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Abstract

Cell–cell communications are vital for biological signalling and play important roles in complex diseases. Recent advances in single-
cell spatial transcriptomics (SCST) technologies allow examining the spatial cell communication landscapes and hold the promise for
disentangling the complex ligand–receptor (L–R) interactions across cells. However, due to frequent dropout events and noisy signals in
SCST data, it is challenging and lack of effective and tailored methods to accurately infer cellular communications. Herein, to decipher
the cell-to-cell communications from SCST profiles, we propose a novel adaptive graph model with attention mechanisms named
spaCI. spaCI incorporates both spatial locations and gene expression profiles of cells to identify the active L–R signalling axis across
neighbouring cells. Through benchmarking with currently available methods, spaCI shows superior performance on both simulation
data and real SCST datasets. Furthermore, spaCI is able to identify the upstream transcriptional factors mediating the active L–R
interactions. For biological insights, we have applied spaCI to the seqFISH+ data of mouse cortex and the NanoString CosMx Spatial
Molecular Imager (SMI) data of non-small cell lung cancer samples. spaCI reveals the hidden L–R interactions from the sparse seqFISH+
data, meanwhile identifies the inconspicuous L–R interactions including THBS1−ITGB1 between fibroblast and tumours in NanoString
CosMx SMI data. spaCI further reveals that SMAD3 plays an important role in regulating the crosstalk between fibroblasts and tumours,
which contributes to the prognosis of lung cancer patients. Collectively, spaCI addresses the challenges in interrogating SCST data
for gaining insights into the underlying cellular communications, thus facilitates the discoveries of disease mechanisms, effective
biomarkers and therapeutic targets.
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Introduction
Cell–cell communications play important roles in cellular func-
tions and tissue homeostasis [1]. These cellular communications
are mediated by the active interactions of ligand–receptor (L–R).
Cells with altered L–R signalling will affect their neighbouring
cells and remodel their microenvironment. When cells do not
interact or transfer messages properly, disease-related activities
will happen. For example, tumour-associated macrophages may
interact with tumour cells by deriving IL-6, which leads to the
chemo-resistance of tumour cells [2]. Moreover, cancer-associated
fibroblasts have been shown to release the CXCL12 chemokine in
the pancreatic tumour microenvironment (TME), which interacts
with CXCR4 and promotes tumour progression through growth-
permissive modulation of the immune microenvironment [3].
Thus, identification and quantification of cell-to-cell communi-
cations are critical and fundamental for revealing the underlying
mechanisms of complex diseases.

Recently, the breakthroughs in single-cell spatial transcrip-
tomics (SCST) technologies [4–6] have allowed researchers to
examine both the spatial and transcriptional landscapes of
individual cells and are extremely useful for dissecting het-
erogeneity and cellular communications at unprecedented
resolution. For example, seqFISH+ [7] can image mRNAs for 10 000
genes in single cells, which enables revealing subcellular mRNA
patterns of spatially organized cells within the tissue. NanoString
CosMx™ Spatial Molecular Imager (SMI) [8], Vizgen MERSCOPE
[4] and 10× Genomics Xenium [9] are developed as a single-
cell spatial solution to capture targeted transcripts in manually
selected regions of interest [10], which enables to investigate
morphologically intact tissues at unprecedented resolution.
These new technologies hold the promise to spatially and
functionally reveal complex architectures of tissues and to further
our insights into intercellular interactions at unprecedented
resolution.
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Given the emerging spatial technologies, effective methods
inferring L–R signalling axis and cell–cell communications from
spatial transcriptomics (ST) data are still lacking. Currently, there
are methods available to infer L–R interactions from single-cell
RNA-seq (scRNA-seq) data. For example, iTALK infers the L–R
interactions as those significantly differentially expressed among
different cell groups [11]. CellPhoneDB v2.0 infers enriched L–
R interactions between two cell groups based on their signifi-
cant specificity [12]. CellChat focuses on the differentially over-
expressed ligands and receptors to quantify the associations of L–
R pairs modelled by the law of mass action [13]. Connectome [14]
defines the weight of L–R interaction based on the product of cell
type-wise normalized expression for ligand and receptor. Though
these methods enable to infer L–R interactions from scRNA-seq
data, their assumptions usually require that the average expres-
sion of ligand or receptor in a specific cell group is above its
mean expression over the whole counts, which may cause false
negatives due to the sparsity and dropout issues of SCST profiles
[15]. More importantly, these methods do not consider the spatial
cell locations, and thus may result in false positives due to the
lack of physical adjacency for contact-based cell–cell interactions,
autocrine or paracrine.

Therefore, to accurately reveal the landscape of cellular com-
munications, we present a novel method, termed spaCI, to deci-
pher cellular interactions in SCST data. spaCI incorporates both
the spatial graphs of adjacent cells and their gene expressions
to identify the L–R interactions. spaCI introduces the triplet loss
that effectively avoids possible false positive or false negative
interactions when detecting active L–R signalling pairs. The out-
performance of spaCI is demonstrated using both simulation data
and real ST data. More importantly, spaCI allows detecting the
upstream transcriptional factors (TF) mediating the L–R signalling
axis, which facilitates the understanding of the underlying molec-
ular mechanisms of intercellular crosstalk.

Results
Overview of the spaCI method
A novel computational method, spaCI (Figure 1), is developed
to infer cell–cell interactions from ST data. The ST data, espe-
cially the recently emerging SCST data, exhibits frequent dropout
events and low data coverage. Such sparse and noisy data impedes
the accurate identification of L–R interactions in complex tis-
sues. Our method leverages the spatial relationships between
cells as well as the intracellular gene–gene association patterns
to overcome these challenges, as illustrated in Figure 1A. Lim-
ited by the ST data quality, the expression profile of ligand L is
compromised, thus the true relations between this ligand and
its presumed receptor R between two adjacent cells cannot be
reliably determined. This challenge can be addressed by exam-
ining the gene expression patterns of those genes that are co-
expressed with ligand L. The spaCI model utilizes the gene–gene
interaction patterns, including both interactive pairs and non-
interactive pairs, as well as the cell spatial graph to learn such
a latent representation of genes, so that true L–R interactions,
as well as co-expressed genes, are proximate to each other. The
trained spaCI model thus is able to predict both L–R interactions
and their upstream regulators such as transcription factors.

The architecture of spaCI is illustrated in Figure 1B. Genes are
projected into the latent space Z through two components: a
gene-based linear encoder as well as a cell-based attentive graph
encoder. Both gene expression patterns and spatial organization
of the complex tissues are thus incorporated into the latent space.

The model is then trained using triplet loss. Briefly, the inter-
active and non-interactive gene pairs are randomly assembled
into positive-anchor-negative gene triplets. For each triplet, the
latent representation of genes is learned so that the similarity
between the positive pair is higher than that between the negative
pairs with a margin of α. Mathematically, the triplet loss defines
a manifold in the latent space for each triplet. Thus, a group
of co-expressed genes (such as the genes represented as nodes
with different shades of blue colour) as well as the corresponding
interactive L–R pairs (nodes in red colours) fall into a domain of
arbitrary shape in the latent space (the larger grey domain). The
margin α separates different gene interaction domains (such as
the smaller grey domain formed by genes represented by green
nodes). The triplet loss simplifies the optimization and simultane-
ously assures a clear separation of interactive and non-interactive
cases. In this way, the expression data of all available genes are
used to infer whether an L–R pair has interaction or not.

Through benchmarking with other methods on both simula-
tion data and real data, we demonstrate that spaCI can effec-
tively identify L–R interactions between two cell types as well
as the cell types that communicate the most. To gain biological
insights, we apply the spaCI to the single-cell spatial data from
mouse cortex and lung cancer tissue. spaCI not only reveals L–R
interactions that are not obvious in the original, sparse seqFISH+
data, but also identifies significant interactions between fibrob-
last and tumours in with strong L–R interactions such as the
THBS1–ITGB1 interaction in lung cancer tissue. Moreover, spaCI is
able to infer the upstream TF such as SMAD3 for such tumour-
associated L–R interactions. Further analysis suggests that the
intratumoural TF-receptor has strong predictive power in both
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) patients. Overall, spaCI enables the interrogation of cell–
cell communications in ST data and facilitates insights of the
underlying disease mechanisms. Detailed explanations of spaCI
are included in the Materials and Methods. The software for
implementing spaCI is available at https://github.com/QSong-
github/spaCI, with detailed manual and tutorials provided.

Evaluation of spaCI using simulation data
We first evaluated the performance of five different methods
including spaCI, iTALK [11], CellPhoneDB [12] (i.e. cpdb), CellChat
[13] and Connectome [14], based on the four cohorts of simulation
data (see Section ‘Simulation data and performance evaluation’).
Each simulation cohort consisted of 10 simulation data with both
interaction pairs and non-interaction pairs generated by different
parameters. F1 score was used to evaluate the performance
of different methods in detecting accurate interaction pairs
(Figure 2). The corresponding boxplots represented the F1 score
of the identified interaction pairs by each method compared to
the ground truth. Notably, spaCI accurately identified the true
interaction pairs in four cohorts and demonstrated higher F1
(mean ± SE: 0.852 ± 0.014 for simulation cohort 1, 0.817 ± 0.05 for
cohort 2, 0.859 ± 0.06 for cohort 3, 0.853 ± 0.03 for cohort 4). The
other methods showed relatively lower F1 scores. For example,
CellPhoneDB (mean ± SE: 0.453 ± 0.03) and CellChat (mean ± SE:
0.544 ± 0.03) showed lower F1 in simulation cohort 1. Relatively,
Connectome (mean ± SE: 0.574 ± 0.04) had a comparable per-
formance with CellChat (mean ± SE: 0.557 ± 0.02) in simulation
cohort 2, while Connectome showed relatively higher F1 than
CellChat in other simulation cohorts. Across the four simulation
data cohorts, iTALK showed higher F1 than Connectome, but
lower F1 scores than spaCI. In addition to the F1-score, metrics
including sensitivity, specificity, AUC and AUPR (the area under
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https://github.com/QSong-github/spaCI


spaCI | 3

Figure 1. Schematic overview of spaCI. (A) The spaCI method leverages the spatial relationships between cells as well as the expression data of all
available genes to infer the L–R interactions. (B) In spaCI, genes are projected into the latent space through two components: a gene-based linear
encoder as well as a cell-based attentive graph encoder. In this way, both gene expression patterns and spatial cell relations are incorporated into the
latent space. Triplet loss is adopted in spaCI to assure a clear separation of interactive and non-interactive pairs.

the precision-recall curve) were also used for comprehensive
evaluation of different methods (Supplementary Figure 1, Supple-
mentary File). These results demonstrated the outperformance of
spaCI in identifying accurate interaction L–R pairs based on the
simulated data.

Moreover, to verify that spaCI also performed better in
additional L–R interaction database, we performed bench-
marking analysis using the LIANA CCC Consensus Resource
(Supplementary Figure 2, Materials and Methods). We measured
the performance of spaCI versus CellChat, Connectome, iTALK
and cpdb based on four additional cohorts of simulation data
generated from the Consensus Resource. Notably, spaCI identified
true interaction pairs in four cohorts and demonstrated higher
F1 (mean ± SE: 0.830 ± 0.022 for simulation cohort 1, 0.780 ± 0.012
for cohort 2, 0.847 ± 0.019 for cohort 3, 0.792 ± 0.034 for cohort
4) than other methods, including CellPhoneDB and CellChat.
These results proved that the outperformance of spaCI did not
depend on the selection of L–R database. In addition, spaCI also
outperformed other methods when using Spearman association
to generate gene triplets (Supplementary Figure 3).

Performance evaluation on ST data
To further demonstrate the performance of spaCI, we compared it
with the other methods (iTALK, CellPhoneDB, CellChat and Con-
nectome) on real ST data. For comparisons, we used 10 cropped
regions of SCST data profiled from colon cancer sample using
MERSCOPE (Figure 3A). We also included the SCST of lung cancer
patients by NanoString CosMx (Figure 3B) for comparison. Details
of these spatial datasets were provided in the Data availability
section. To assess and quantify performance on these real spatial
data, here we used evaluation metrics including the number of
overlapped L–R interactions and the Jaccard index (see Section
‘Benchmarking methods and comparison measurements’).

Based on the Vizgen’s MERSCOPE data from colon cancer
sample (Figure 3A), spaCI identified the most overlapped L–
R interactions (mean = 236.2) with the rest of the methods,
especially higher than CellChat (mean = 151.3) and iTALK
(mean = 141.9). CellPhoneDB (mean = 49.1) presented the least
number of interactions in common with other methods. Con-
nectome showed a relatively higher number of overlapped
interactions (mean = 154.1) but was still lower than spaCI. For the
other single-cell spatial data from lung tumours (Figure 3B), spaCI
consistently identified the largest number of L–R interactions
(mean = 462.9) shared with the rest of the methods. Connectome
(mean = 283.8) presented less overlapped L–R interactions in
common with other methods, but it was higher than CellPhoneDB
(mean = 40.7) and iTALK (mean = 185.1). CellChat also presented
lower performance than spaCI (mean = 328.5). In addition, we
also calculated the Jaccard index of each method based on the
20 Field Of View (FOVs) (Figure 3C, Supplementary Figure 4).
The Jaccard index of L–R pairs between any two methods was
shown in the heatmap. The average Jaccard index between
a given method and the rest of the methods was shown in
the bar plot above the heatmap. Notably, spaCI presented the
highest average rank based on the Jaccard index of L–R pairs.
Moreover, considering the hybrid architecture of spaCI model,
we also evaluated spaCI’s performance with ablation study
(Supplementary Figure 5, Supplementary File). Collectively, these
comparison results demonstrated that spaCI achieved superior
performance on real spatial datasets and proved to identify
accurate L–R interactions.

Application of spaCI to the seqFISH+ data of
mouse cortex
To gain biological insights, spaCI was applied to the seqFISH+
mouse cortex data [7], which consisted of 10 000 genes and 12

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
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Figure 2. Evaluation of L–R pairs identified by different methods in simulation data. L–R pairs are predicted by five methods based on four simulation
cohorts. Each cohort consists of 10 simulation data generated with different parameters. The corresponding boxplots represent the F1 score of the
interaction pairs identified by each method.

different cell types. Figure 4A showed the spatial location of differ-
ent cells and the UMAP plot of different cell types, with the edges
linking neighbouring cells. Based on this data, spaCI identified
30 L–R interactions, while these L–R pairs presented poor associ-
ations in their raw gene expressions. Further interrogation of the
embeddings and raw data of L–R pairs revealed the reasons why
these L–R interactions were hidden in their expressions. For exam-
ple, the embeddings of Nrg1 and Erbb3 were observed with strong
associations in the latent space (Figure 4B). In contrast, both Nrg1
and Erbb3 presented extensive zeros in their expressions, with
only a small portion of expressed cells observed, which explained
the low correlation (Pearson correlation = 0.18) of Nrg1−Erbb3 in
raw data. The other L−R pair, Fgf14−Fgfr2, was also observed
with associations in latent space but not in raw gene expressions.
These results demonstrated that spaCI revealed the L–R inter-
actions which otherwise could be hidden due to data sparsity.
Moreover, cells expressing Nrg1−Erbb3 and Fgf14−Fgfr2 presented
prevalent adjacent cellular interactions (Figure 4C). The contour
plots indicated that most cellular interactions of Nrg1−Erbb3 and
Fgf14−Fgfr2 occurred in the spatial regions of L5 eNeuron and L4
eNeuron cells.

With the identified L–R pairs by spaCI, we further interrogated
the L−R interaction strength across different cell types (Figure 4D,
Materials and Methods). Specifically, L5 eNeuron expressed Nrg1
showed strong communication strength with the oligodendro-
cytes (Olig)−expressed Erbb3. The Nrg1−Erbb3 also presented
strong communications between Lhx6 iNeuron and Olig. The
Fgf14−Fgfr2 interaction was observed prevalently from L5
eNeuron, Lhx6 iNeuron and Adarb2 iNeuron, to Olig. To visualize
the communications between different cell types, a summary
network showed the cell-to-cell crosstalk, with the edge width
indicating the interaction strength between different cell types
(Figure 4E). Of note, we observed strong interactions between
Lhx6 iNeuron and Olig, as well as L5 eNeuron and Olig, suggesting

that oligodendrocytes might play a central role in the cellular
crosstalk of brain. The benchmarking methods were also applied
to this cortex data, which revealed prevalent inflammatory
L–R pairs that were not common in healthy cortex tissues
(Supplementary Figure 6, Supplementary File).

Applying spaCI to the SCST data of lung cancer
patients
We then applied spaCI to the NanoString CosMx™ SMI dataset [8]
with 20 FOVs profiled from a lung cancer patient, with a total of
81 236 cells and 18 different cell types (Figure 5A). The cell–cell
communications identified by spaCI among different cell types
were shown in the summary chord diagram (Figure 5B). The chord
width between two cell types indicated their interaction strength.
Of note, we observed strong interactions from fibroblast, endothe-
lial cells and CD4 T memory cells to tumours, as well as intra-
tumour interactions. To quantitively measure the interactions
that occurred for each cell type, we used a scatter plot to visualize
the involved number and strength of L–R interactions (Figure 5C),
where the x-axis represents the number of interactions, and
the y-axis represents the interaction strength. This scatter plot
pinpointed fibroblasts and tumours as the most communicated
cell types in cellular crosstalk.

To investigate if the globally dominant crosstalk also existed
locally, we scrutinized a specific FOV with abundant fibroblast
and tumour cells (Figure 5D). Based on this FOV, spaCI identified
the cellular communications among major cell types (Figure 5E).
Consistent with the cell–cell interactions identified globally
(Figure 5B), we also observed strong interactions from fibroblast
to tumour cells. The involved L–R pairs that contributed to
the fibroblast-tumour crosstalk were presented (Figure 5F),
along with the L–R interactions from other major cell types
to tumour cells. Different colours represented the interaction
strength. Specifically, fibroblast expressed DCN (ligand) showed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
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Figure 3. Evaluation of L–R pairs identified by different methods in SCST datasets. (A) Boxplots represent the number of L–R interactions shared by each
method with the rest ones, based on the 10 regions of MERSCOPE colon tumour spatial data. (B) Boxplots represent the number of shared interaction
pairs, based on the 20 FOVs of NanoString CosMx data. (C) Heatmap shows the Jaccard index of L–R interactions between any two methods. The filled
colour is proportional to the Jaccard index. The average Jaccard index between a given method and the rest of the methods is shown in the bar plot
above the heatmap.

strong interactions with tumour-expressed mesenchymal-
epithelial transition (MET) (receptor). DCN has been reported
to interact antagonistically with the MET factor (c-MET) and
significantly influences angiogenesis [16–19]. Other L–R pairs
including THBS1/THBS2−CD47 [20, 21], THBS1/THBS2−ITGB1 [22,
23], DCN−EGFR [24, 25], COL5A2−DDR1 [26], COL11A1−DDR1 [27,
28] also contributed to the commutations between fibroblasts
and tumours. Of note, strong intra-tumour communications were
also observed through COL18A1−ITGA3 [29] interaction. Moreover,
the spatial expressions of ligand DCN were located adjacent to
the receptor MET (Figure 5G). Similarly, adjacent expressions
of the interaction pairs COL18A1−ITGA3 and THBS1−ITGB1
were also observed. In contrast, the interaction pairs identified

by benchmarking methods were lack of spatial adjacency
(Supplementary Figure 7, Supplementary File). These results
confirmed the necessity of utilizing spatial adjacent graphs in
spaCI to identify L–R interactions and the effectiveness of spaCI
in detecting physical interactions in ST data.

spaCI identifies the upstream regulators
mediating the cellular crosstalk
Interrogation of cellular crosstalk without elucidating the
upstream mediators was not sufficient to fully understand the
underlying mechanisms. Given the merit of our model, spaCI
enabled us to predict not only the L–R interactions, but also
the interactions of any gene pairs. Therefore, spaCI was able to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data


6 | Tang et al.

Figure 4. spaCI reveals L–R interactions in the seqFISH+ data of mouse cortex. (A) The spatial plot of cells profiled from mouse cortex data by seqFISH+.
UMAP plot of the profiled cells with edges linking adjacent ones. (B) The scatter plot shows the embeddings and the scaled expression values of identified
L–R interactions, including Nrg1−Erbb3 and Fgf14−Fgfr2. (C) The left panel shows the spatial plots of cells expressing Nrg1−Erbb3 and Fgf14−Fgfr2. The
right panel shows the contour plots of two L–R interactions. (D) Heatmap shows the identified L–R interaction strength across different cell types. (E)
Network diagram of the summarized communications between different cell types. The edge width represents the communication strength.

infer the potential upstream TF of each ligand or receptor, to
facilitate the discovery of L–R signalling activities. To achieve this,
we used the hTFtarget database [30] with TF–target regulations
specific to lung tissue, to identify the potential TFs of tumour
receptors. In this way, spaCI revealed the upstream regulators of

receptors within tumour cells that mediated the L–R interactions
between fibroblast and tumour cells (Figure 6A). The Sankey
diagram presented the identified L–R–TF signalling axis, with the
source (fibroblast) expressing ligands, and the receiver (tumour)
expressing receptors that were mediated by upstream TFs in



spaCI | 7

Figure 5. spaCI reveals strong interactions from fibroblasts to tumours in the lung cancer microenvironment. (A) The spatial plot of 81 236 cells from
the 20 FOVs of NanoString CosMx SMI dataset. (B) Summary chord diagram of the identified cell–cell communication network. The chord width is
proportional to the interaction strength across different cell types. (C) The scatter plot shows the involved number of L–R interactions and the interaction
strength for each cell type. To keep the x-axis and y-axis at the same scale, we divide the value, i.e. the number of interactions (x-axis) and interaction
strength (y-axis), by their maximums respectively. (D) The spatial plot of cells within the FOV comprising abundant fibroblast and tumours. (E) Summary
chord diagram of the cell–cell communication network of major cell types. The chord width is proportional to the interaction strength. (F) Heatmap
shows the identified L–R interactions between major cell types and tumour cells. (G) Spatial plots of the expressions of identified L–R interaction pairs.

tumour cells. Different colours represented different TF-mediated
L–R interactions. From the Sankey plot, we observed prevalent
interactions between THBS1/THBS2 and ITGB1 [31], with upstream
TFs including SMAD3, JUN and EST1. These identified upstream
TF were also confirmed through the motif enrichment analysis
(Supplementary File).

Such TF-mediated interaction axis may play important role
in lung cancer prognosis. To evaluate the prognostic effects of
these TF-mediated receptors (TF-R pair) in lung cancer patients,
we used Kaplan–Meier survival analysis with the log-rank test
to estimate the relationship between the TF-R expression and
the overall survival (Figure 6B). Among the identified TF-R pairs,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
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Figure 6. spaCI reveals the prognostic upstream TF mediating the L–R interactions. (A) spaCI predicts the upstream transcription factors of active
receptors in tumour cells. (B) Survival analysis of SMAD3−ITGB1 expression in terms of overall survival using the lung cancer patient samples (LUAD,
LUSC) from TCGA. (C) Survival analysis of SMAD3−ITGB1 expression with the clinicopathologic factor of different stages. (D) Comparison of the
expression levels of SMAD3−ITGB1 at different stages in LUAD and LUSC patients, respectively.

patients with high SMAD3−ITGB1 expression had significantly
poor overall survival in both LUAD (P-value = 0.005) and LUSC
(P-value = 0.05) patients in TCGA. However, other TF-mediated
receptors (TF-R pair) did not present significant prognosis value
in both LUAD and LUSC patients (Supplementary Figure 8). More-
over, patients with high expressions of SMAD3−ITGB1 also pre-
sented poor overall survival in advanced stage for both LUAD
(P-value = 0.0001) and LUSC (P-value = 0.035) patients (Figure 6C).
Consistently, the SMAD3−ITGB1 axis showed higher expression in
the advanced stage in LUAD patients (P-value = 0.04), rather than
in LUSC patients (Figure 6D).

Discussion
Cell–cell communications generally involve L–R interactions,
which are vital for various biological signalling and disease
pathogenesis. The recent advance of spatial technologies has
effectively uncovered the spatial cellular heterogeneity within
complex tissues, facilitating the systematic investigation of cell–
cell communications at unprecedented resolution. However,
effective methods of identifying cell–cell communication in ST,
especially SCST data, are still lacking. Herein, we have proposed
a novel adaptive graph attention model, i.e. spaCI, to detect the

L–R interactions and reveal cellular crosstalk in ST profiles. spaCI
is developed as a graph-based deep learning model, which has
been shown effectively in spatial data analysis [32]. Through
the comprehensive benchmarking, spaCI proves to achieve
superior performance using both simulation data and real spatial
datasets.

spaCI is not only able to reveal the L–R interactions, but
also identify the upstream regulators mediating the active
L–R signalling axis. In this work, we identified the THBS1
(ligand)−ITGB1(receptor) interaction between fibroblasts and
tumour cells. spaCI further identified SMAD3 as an important
regulator of ITGB1 within tumour cells, which would affect its
interaction with fibroblasts. Moreover, spaCI can also be used to
identify the upstream TF of THBS1, which provides an additional
intervening strategy of targeting the upstream TF of ligand genes
to inhibit the interactions between fibroblast and tumours, thus
could further impede tumour progression. Collectively, spaCI not
only reveals the interactions between ligands and receptors, but
also the relations between TFs and ligands, as well as TFs and
receptors, extending the interrogation of cellular dynamics from
intercellular to intracellular. Therefore, spaCI is anticipated to
provide novel biological hypotheses and facilitate insights into
the underlying mechanisms.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
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Currently, immunotherapy works as a promising way to treat
and cure lung cancer [33]. Though the recent use of immune
checkpoint inhibitors has demonstrated significant clinical effi-
cacy in the treatment of lung cancer patients, 40–60% of patients
do not achieve a significant therapeutic response [34–36]. Thus,
there remains a need for predictive biomarkers to determine in
advance those with the most potential to benefit from immune
checkpoint blockade, as well as the potential targets to over-
come the therapeutic resistance to immunotherapy. The immuno-
oncology therapeutic effects are often mediated by multifaceted
interactions between different cell types within the TME [37]. In
addition to lung cancer, we also applied spaCI to the SCST data
of colon patient sample (Supplementary Figure 9) and melanoma
sample (Supplementary Figure 10) and revealed hidden L–R inter-
actions and upstream regulators. Therefore, we anticipate that
the L–R pairs identified by spaCI hold the promise to discriminate
patients’ responses to immunotherapy.

Despite the advantages of spaCI, there are several aspects that
spaCI can be improved. First, evaluating the predicted L–R inter-
actions without ground truth poses a significant challenge. With
experimentally validated L–R pairs in public resources, systematic
and fair evaluations of different methods will be performed.
Second, with the rapid development of spatial multi-omics tech-
nologies [38], spaCI will be further improved by incorporating
new layers of omics data. Though the current version of spaCI
enables the predictions of L–R interactions based on ST data,
spaCI can be further improved by utilizing new data types, such as
spatial proteomic profiles [39], to predict other types of molecular
interaction data such as protein–protein interactions and genetic
interactions. Moreover, as spaCI uses the cell adjacent graph
based on the spatial distance between cells, incorporating the
topological structure of spatial profiles using cell–cell similarity
graph [40] and affinity graph [41] will gain more insights into the
spatial gene expression pattern, which may further improve the
model performance.

Materials and methods
spaCI model
Collection of L–R pairs
For real spatial data, we first assemble a collection of L–R pairs
for predictions from International Union of Pharmacology [42],
Connectome [43], FANTOM5 [43], HPRD [44], Human Plasma Mem-
brane Receptome [45] and Database of Ligand−Receptor Partners
[46], which encompasses 815 ligands, 780 receptors and 3398
reliable L–R pairs. This collection is used for candidate L–R inter-
actions in spaCI. Moreover, the LIANA CCC Consensus Resource
[47], the L–R reference dataset from OmniPath collection [48] is
also used to evaluation the performance of spaCI.

Gene triplet set for model training
Pearson association is used to measure the associations of any
gene pairs. The topmost associated gene pairs will be used as
the ‘interaction’ pairs, denoted as I, which refers to a list of gene
pairs that have strongly related expressions. The topmost un-
associated gene pairs will be selected as the ‘non-interaction’
pairs, denoted as N, referring to the gene pairs without relations.
Here the correlation threshold p is set as 1% by default, which
is learnable in spaCI. spaCI also provides alternative spearman
correlation for identifying gene pairs. The two lists of interaction
and non-interaction pairs are then used to construct the gene
triplets [49] (Figure 1A), i.e. (ga, gp, gn), where (ga, gp) ∈ I, (ga, gn) ∈ N,
for training the spaCI model. Here ga represents the ‘anchor’, gp

refers to the ‘positive’, and gn refers to the ‘negative’. In this way,
the well-trained spaCI enables us to predict the interactions of our
curated collection of L–R pairs.

Spatial graph construction
We hypothesize that spatially adjacent cells should have a bet-
ter chance of cell–cell communications than distant cells, espe-
cially for contact-based cell–cell interactions and paracrine sig-
nalling. Thus, for n cells, the spatial graph, represented by its adja-
cent matrix A ∈ R

n×n, is constructed according to cell locations
(Figure 1A) using k-nearest neighbours. For two cells i and j, we
have aij ∈ A, and aij = 1 if the two cells are adjacent, otherwise
aij = 0. Here the number of nearest neighbours k for constructing
cell adjacency graph by default is set as 5, which is learnable in
spaCI.

Model architecture
As shown in Figure 1B, the spatial gene expression data is denoted
as X ∈ R

m×n, where m represents the number of genes and n
refers to the number of cells respectively. spaCI converts the
gene expression features into the latent representation of genes
through three major components:

(i) Gene-based embedding Encx(x). The original gene expression
matrix X can be represented as a list of gene-based samples, that
is, X = [g1, g2, · · · , gm]T, with the n-dimensional vector gi ∈ X
representing the expressions of gene i across the n cells. Thus,
genes in X are projected to the latent space through a series
hidden linear layers for gene-based embedding, with the lth layer
as:

h(l)
x = ReLU

(
B(l)

x + h(l−1)
x W(l)

x

)
, l = 1, . . . , Lx; h(l)

x ∈ R
m×d(l)

x ,

where B(l)
x ∈ R

m×d(l)
x is a bias parameter, W(l)

x ∈ R
d(l−1)

x ×d(l)
x is the weight

matrix in the lth layer to transform the embedding, Lx is the total
depth of layers, h(0)

x = X, d(0)
x = n and the obtained embedding

Zx = h(Lx)
x ;

(ii) Spatially guided embedding EncA(x, A). We further incorpo-
rate the spatial graph of cell adjacency for an additional embed-
ding h(l)

A by

h(l)
A = ReLU

(
B(l)

A + h(l−1)
A W(l)

A A(l)
)

, l = 1, · · · , LA, h(l)
x ∈ R

m×n

where B(l)
A ∈ R

m×n is a bias parameter, W(l)
A ∈ R

n×n is the weight
matrix in the lth layer to transform the embedding, LA is the depth
of graph attentive layers. Specifically, the lth adaptive adjacent
matrix A(l) = V(l)odotA(l−1) learns weighted edges for the spatial
graph through an attention mechanism, with A(0) = A and

⊙
is

the element-wise multiplication. To model the cell–cell relations,
we leverage a learnable layer-independent attentive matrix V(l) ∈
R

n×n
+ . In this way, v(l)

i,j ∈ V(l) captures the importance of between two
neighbour cells i and j. For non-neighbour cells, since for ai,j ∈ A,
ai,j = 0, we always have a(l)

i,j = 0 for a(l)
i,j ∈ A(l). We evaluate V(l) from

previous embeddings in h(l−1)

A as:

V(l) = fv

((
h(l−1)

A

)T
h(l−1)

A

)
,

where fv(·) is a two-layer fully connected neural network with
ReLU and sigmoid activation function in the hidden and output
layers, respectively. Note that the attentive matrix V(l) is an ele-
ment wisely multiplied to the adaptive adjacency matrix A(l−1),

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac563#supplementary-data
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so the value of each element v(l)
i,j serves as an attention score

between the ith and jth cell and the message of edges with higher
prediction scores would give a higher weight to propagate. The
obtained embedding is ZA = h(LA)

A .
(iii) Hybrid embedding EncZ(x). With the two major embeddings

Zx and ZA considering both gene expressions and spatial cell
locations, we combine them and map the raw gene expression fea-
ture into the final latent representation via a standard Multilayer
Perceptron (MLP):

Z = MLP (Zx‖ZA) ,

where ‖ is the concatenation operator, ĝi ∈ Z is the latent repre-
sentation of the i-th gene.

Loss function
With the latent embedding of genes within triplet list
T ≡ {(ga, gp, gn), · · · }, we apply a modified version of triplet loss
[49] as the objective function:

L =
∑

(ga ,gp ,gn)∈T

(−sim
(
ĝa, ĝp

) + sim
(
ĝa, ĝn

) + α
)

,

where sim(ĝi, ĝj) = abs(
ĝi ·ĝj

max(||ĝi ||2 ·||ĝj ||2,ε) ) refers to the cosine sim-

ilarity between two latently represented genes, and ε is a small
value to avoid division by zero, ‖ · ‖2 is L-2 norm, and T is the triplet
list. The rationale is that the similarity between an anchor gene
and its positively interacting gene should be significantly higher
than its non-interacting genes. To avoid a trivial solution, α serves
as a margin and enforces a significant difference between the
similarity in interaction pairs and non-interaction pairs. Cosine
similarity is used to measure the relationship of two genes in
the latent space to ensure the gene pairs have associated latent
embeddings [49].

Prediction of L–R interactions
For each L–R pair, its expression across cells, gL and gR, are
projected onto the latent space as ĝL and ĝR, respectively, by the
trained spaCI model. The L–R pair is considered as interactive if:

sim
(
ĝL, ĝR

)
> δ,

where δ is an empirical parameter and is determined by the model
training procedure.

Parameter tuning
The essential parameters in the spaCI model are the triplet loss
margin α, the number of nearest neighbours k for constructing cell
adjacency graph, and the correlation threshold p for constructing
triplets. spaCI provides a detailed grid search approach for hyper-
parameter tuning, with α ∈ 0.1, 0.2, · · · , 0.9, k ∈ 2, 3, · · · 8, ,and
p ∈ 1, 2, · · · , 10%. The model performance is evaluated by the F1
score on the validation set.

Simulation data and performance evaluation
To evaluate the performance of spaCI, we generate the simulation
data with the ground truth of L–R interactions across different
cell types. First, we simulate the gene expressions of cells with
multiple cell types. Briefly, for any cell i from the same cell
type k, the expression of gene j is sampled from the same neg-
ative binomial (NB) distribution, i.e. gj,i,k ∼ NB(μj,k, θj,k), where
μj,k and θj,k are the mean and dispersion of the NB distribu-
tion, respectively, and the probability function is: f (gj,i,k|μj,k, θj,k) =

�(gj,i,k+θj,k)

�(θj,k)�(1+gj,i,k)
(

θj,k

θj,k+μj,k
)
θj,k

(
μj,k

θj,k+μj,k
)
gj,i,k , with �(·) denoting the gamma

function. Expressions in different cell types are generated using
different NB distribution parameters [50].

For the L–R interactions, we consider two scenarios of L–R inter-
actions: those that demonstrate strong associations, and those
that demonstrate similar expression levels. Since both scenarios
can be intracellular or intercellular, for simplicity, we only con-
sider the cases of intracellular interactions within the same cell
type and intercellular interactions across two different cell types.

Scenario 1): Associated expression patterns for L–R interac-
tions. In such cases, associated expressions of ligand and receptor
involved in cellular interactions may demonstrate similar expres-
sion patterns but may be of different expression levels. That is, the
expression of ligand l is generated for a group of cells, gl = {gl,i}
as previously described. Then the expression of its interacted
receptor r, gr, is generated using the linear combination of gl

and the a strong correlation ρ between gl and gr, i.e. for cell j,
gr,j ∼ �ρgl,i + rj�, where rj is a random noise following normal
distribution.

Scenario 2): Similar expression levels for L–R interactions. In
such cases, ligands and receptors demonstrate similar expression
levels. For an L–R pair, we first generate the expression gL = {gL,i}
of a specific ligand L over a group of cells by the NB distribution as
previously described. Then the expression of its paired receptor R
in another group of cells is generated with a small parameter d,
i.e. for cell i, gR,j = �gL,i+d+ri�, where ri is a random noise following
normal distribution, and �·� ≡ max(·, 0) converts the native simu-
lated expression values to 0s. Thus, we generate the expressions
of L–R pairs with similar but different overall expression levels.

Based on the above scenarios, we generate four simulation
cohorts. Each cohort is composed of 10 simulated data with differ-
ent parameters. For each data, total 3000 genes for 4000 cells from
five cell types are simulated. For each cohort, the L–R interactions
are simulated as the following: Cohort (1) For each simulation
data, we generate 250 associated L–R pairs using Scenario 1, with
ρ randomly selected from 0.5 to 1. We assign these 250 L–R pairs to
the same cell types for the detection of intracellular interactions.
Cohort (2) Similar to Cohort 1, but we assign the 250 L–R pairs to
different cell types for the detection of intercellular interactions.
Cohort (3) For each simulation data, we generate 250 associated L–
R pairs using Scenario 2, with d values randomly sampled from the
uniform distribution [0, 1.5], to simulate L–R interactions within
the same cell type. Cohort (4) Similar to Cohort 3, but we assign the
250 L–R pairs to different cell types for detection of intercellular
interactions. The same number of non-interactive L–R pairs are
simulated in a similar way for each cohort, with ρ ∼ [0, 0.2] or d ∼
[5, 10], respectively.

Benchmarking methods and comparison
measurements
To evaluate the performance, we compare spaCI with four meth-
ods that are designed for predicting L–R interactions, including
iTALK [11], CellPhoneDB [12], CellChat [13] and Connectome [14].
Specifically, when training the spaCI model, we use the strongly
associated gene pairs as training set to predict the interactions of
L–R pairs. iTALK is evaluated using the default criteria, including
filtering out genes detected in less than three cells and low-
quality cells with less than 200 expressed genes, and using mean
count to identify the highly expressed ligands and receptors. For
CellPhoneDB, as recommended by the tutorial, interactions with
ligands and receptors expressed in at least 10% of the cells are
considered. CellChat is performed with the default settings of
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1000 permutations, following their provided tutorial for cell–cell
communication. Connectome is also evaluated with the default
settings, with the differentially expressed genes filtered by P-
value less than 0.05.

For simulation data with ground truth, we use the F1 score to
evaluate the performance of different methods in identifying true
positive and true negative interaction pairs. For real spatial data,
since there is no ground truth for evaluation, we use concordance
analysis of identified L–R pairs among different methods to eval-
uate model performance. The sensitivity of a method is evaluated
by the overlapped number of identified L–R pairs between this
method and the rest of the methods. The specificity of a method is
measured by the Jaccard indexes against other methods. Specif-
ically, the Jaccard index is defined as the number of overlapped
L–R pairs divided by the total number of identified L–R pairs
by different methods. That is J(Mi, Mj) = N(Mi ∩ Mj)/N(Mi ∪ Mj),
where Mi and Mj represent the L–R pairs by different methods
Mi and Mj, based on the intersection and union of the identified
L–R pairs.

Characterization of L–R interaction strength
With the identified L–R interactions, we further characterize the
interaction strength among different types of cells. For an L–R
pair, we define its interaction strength as the multiplication of
their average expression values, where the top and bottom 10%
expressions of the ligand and the receptor are ignored [13]. The
interaction strength of all identified L–R pairs is then summarized
as the interaction strength between two cell types. Thus, the
higher value of the interaction strength, the stronger the two
cell types interact. The definition of interaction strength in terms
of L–R pairs and cell types allows revealing the major active L–
R signalling and their contribution to highly communicated cell
types.

Key Points

• We have developed a novel adaptive graph model with
designed triplet loss function named spaCI, to incor-
porate both spatial locations and gene expressions of
cells for revealing the active L–R signalling axis across
neighbouring cells.

• spaCI is developed tailored for SCST and provided avail-
able as a ready-to-use open-source software, which
demonstrates high accuracy and robust performance
over existing methods.

• spaCI is able to identify the upstream TF mediating the
identified L–R interactions, which allows gaining further
insights into the underlying cellular communications,
the discoveries of disease mechanisms and effective
biomarkers.

Data availability
SeqFISH+ mouse cortex data: The seqFISH+ dataset was obtained
from the Giotto [51] repository (https://github.com/RubD/spatial-
datasets/tree/master/data/2019_seqfish_plus_SScortex). We used
the gene count matrix of the mouse cortex dataset, with FOVs
ranging from 0 to 4, which covers 10 000 genes and 523 cells.
NanoString CosMx SMI data: This single-cell spatial dataset
contains 20 FOVs, which are profiled by the CosMx SMI on
Formalin-Fixed Paraffin-Embedded (FFPE) samples of non-small-
cell lung cancer (NSCLC) tissue [8]. The dataset (Lung 13) is

available from https://nanostring.com/products/cosmx-spatial-
molecular-imager/ffpe-dataset/. Vizgen MERSCOPE datasets:
We used the spatial profiles of colon and melanoma tumour
from Vizgen MERFISH FFPE Human Immuno-oncology datasets,
which are accessible from https://info.vizgen.com/merscope-
ffpe-solution. The colon dataset (Colon cancer 2) contains a
MERFISH measurement of a 500 gene panel and 817 588 cells, of
which the cropped region (dim x: 11 250–13 750 and dim y: 4000–
5000) was in the application of spaCI. Ten cropped regions were
identified for performance evaluation. The melanoma dataset
(Melanoma 2) contains a MERFISH measurement of a 500 gene
panel and 207 869 cells, where the cropped region (dim x: 5000–
6000 and dim y: 5000–6000) was used in this study.

Code availability
The spaCI method is provided as an open-source python package
in GitHub https://github.com/QSong-github/spaCI, with detailed
manual and tutorials.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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