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Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6

(IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the

exact role of ATM activation in MDR resulting from increased IL-6 expression is

still unclear. In the present study, we demonstrate that the activation of the

ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a cen-

tral role in augmented chemoresistance in lung cancer cell lines. This result was

supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregula-

tion of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only

higher ATM ⁄NF-kappaB activity but also increased expressions of ABCG2, Bcl-2,

Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6

secretion by activating the p38 ⁄NF-kappaB pathway through treatment with

cisplatin and camptothecin. Taken together, these findings demonstrate that

chemotherapeutic agents increase IL-6 expression, hence activating the ATM

⁄NF-kappaB pathway, augmenting anti-apoptotic protein expression and contrib-

uting to MDR. This indicates that both IL-6 and ATM are potential targets for the

treatment of chemotherapeutic resistance in lung cancer.

C hemotherapeutic resistance is closely associated with
multidrug resistance (MDR). Although a relatively good

response can be achieved in the initial stages of lung cancer che-
motherapy, chemoresistance can develop quickly after initial
chemotherapy, which clearly affects patients’ survival.(1–3)

Hence, chemotherapeutic resistance, especially MDR, is an
important issue for chemotherapeutic failure and remains a chal-
lenge in the clinical treatment of lung cancer. Proinflammatory
cytokines, such as interleukin 6 (IL-6), which are usually secreted
by immune cells, have also been documented to be expressed by
osteosarcoma, ovarian cancer cells and head and neck squamous
cell carcinoma cells.(4–6) Further studies reveal that an elevated
IL-6 level has a close relationship with poor clinical outcome of
advanced lung cancer patients, indicating that IL-6 contributes to
chemotherapeutic resistance in lung cancer.(7–9) Meanwhile,
treatment with IL-6 reveals anti-apoptotic effects and promotes
MDR.(6,10,11) However, until now, few studies have explored the
role of IL-6 in chemotherapeutic agents-induced MDR.
The activation of protein kinase ataxia-telangiectasia mutated

(ATM) is reported to be involved in DNA damage response and
cell cycle checkpoints,(12) to increase MDR-associated protein
expression, and to contribute to chemoresistance.(13,14) Treat-
ment with chemotherapeutic agents triggers the phosphorylation

of ATM and the export of IKK-gamma, which initiates the acti-
vation of TAK1-IKK-NF-kappaB.(15) The activation of ATM
induces Ubc13-mediated TRAF6 polyubiquitin, promotes TAB
2-dependent TAK1 phosphorylation and increases the nucleus
translocation of p65, indicating that ATM is the upstream kinase
of the NF-kappaB pathway.(16,17) While ATM could be activated
by chemotherapeutic agents-induced DNA double strand breaks
(DSB),(12–14) the phosphorylation of ATM is clearly increased
by treatment with hypoxia without apparent DNA damage.(18–20)

Cisplatin treatment has been demonstrated to increase proinflam-
matory cytokines release,(21) and NF-kappaB activation initiates
anti-apoptotic protein expression, augments proinflammatory
cytokine secretion and contributes to MDR.(22) Chemotherapeu-
tic agent-induced MDR raises the question of whether IL-6
secretion could be increased by treatment with chemotherapeutic
agents, which, in turn, activate the ATM ⁄NF-kappaB pathway,
augment MDR-associated protein expression and contribute to
MDR in lung cancer. However, little is known about the effect
of ATM ⁄NF-kappaB activation on IL-6-associated lung cancer
chemotherapeutic resistance, which is clearly an important issue
for treating lung cancer chemotherapeutic resistance.
The aim of the present study was to identify the functions of the

ATM ⁄NF-kappaB activation in IL-6-induced chemotherapeutic
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resistance by studying changes inMDR-associated protein expres-
sion, and to examine their relationships with the ATM ⁄NF-
kappaB pathway activation. We found that IL-6 increased lung
cancer cell chemotherapeutic resistance and enhanced the expres-
sions of Bcl-2, Mcl-1, Bcl-xl and ABCG2 by activating the ATM ⁄
NF-kappaB pathway. The high level of IL-6 reveals not only
higher activity of ATM ⁄NF-kappaB but also increases the expres-
sion of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Importantly, treatment
with cisplatin and camptothecin could increase IL-6 secretion in
lung cancer cell lines by activating the p38 ⁄NF-kappaB pathway.
These results indicate that both IL-6 andATM are potential targets
for the treatment of chemotherapeutic resistance in lung cancer.

Materials and Methods

Reagents. Recombinant Human IL-6 and Matched IL-6
Antibody Pairs were obtained from eBioscience (San Diego,

Table 1. Primer sequence

Genes F ⁄ R Sequence

Beta-actin F 50-TCAAGATCATTGCTCCTCCTG-30

Beta-actin R 50-CTGCTTGCTGATCCACATCTG-0

IL-6 F 50-CCACACAGACAGCCACTCACC-30

IL-6 R 50-CTACATTTGCCGAAGAGCCCT-30

ABCG2 F 50-ACTGGCTTAGACTCAAGCACA-30

ABCG2 R 50-ATAGGCCTCACAGTGATAACCA-30

Bcl-2 F 50-GGAGGATTGTGGCCTTCTTT-30

Bcl-2 R 50-TCACTTGTGGCTCAGATAGGC-30

Mcl-1 F 50-TGCAGGTGTTGCTGGAGTAG-30

Mcl-1 R 50-CCTCTTGCCACTTGCTTTTC-30

Bcl-xl F 50-GAGCTGGTGGTTGACTTTCTC-30

Bcl-xl R 50-TCCATCTCCGATTCAGTCCCT-30

(a) (b) (e)

(c) (d) (f)

(g)

(i)

(h)

(j)

Fig. 1. Interleukin 6 (IL-6) treatment contributes
to chemotherapeutic resistance in lung cancer cells.
(a–f) The whole cellular RNA, protein and
supernatant were prepared from cultured NCI-H446
⁄A549 (a–d), NCI-H209 ⁄ LTEP-a-2 (e, f) cells and the
expression of IL-6 was determined by RT-PCR (a),
real-time PCR (b,e), western blot (c) and ELISA (d, f)
analyses. Beta-actin was used as an internal control.
NCI-H446 ⁄A549 (g–i) and NCI-H209 cells (j) were
pretreated with (2 ng ⁄mL) IL-6 (h–j) or PBS (g) prior
to cisplatin (DDP) (4 lg ⁄mL) or camptothecin (CPT)
(0.5 lg ⁄mL) treatment and cell viabilities were
determined by microscope (g, h), flow cytometry (i),
and Trypan Blue cell count (j), analyses. The data
are presented as the mean � SEM. **P < 0.01,
***P < 0.001, Student’s t-test or one-way ANOVA with
the Newman–Keulspost test. One representative
from three experiments is shown.
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CA, USA). Camptothecin and cisplatin were purchased from
Calbiochem (San Diego, CA, USA). Anti-phospho and total
kinase antibodies were acquired from Cell Signaling Tech-
nology (Beverly, MA, USA). An Annexin V ⁄PI Detection
Kit was obtained from KeyGEN Biotech (Nanjing, China).
DAPI was acquired from Vector Laboratories (Burlingame,
CA, USA). The siRNA of IL-6, ATM, p65 and controls
was purchased from Santa Cruz Biotechnology (Dallas, TX,
USA). RPMI-1640, DMEM and FBS were acquired from
Hyclone (Logan, UT, USA). Lipofectamine 2000 was pur-
chased from Invitrogen (Grand Island, NY, USA). SYBR
Premix Ex Taq, Trizol and Prime-Script Reverse Transcrip-
tase were obtained from TaKaRa Biotechnology (Dalian,
China).

Cell lines. NCI-H446, NCI-H209, NCI-H1299, LTEP-a-2 cells
and A549 cells, a kind gift from Professor GH Jin (Xiamen Uni-
versity), were grown in RPMI-1640 or DMEM media contain-
ing 10% FBS at 37°C under 5% CO2. Cells were synchronized
by serum starvation for at least 12 h before treatment.

Flow cytometric measurements. Cell apoptosis assay was
assayed as described previously.(14) Briefly, cells were pretreat-
ed with IL-6 (2 ng ⁄mL) for 5 h prior to cisplatin (4 lg ⁄mL)
treatment. Then, the cells were stained with Annexin V-FITC
and propidium iodide for 20 min at room temperature. Flow
cytometry was performed using a FACSCalibur Flow Cytome-
ter, and the data were analyzed using CellQuest software (BD
Biosciences, San Jose, CA, USA).

ELISA. To determine the effect and mechanism of chemother-
apeutic agent treatment on IL-6 release, 1 9 105 cells were
treated with cisplatin or camptothecin for indicated periods,
and the supernatant was collected. IL-6 concentration was
determined via ELISA.(23)

Confocal immunofluorescence assays. The effects of IL-6 on
ATM and p65 phosphorylation were investigated using immu-
nofluorescence assays.(14) Briefly, cells were treated with IL-6
(2 ng ⁄mL), fixed and permeabilized in 100% methanol. Then,
the cells were blocked with 10% non-fat milk and incubated
with primary antibodies overnight at 4°C, followed by staining
with fluorescence-conjugated IgG (1:100 dilution). Images
were captured using a confocal fluorescence microscope at 488
or 546 nm.

siRNA transfection. Cells plated at a density of 3 9 104 cells
⁄well were transfected with relative siRNA using Lipofecta-
mine 2000 (Invitrogen). The cells were collected for further
experiments 48 h after transfection. The final concentration for
each siRNA is 100 nM.

RT-PCR and quantitative PCR. The effects of IL-6 on MDR-
related protein expression were investigated via RT-PCR and
real-time PCR analyses, as described previously.(24) Briefly,
whole cellular RNA was extracted, and reverse transcription
was performed using PrimeScript Reverse Transcriptase
(TaKaRa Biotechnology, Dalian, China). PCR amplification
was conducted using the following conditions: 95°C for 3 min,
followed by 30 cycles of 95°C for 5 s, 60°C for 30 s and
72°C for 60 s, and a final extension at 72°C for 10 min. Beta-
actin was used as an internal control. To quantify gene amplifi-
cation, real-time PCR analysis was performed using an ABI
7000 Sequence Detection System in the presence of SYBR
Green (TaKaRa Biotechnology, Dalian, China). The cycling
parameters were 95°C for 5 min, followed by 32 cycles of
95°C for 5 s, 55°C for 30 s and 72°C for 60 s, with a final
extension at 72°C for 10 min; a melting curve analysis was
subsequently conducted. The relative expression levels (defined
as fold changes) of the target genes were normalized to the

folds of the corresponding control cells. The primer sequences
outlined in Table 1 were used in these assays.

Western blot analysis. The cells were treated with IL-6 (2 ng
⁄mL) and the expression of related proteins was determined
via western blot analysis.(14)

Statistical analysis. All experiments were repeated at least
three times to confirm the results. The data are presented as
the mean � SEM. Student’s t-test and one-way ANOVA with
the Newman–Keulspost test were applied. Differences were
considered significant at P < 0.05.

Results

Interleukin 6 treatment contributes to chemotherapeutic resis-

tance in lung cancer cells. To explore the role of IL-6 in MDR

(a) (c)

(b) (d)

(e) (f)

(g) (h)

Fig. 2. Interleukin 6 (IL-6) increases ABCG2, Mcl-1, Bcl-xl and Bcl-2
expression in lung cancer cells. (a–d) The whole cellular protein, RNA,
was extracted from NCI-H446 ⁄A549 (a, b) and NCI-H209 ⁄ LTEP-a-2 (d)
cells, and the expressions of ABCG2 and anti-apoptotic protein (Mcl-1,
Bcl-xl and Bcl-2) were determined by western blot (a) and real-time PCR
(b, d) analyses. NCI-H446 (c, e) or NCI-H209 (f) cells were treated with
IL-6 (2 ng ⁄mL) and the expressions of ABCG2, Mcl-1, Bcl-xl and Bcl-2
were determined by western blot (c) and real-time PCR (e, f) analyses. (g,
h) A549 (g), LTEP-a-2 (h) cells were transfected with IL-6 or control siRNA
and the expressions of ABCG2, Mcl-1, Bcl-xl and Bcl-2 were quantified by
real-time PCR analyses. The data are presented as the mean � SEM.
**P < 0.01, ***P < 0.001, Student’s t-test. One representative from three
experiments is shown. Beta-actin was used as the loading control.
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in lung cancer, the relationship between IL-6 and lung cancer
chemotherapeutic resistance was investigated. Compared with
NCI-H446 and NCI-H209 cells, A549 (Fig. 1a–d) and
LTEP-a-2 (Fig. 1e,f) cells clearly have higher IL-6 expression.
Meanwhile, A549 (Fig. 1g) and LTEP-a-2 cells (Fig. S1a)
have higher chemotherapeutic resistance to treatment with
camptothecin and cisplatin. When IL-6 replenishment was per-
formed, increased survival rates were achieved in NCI-H446
(Fig. 1i), NCI-H209 (Fig. 1j) and A549 cells (Fig. S1b). In
addition, microscope observation confirmed that IL-6 replen-
ishment increases cells’ resistance to camptothecin or cisplatin
treatment in both NCI-H446 (Fig. 1h) and NCI-H1299 cells
(Fig. S1c–e). Taken together, these findings indicate that proin-
flammatory cytokines, such as IL-6, play an important role in
lung cancer chemotherapeutic resistance.

Higher level of interleukin 6 promotes ABCG2, Mcl-1, Bcl-xl and

Bcl-2 expression in lung cancer cells. To understand the role of
IL-6 in lung cancer MDR, the relationships between IL-6 level
and the expressions of Bcl-xl, Mcl-1, Bcl-2 and ABCG2 in lung
cancer cells were investigated. Compared with NCI-H446 cells,
A549 cells, which have higher IL-6 expression (Fig. 1a–d),
clearly have higher expressions of ABCG2, Bcl-xl, Mcl-1 and
Bcl-2 at both translational (Fig. 2a) and transcriptional
(Fig. 2b) levels. Transcriptional determination of ABCG2,
Bcl-xl, Mcl-1 and Bcl-2 in NCI-H209 ⁄LTEP-a-2 (Fig. 2d) or
NCI-H1299 ⁄LTEP-a-2 cells (Fig. S2a) leads to similar conclu-
sions. The IL-6 replenishment efficiently increased the expres-
sion of ABCG2, Bcl-xl, Mcl-1 and Bcl-2 in NCI-H446 cells at
both the protein (Fig. 2c) and RNA (Fig. 2e–f) levels in both
NCI-H446 (Fig. 2c,e) and NCI-H209 cells (Fig. 2f). In addi-
tion, when IL-6 expression was knocked down by IL-6 siRNA
transfection, the expressions of ABCG2, Bcl-xl, Mcl-1 and
Bcl-2 were decreased in A549 (Fig. 2g), LTEP-a-2 cells
(Fig. 2h) and NCI-H446 cells (Fig. S2b). Similar results

were observed in the lung cancer cell line NCI-H1299 and
(Fig. S2c). IL-6 administration obviously increased the Bcl-2
expression of adoptive transferred NCI-H446 cells and normal
tissues (Fig. S2d). Taken together, these findings indicate that
the level of IL-6 directly regulates ABCG2 and anti-apoptotic
protein expression in lung cancer cells.

Interleukin 6 activates the ataxia-telangiectasia mutated and

NF-kappaB pathways in lung cancer cells. Although ATM, which
could be activated by DNA DSB, contributes to chemoresis-
tance,(13,17,25) the phosphorylation of ATM can also be
increased without apparent DNA damage.(18–20) Compared
with NCI-H446 cells, A549 cells, which have a higher level of
IL-6 (Fig. 1a–d), have higher levels of the phosphorylaed
ATM and IjBa (Fig. 3a). The finding that IL-6 contributes to
lung cancer MDR (Figs 1, 2) therefore raises the question of
whether the ATM ⁄NF-kappaB pathway could be activated by
IL-6 treatment. Our results revealed that the phosphorylation
of ATM at Ser1981 was clearly increased following IL-6 treat-
ment (Fig. 3b), as were the levels of IkappaBalpha and p65
phosphorylation (Fig. 3b). The confocal microscopy results led
to a similar conclusion that IL-6 treatment induces ATM and
NF-kappaB activation in both NCI-H446 (Fig. 3c) and
NCI-H1299 cells (Fig. 3d). Taken together, these findings indi-
cate that IL-6 activates the ATM and NF-kappaB pathways in
lung cancer cells.

Inhibition of ataxia-telangiectasia mutated and NF-kappaB

activation abrogates the effects of interleukin 6 on ABCG2 and

anti-apoptotic protein upregulation. To understand the role of
ATM and NF-kappaB activation in augmented MDR through
increased IL-6, inhibitors were used to inhibit related kinase
activities. These inhibitors were invariably able to eliminate
ATM or NF-kappaB kinase activity (Fig 4a,b, Fig. S3a). The
inhibition of ATM or NF-kappaB activity clearly abrogated
the effect of IL-6 on ABCG2 and anti-apoptotic protein

(a)

(c)

(d)

(b)

Fig. 3. Interleukin 6 (IL-6) activates the ataxia-
telangiectasia mutated (ATM) and NF-kappaB
pathways in lung cancer cells. (a) The whole cellular
protein was extracted from NCI-H446 and A549 cells
and the phosphorylation of ATM and IjBa was
determined by western blot analyses. (b–d) NCI-
H446 and NCI-H1299 cells were exposed to IL-6
(2 ng ⁄mL). Whole cellular protein were extracted,
and ATM, p65 and IjBa phosphorylation were
determined by western blot (b) and confocal
microscopy analyses (c, d). Beta-actin was used as
an internal control. One representative from three
experiments is shown.
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expression at both the translational (Fig. 4c) and transcriptional
(Fig. 4d) levels in NCI-H446 cells. Meanwhile, the ATM and
p65 knockdown results of NCI-H446 cells led to a similar con-
clusion (Fig. 4e). Similar results were observed in the lung
cancer cell line NCI-H209 (Fig. 4f), NCI-H1299 (Fig. S3b)
and LTEP-a-2 cells (Fig. S3c). Taken together, the observation
that inhibition of ATM or NF-kappaB activity eliminated the
effect of IL-6 on ABCG2 and anti-apoptotic protein expression
indicates that the ATM and NF-kappaB pathways are involved
in IL-6-mediated MDR in lung cancer cells.

Inhibition of p38 and NF-kappaB activation abrogates the

effects of chemotherapeutic agents on interleukin 6 upregulation

in lung cancer cells. It has been documented that treatment with
chemotherapy increases IL-6 levels in advanced cancer
patients.(7,8) To elucidate the mechanism of chemotherapy upre-
gulating IL-6 expression, lung cancer NCI-H446 (Fig. 5a–d),
NCI-H209 (Fig. 5e,f) and NCI-H1299 (Fig. S4a,b) cells were
treated with camptothecin or cisplatin, and the expression of
IL-6 was analyzed. The treatment with cisplatin (Fig. 5a,c,e)
and camptothecin (Fig. 5b,d,f) increased IL-6 expression. The
inhibition of p38 or NF-kappaB activity clearly abrogated the
effects of cisplatin and camptothecin on IL-6 release at the
translational levels (Fig. 5g,h) in NCI-H446 cells. Meanwhile,
the p38 and p65 knockdown results of NCI-H446 cells led to a

(a)

(d)

(e)

(f)

(b) (c)

Fig. 4. Inhibition of ataxia-telangiectasia mutated (ATM) and NF-kappaB activation abrogates the effects of interleukin 6 (IL-6) on ABCG2 and
anti-apoptotic protein upregulation. (a, b) NCI-H446 cells were pretreated with 20 lM CGK733 prior to IL-6 (2 ng ⁄mL) treatment. The role of
ATM phosphorylation in IL-6 induced NF-kappaB activation was determined by western blot (a) and confocal microscopy assays (b). Bay11-7082
was used as a negative control. (c–f) NCI-H446 (c–e) and NCI-H209 (f) cells were pretreated with 20 lM CGK733 ⁄Bay11-7082 (c, d) or ATM ⁄ p65
siRNA transfection (e, f) prior to IL-6 (2 ng ⁄mL) treatment. The roles of ATM and NF-kappaB activation in IL-6 increased the expressions of ABCG2
and anti-apoptotic protein (Mcl-1, Bcl-xl and Bcl-2), which were determined via western blot (c) and real-time PCR assays (d–f). The data are pre-
sented as the mean � SEM. ***P < 0.001, one-way ANOVA with the Newman–Keulspost test. One representative from three experiments is shown.
Beta-actin was used as the loading control.
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similar conclusion (Fig. 5i,j). Similar results were observed in
the lung cancer cell line NCI-H209 (Fig. 5k,l) and NCI-H1299
cells (Fig. S4c,d). Taken together, the observation that inhibi-
tion of p38 or NF-kappaB activity eliminated the effects of cis-
platin and camptothecin on IL-6 expression indicates that the
p38 and NF-kappaB pathways are involved in chemotherapeu-
tics agents-induced IL-6 expression, which, in turn, contributes
to MDR in lung cancer.

Discussion

Chemotherapeutic agents can not only induce tumor cell apop-
tosis but also trigger inflammation in the tumor microenviron-
ment.(26) Proinflammatory factors, such as IL-2, IL-7 and IL-6,
are documented to be involved in MDR in head and neck
squamous cells, glioma cells, prostate cancer, lung cancer and
breast cancer.(10,27–30) Meanwhile, a higher level of circulating
IL-6, increased by chemotherapeutic agent treatment, is associ-
ated with patients’ survival in gastric carcinoma, prostate
cancer, breast cancer and lung cancer,(7,8,31–33) indicating that
MDR is influenced by the level of IL-6.(25,27,34) Hence, despite
the higher level of vascular endothelial growth factor contrib-
uting to the upregulation of anti-apoptotic protein and ABCG2
(Fig. S5), IL-6 but not other proinflammatory cytokines was
selected to be studied in this project. The present study demon-
strated that a higher level of IL-6 upregulates ABCG2 and
anti-apoptotic protein expression and augments chemothera-
peutic resistance in lung cancer cells (Figs 1, 2). Moreover,
inhibition of ATM-NF-kappaB activities abrogates the effect

of IL-6 on ABCG2 and anti-apoptotic protein expression
(Fig. 4), indicating that IL-6 and the ATM-NF-kappaB path-
way are potential therapeutic targets in inflammation-associ-
ated lung cancer chemotherapeutic resistance. As tumor tissues
are composed of tumor cells, fibroblasts and immune cells, the
finding that fibroblasts and immune cells synthesize and
secrete IL-6 (35,36) cannot exclude the possibility that other
components of lung cancer tissues might contribute to the
elevation of serum IL-6. In the present study, cancer cells were
shown to secrete IL-6 under chemotherapeutic agent treatment
conditions, indicating that IL-6 promotes MDR in both a para-
crine and autocrine manner in lung cancer.
Ataxia-telangiectasia mutated, a nuclear serine-threonine

kinase involved in DNA DSB repair and MDR, can be acti-
vated by chemotherapeutic drugs.(13,14) The phosphorylation of
ATM can also be increased by hypoxia treatment without
apparent DNA damage.(18,19) The present study demonstrated
that IL-6 treatment clearly increases ATM phosphorylation
(Fig. 3) without cell apoptosis (Fig. 1g), indicating that IL-6
activates ATM kinase in DNA damage in an independent man-
ner. In the present study, both inhibition of ATM-NF-kappaB
activities and gene silence eliminate the effect of IL-6 on
ABCG2 and anti-apoptotic protein expression (Fig. 4), indicat-
ing that IL-6 and the ATM-NF-kappaB pathway are potential
therapeutic targets for lung cancer chemotherapy. We also
notice that constitutive activation of signal transducer and
activator of transcription 3 (STAT3) upregulate P-gp
expression and augment chemotherapeutic resistance.(37,38)

Kim et al.(39) also found that afatinib activates IL-6R ⁄ JAK1

(a) (c) (e)

(b)

(g) (h) (i)

(j) (k) (l)

(d) (f)

Fig. 5. Inhibition of p38 and NF-kappaB activation
abrogates the effects of chemotherapeutic agents
on interleukin 6 (IL-6) upregulation in lung cancer
cells. (a–f) NCI-H446 (a–d) and NCI-H209 cells (e, f)
were exposed to 0.5 lg ⁄mL cisplatin (DDP) or
camptothecin (CPT) and IL-6 expression was
determined by flow cytometry (a, b) and ELISA
analyses (c–f), respectively. For the flow cytometry
analysis, the numbers in the histogram indicate the
geometric mean fluorescence (MFI) of the tested
samples. *P < 0.05; **P < 0.01; ***P < 0.001. Student
t-test. (g–l) NCI-H446 (g–j) and NCI-H209 cells (k, l)
were pretreated with 20 lM inhibitor of SB203580
(20 lM) ⁄ Bay 11-7082 (20 lM) (g, h, k, l) or p38 ⁄ p65
siRNA transfection (i, j) prior to cisplatin or
camptothecin treatment. The roles of p38 and NF-
kappaB activation in cisplatin or camptothecin-
increased IL-6 expression were determined by ELISA
analyses. Data are given as mean � SEM, n = 3.
*P < 0.05; **P < 0.01; ***P < 0.001, one-way ANOVA

with post Newman–Keuls test. The data are
presented as the mean � SEM, *P < 0.05, **P < 0.01,
one-way ANOVA with the Newman–Keulspost test. A
representative of three independent experiments is
shown.
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⁄STAT3 signaling via autocrine IL-6 secretion. As IL-6 treat-
ment clearly increases Jak2-Stat3 (Fig. S6) activation and the
ATM phosphorylation is involved in Stat3 activation,(40) the
exact interactions of ATM and Stat3 in IL-6 promoted chemo-
therapeutic resistance requires further exploration.
The treatment with chemotherapeutic agents triggers the

export of ATM and sumoylated NEMO (IKK-c), which acti-
vates XIAP-containing and ELKS-containing signalosome
formation and results in TAK1-IKK-NF-kappaB activation.(15)

In contrast, activated ATM induces Ubc13-mediated TRAF6
polyubiquitin, promotes recruitment of cIAP1, TAK1 ⁄TAB 2
and IKK through TRAF-binding motif.(22) The module of
ATM-TRAF6-cIAP1 then stimulates TAB 2-dependent TAK1
phosphorylation, induces IKK activation and promotes the
translocation of NF-kappaB (p65 ⁄p50) heterodimer to initiate
target genes’ transcription,(16,17) indicating that NF-kappaB, as
a coordinator of inflammation and immune response, also plays
a pivotal role in chemotherapeutic resistance.(11,41) In the pres-
ent study, IL-6 treatment clearly activates ATM kinase (Fig. 3)
without obvious cell apoptosis (Fig. 1g). Hence, the exact roles
of XIAP and TRAF6 in NF-kappaB pathway activation as a
result of increased IL-6 requires further exploration.
Tumor tissues are composed of tumor cells, fibroblasts and

immune cells, and the finding that chemotherapeutic agent treat-
ments such as cisplatin or camptothecin increase lung cancer
cell synthesizing and secreting IL-6 (Fig. 5) cannot exclude the
possibility that other components of lung cancer tissues might
also contribute to the elevation of serum IL-6. As fibroblasts,
endothelial cells and B cells express higher levels of IL-6 in
LPS or afatinib treated patients,(39,42,43) the exact effects of
chemotherapeutic agents on IL-6 expression of fibroblasts,
endothelial cells and immune cells require further clarification.

Cancer stem cells are different from common cancer cells
due to their ability to produce tumors and resist chemoradia-
tion.(44) Apart from ABCB1,(45) ABCG2, CD44 and CD133
were recently recognized as lung cancer stem cell mark-
ers.(46–48) The present study reveals that IL-6 treatment
increases ABCG2 expression at both the translational and tran-
scriptional levels (Fig. 4), and contributes to chemotherapeutic
resistance (Fig. 1), indicating that IL-6 treatment facilitates
lung cancer cells acquiring cancer stem-like phenotypes. The
exact effects and mechanism of IL-6 on lung cancer stem cell
marker expression requires further investigation.
Taken together, our experiments reveal for the first time that

IL-6 increases ABCG2, anti-apoptotic protein expression, and
contributes to IL-6 augmented lung cancer chemotherapeutic
resistance by activating the ATM and NF-kappaB pathways,
indicating that ATM and IL-6 are potential targets for manag-
ing lung cancer chemotherapeutic resistance.
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Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. IL-6 treatment contributes to chemotherapeutics resistance in lung cancer cells.

Fig. S2. IL-6 increases ABCG2, Mcl-1, Bcl-xl and Bcl-2 expression in lung cancer NCI-H1299 and NCI-H446 cells.

Fig. S3. Inhibition of ATM and NF-kappaB activation abrogates the effects of IL-6 on ABCG2 and anti-apoptotic protein up-regulation in NCI-
H1299 and LTEP-a-2 cells.

Fig. S4. Inhibition of p38 and NF-kappaB activation abrogates the effects of chemotherapeutic agents on IL-6 up-regulation in NCI-H1299 cells.

Fig. S5. Inhibition of ATM and NF-kappaB activation abrogates the effects of VEGF on ABCG2 and anti-apoptotic protein up-regulation.

Fig. S6. IL-6 induces Jak2 and Stat3 phosphorylation.
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