolutionary conservation. It is more likely that a CNV of a single
copy sequence maintained among other mammals have a phenotypic
effect than a CNV at a duplicated sequence. Specifically, we de-
termined those possible single-copy genes in pigs that were also
maintained among other mammals based on the resources of one-to-
one orthologs in Ensembl (Vilella et al. 2009). We sifted out those
genes with high orthology confidence and .80% identity in pigs and
other mammals, including cow, horse, human, mouse, and sheep.
Using these criteria, we finally extracted 1454 of such genes in the
pig genome and found that 20 of them were involved in or overlapped
with 19 CNVRs (Table S5).

We further performed GO and KEGG pathway analyses for the
genes in CNVRs. The GO analyses revealed 53 GO terms (Table S6),
of which 12 were statistically significant after Benjamini correction,
whereas the KEGG pathway analyses revealed 12 terms (Table S7), of
which only one reached statistical significance (Olfactory transduc-
tion) after Benjamini correction. The significant GO terms were
mainly involved in sensory perception of smell or chemical stimulus,
olfactory receptor activity, cognition, G-protein-coupled receptor pro-
tein signaling pathway, cell surface receptor–linked signal transduc-
tion, antigen processing and presentation, and other basic metabolic
processes.

We also performed the clustering analysis based on the status of
CNVRs carried by each test individual. The resulting dendrogram,
together with the bootstrap values of every branch (most of them
$50), is given in Figure 4. The two pigs of European breeds and all
other Chinese-originated pigs were clearly divided into two distinct
clusters. Within the cluster of Chinese pigs, the genetic relationships
of nine individuals tested were basically consistent with that geograph-
ical distribution, and two of the three pairs of samples of the same
breeds (MS7 and MS8, Z2 and Z5) grouped together. This cluster
analysis implies that CNVs may provide information as useful
markers in the cluster analysis.

Quantitative real-time PCR confirmation
From the total 758 CNVRs identified in the study, 19 CNVRs,
representing different predicted status of copy numbers (i.e., loss, gain,
and both) and different CNVR frequencies (varying from 8.33 to 100%),
were chosen to be validated by qPCR. One or two pairs of primers
(Table S8) were designed for each CNVR and a total of 31 qPCR assays
were performed. Of the 31 qPCR assays, 28 (90.32%) were in agreement
with prediction by aCGH. When counting the CNVRs, 17 (89.47%) out
of the 19 CNVRs (Table 2) had positive qPCR confirmations by at least
one PCR assay. The detailed information of the confirmed 17 CNVRs is
listed in Table 2. Our confirmed rate was higher than or similar to those
of previous studies (Fadista et al. 2008; Ramayo-Caldas et al. 2010; Hou
et al. 2011; Chen et al. 2012; Wang et al. 2012).

All 12 test samples and one reference sample in the study were
tested in the qPCR assays. Consequentially, we also calculated the
positive predictive rates and negative predictive rates for the 17
CNVRs confirmed by qPCR analysis. As showed in Table 2, the n
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average positive predictive rate is 86.54%, demonstrating that, for the
positive samples, qPCR assays are highly consistent with the aCGH
predictions. Contrary to the positive samples, for some of the negative
samples qPCR assays do not agree with the aCGH prediction, i.e., high
negative predictive rate (average 42.08%) observed. False-negative
identification can be explained by the stringent criteria of CNV calling
that minimizes the false-positive but inevitably leads to a high false-
negative rate.

Comparison of CNVRs with those of previous studies
CNVRs identified herein were compared with those previously
reported in other studies (Fadista et al. 2008; Ramayo-Caldas et al.
2010; Chen et al. 2012; Li et al. 2012; Rubin et al. 2012; Wang et al.
2012; Paudel Y et al. 2013; Wang et al. 2013; Wang et al. 2014; Jiang
et al. 2014). As shown in Table 3 and Table S9, the CNVR number
and length overlapped with the 10 previous studies vary greatly, rang-
ing from 0.13% to 61.61% in count percentage (0.02%–63.06% in
length). After merging the comparison results, a total of 526 CNVRs
overlap with previously reported ones, indicating 69.39% of CNVRs
identified in the study can be validated by previous studies and the
other ones were first detected in our study. Furthermore, we per-
formed an exhaustive comparison with our previous studies using
2.1M NimbleGen (Wang et al. 2014) and read depth (RD) method
(Jiang et al. 2014), whereby the same samples were collected in CNV
detection. As shown in Figure 5, among the three types of platforms,
RD detects the most CNVRs in number or the largest polymorphic
sequence in total length, whereas NimbleGen detects more CNVRs in
number than Agilent but nearly equal total length. There were 253
CNVRs (length of 17.31 Mb) detected by all three platforms, whereas
261 CNVRs (length of 13.65 Mb) were identified only in the present
study.

DISCUSSION
Using a custom-designed 1M CGH array, we identified 758 CNVRs
among the 12 pig samples from diverse breeds. We found the
number of identified CNVR differed among the 12 individuals, and
more CNVs per individual were identified in the pigs of Chinese
indigenous breeds and wild population (207.2) than in those of
modern commercial breeds (100.2). These results are consistent
with the previous studies indicating that Chinese indigenous breeds
have larger genetic diversity and higher average heterozygosity in
comparison with European breeds (Zhang and Plastow 2011), which
highlights the importance of using Chinese indigenous breeds in
research of porcine genetic architecture.

Concerning copy number status, loss events were approximately
2.65-fold more common than gain events in CNVRs. However,
previous studies involving humans have suggested that deletions were
more deleterious than duplications, and losses tended to be under
stronger purifying selection than gains (Emerson et al. 2008; Schrider
and Hahn 2010). This observation of more loss than gain events is at
least partially related to the technical bias. As also noted by others
(Redon et al. 2006; Fadista et al. 2010), due to the CNV detection
pipeline used, the aCGH approach has more power to detect a loss
than a gain.

A large amount of annotated genes (1295 genes) are located in the
identified CNVRs. CNVR-related genes have dN/dS ratios signifi-
cantly higher than those with normal copy numbers by Wilcoxon
rank-sum tests (P , 6.2E-18), which is consistent with the previous
results involving pigs and other species (Fadista et al. 2010; Li et al.
2012). This result indicated that, compared to genes in non-CNV

regions, these genes in CNVRs might undertake a different selective
constraint and be subjected to a relaxation of constraint due to the
redundancy expected from the variable number of gene copies. In
accordance with previous studies, GO and KEGG analyses have
evidenced that CNVRs are particularly enriched in genes related to
sensory perception of the environment (e.g., smell, sight, taste), neuro-
developmental processes, response to external stimuli, and immunity
(De Smith et al. 2008; Clop et al. 2012; Paudel Y et al. 2013), suggest-
ing their contribution to adaptation in the wild and behavioral
changes during domestication.

Further probing the potential functions of these genes completely
or partially overlapped with CNVRs, we also found a suite of pro-
mising genes that make them a valuble resource for exploring the
genetic basis of phenotype differences among diverse pig breeds. For
instance, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene
homolog (KIT) has confirmed that gene duplication and a splice mu-
tation leading the skipping of exon 17 is responsible for the dominant
white phenotype (Johansson et al. 2005; Pielberg et al. 2002). Consis-
tent with the previous studies, in the present study, KIT genes were
detected to be duplication only in individuals of Landrace and York-
shire with solid white coat color. Additionally, we sifted 20 single-copy
genes, which also maintained one copy among other mammals. These
genes with copy number variations are more likely to have a pheno-
typic effect due to the natural feature of conservation and single-copy
status.

The genetic relationships of nine individuals tested using CNVR-
based clustering analysis were basically consistent with their
geographic distribution, as well as dendrograms generated using
microsatellite markers (Fang et al. 2005) and high-density SNP data
(Jiang et al. 2014) in previous studies. Therefore, CNVs may reflect
demographic history as Paudel et al. (2013) observed in their study,
which could be used as genomic markers to investigate pig genetic
diversity and evolution. This can be largely reflected by the statistic
supports of AU/BP values of resulting branches. It is notable that some
branches, e.g., branch 8, obtained values of au/bp less than 50, repre-
senting low reliability in the resulting dendrogram. This demonstrates
that CNVRs identified in the study are not sufficiently informative in
dendrogram construction in contrast to SNPs and other genetic
markers. A potential reason lies in that it is not easy to accurately

Figure 5 Numbers of CNVs (length) overlapped among different
platforms.
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determine the genotype of CNVRs identified by the aCGH platform
compared to other genomic variants.

We compared the CNVRs identified in the present study with
those in previously studies. As pointed out by Pinto et al. (2011), the
reproducibility among different platforms varied greatly, and the over-
lapped rates were affected not only by detecting platforms but also by
different samples tested. It is notable herein that both 1M aCGH in
the present study and 2.1M aCGH in our previous study (Wang et al.
2014) were used for CNV detection with the same samples. These two
aCGH have the same coverage on the pig genome but have different
densities and positions in probes across the pig genome. The reason
we used the same samples in different studies is that we could sys-
tematically compare performance of various technique platforms with
the same experimental conditions. That comparison of findings by
various methods can mostly reflect inherent characteristics of them.
Although the density of the 1M aCGH used in the current study is less
than that of 2.1M aCGH in our previous study (Wang et. al. 2014), the
novel 1M probes successfully detected an extra 60 short CNVRs of
,10 kb in length (Table S1) that have been previously missed by the
2.1M aCGH as well as RD methods.

Although the present study detected a limited number of novel
CNVs compared to our previous studies, the goal of the present study
is not only to explore novel CNVs besides our previous findings but
also to establish a framework for CNV identification with both high
detection power and cost efficiency. Our comparative results between
aCGH and RD showed that 1M aCGH by Agilent and 2.1M aCGH by
NimbleGen can generate CNV findings complementary to each other,
especially in the detection of short CNVs ,10 kb. Incorporating
findings of present 1M aCGH-based studies and our previous 2.1M
aCGH-based studies first proved that ultrahigh-density aCGH can
achieve improved performance in CNV calling even more powerful
than the sequence-based method in short CNV detection. Our findings
herein not only were helpful for constructing a more comprehensive
CNV map but also offered a feasible way to design a high-density
aCGH with high cost efficiency in CNV studies in contrast to tradi-
tional sequence-based methods.

In summary, the present study clearly highlights that different
platforms can complement each other, and combined implemen-
tation of different platforms is beneficial to achieve the most
comprehensive CNV calls. CNVs detected in diverse populations
herein are essentially complementary to the CNV map in the pig
genome, which would be helpful for understanding the pig genome
variants and investigating the associations between various phe-
notypes and CNVs.
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