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Abstract

Background: Preliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated
plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and
MLV-related virus gene sequences have also been detected in 4–6% of healthy individuals including blood donors in the
U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-
related viruses, which is a serious public health and blood safety concern.

Methodology/Principal Findings: To gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110
plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related
virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma
with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related
virus.

Conclusions/Significance: Our results are consistent with those from several other studies, and demonstrate the absence of
XMRV or MLV-related viruses in the U.S. blood donors that we studied.
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Introduction

Xenotropic murine leukemia virus-related virus (XMRV) was

originally identified in prostate cancer tissues in 2006 [1], and

proposed to be associated with PC [1,2,3,4,5] and chronic fatigue

syndrome (CFS) [6,7]. However, a causal relationship has not

been validated and several controversial findings have been

reported [8,9,10,11,12]. Furthermore, XMRV as a human

pathogen has been questioned since mouse DNA contamination

has been found in human samples tested [13,14,15,16], and

XMRV may be the result of a recombination of two MLV

ancestors [17]. As a newly identified retrovirus, XMRV can infect

human tissues and cells including lymphoid organs [18] and

peripheral blood mononuclear cells (PBMCs) [6], indicating

potential transfusion transmission of XMRV. XMRV has also

been detected in 3.7% of healthy individuals [6] and 5.9% of non-

prostate cancer patients [2] in the U.S.. In addition, Lo et al

reported that 6.8% of U.S. healthy blood donors carried MLV-

related sequences, which are molecularly different from but very

similar to XMRV [19]. These results, if confirmed, imply that

millions of persons in the U.S. may harbor XMRV and/or MLV-

related viruses and thus pose a serious threat to public health,

including blood safety and organ transplantation. To ensure blood

safety, suggestions and preventive measures have been proposed,

such as developing screening tools and deferring CFS patients for

blood donation [20]. However, these recommendations and

measures have been questioned in the absence of the conclusive

consensus of the prevalence of XMRV infection in blood donors

and causality for human diseases. In order to address blood safety

concerns, the Blood XMRV Scientific Research Working Group

(SRWG) composed of members from academia, government and

blood organizations was formed by the National Heart, Lung, and

Blood Institute (NHLBI) [21]. The major goals of this group were

to 1) validate the testing methods for XMRV since one of the

possible reasons for the conflicting findings was attributed to

differences in testing methods, and 2) to investigate possible

infection of blood donors with XMRV or MLV-related viruses.

During the past two years, our laboratory actively participated

in assay validation and assessment of the threats posed by XMRV

on blood safety. We previously reported that our RT-PCR assay

could detect 10 copies and 1 copy of plasmid DNA in the 1st and

2nd round PCR, respectively [22] by using primers described by

Silverman et al [1] and Mikovits et al [6]. Our quantitative PCR

assay could detect 1–10 copies of XMRV plasmid DNA, which is

comparable to the results reported by Schlaberg et al [2]. Our

PCR assays were able to achieve similar levels of sensitivity and

specificity based on the spiked XMRV panels created by the Blood

XMRV SRWG [21]. For virus culture, we set up an infectivity

assay using the Detectors of Exogenous Retroviral Sequence

Elements (DERSE) indicator cells where plasma samples are co-
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cultured with modified LNCaP cells which are susceptible to

XMRV infection and virus replication monitored using a

fluorescence signal [23]. Mikovits et al who reported the

association of XMRV with CFS claimed that culture of virus

from plasma was the most sensitive blood-based assay for detection

of XMRV [7]. By using these highly sensitive assays, we screened

U.S. blood donors for XMRV or MLV-related viruses in order to

provide further evidence of the status of these possible new viruses

in the blood donors from the NIH Blood Bank, the same blood

bank from which donors had previously reported to harbor

polytropic MLV-related virus sequences in 6.8% of the individuals

tested [19].

Materials and Methods

Ethics Statement
The Food and Drug Administration Research Ethics Commit-

tee has waived the need for consent due to the fact the blood donor

material used was fully anonymised.

Collection and PCR testing
A total of 71 PMBC samples and 110 plasma samples from

blood donors were enrolled in our study. Both plasma and PBMCs

were recovered from the entire buffy coat that was received from

the NIH Blood Bank. Briefly, the entire buffy coat was centrifuged

at 1500 rpm for 15 minutes and plasma was carefully removed.

Cells were resuspended in 15 ml of Ficoll solution and centrifuged

for 30 minutes at 400g. The PBMCs, seen as a ring or band at the

top of the Ficoll solution, were removed, placed in a fresh 50 ml

tube and filled with PBS saline for further use.

Viral RNA was extracted from 140 ml of plasma using QIAamp

MiniElute Virus Spin kit (Qiagen, Valencia, CA), and genomic

DNA of 16106 PBMCs was extracted using the QIAamp DNA

Blood mini kit. Reverse transcription was performed with

SuperScript III for First-strand Synthesis System (Invitrogen)

using 8 ul of viral RNA or total nucleic acid from PBMC and

XMRV gag reverse primer 1154R [6]. For amplification of

XMRV gag gene, first-round PCR was performed in a 20 ul

volume containing 5 ul of cDNA or 200,500 ng of genomic

DNA, 10 ul of 2xPCR buffer (Extensor Hi-Fidelity ReddyMix

PCR Master Mix, ABgen House, Surrey, UK) and 2.5 pmol each

primer (GAG-O-F and GAG-O-R) [1]. Reaction conditions were

one cycle at 94uC, 59, 45 cycles at 94uC, 19, 58uC , 19, 72uC, 19

and one cycle at 72uC, 79. Two microliters of 1st round PCR

products were added to 2nd round PCR with the same reaction

conditions as those in the 1st PCR except that the different primers

(GAG-I-F and GAG-I-R) and the annealing temperature of 60uC
were used [1]. Each PCR run included both XMRV positive

control (a full-length XMRV plasmid DNA, isolate VP62, gifted

by Dr R. Silverman) and negative control (water). PCR

amplification products were visualized on a 2% agarose gel

stained with ethidium bromide. Each sample was tested in

triplicate, the band equivalent to the correct size of positive

control was excised from 2% agarose gel using the QIAquick gel

extraction kit (Qiagen Inc., Valencia, CA) for sequence analysis.

Alternatively, a specific PCR product was purified using ExoSAP-

IT reagent (usb, Santa Clara, CA). Purified PCR products were

sequenced directly using the ABI Prism BigDye Terminator Cycle

Sequencing kit in the ABI PRISM 310 Genetic Analyzer (Applied

Biosystems, Foster City, CA). Sequence and phylogenetic analyses

were performed using the MEGA5 software package and the

Invitrogen Vector NTI software, version 11.3.0 (Invitrogen,

Carlsbad, CA). A positive test result was defined as one where at

least one band of the correct size was detected in triplicate PCR

reactions, and confirmed by sequencing as XMRV. A negative

result was defined as one where no bands of the correct size were

detected in triplicate PCR reactions or at least one band of correct

size was observed but the sequence analysis did not confirm as

XMRV. To ensure integrity of extracted DNAs, human GAPDH

gene was amplified with the same PCR primers (hGAPDH-66F

and hGAPDH-291R) and conditions published previously [1]. To

avoid possible mouse DNA contamination, PCR assays for

amplifying mouse intracisternal A particle (IAP), mouse mito-

chondrial DNA were performed as previously described

[13,15,19]. The experiments were performed by two laboratory

personnel to ensure that results were scored based on reproduc-

ibility of data obtained by two independent operators.

Cell culture assay for detection of infectious virus
A co-culture assay was adopted to monitor XMRV infection by

using Detectors of Exogenous Retroviral Sequence Elements

(DERSE) cells that are LNCaP-iGFP cell clones displaying

sensitivity to XMRV infection that leads to expression of a GFP

reporter [23]. In this assay, a derivative of LNCaP cells termed

DERSE.LiGP cells (a gift from Dr Vineet KewalRamani, NCI)

were used. DERSE cells were selected to express pBabe.iGFP-

puro, a MLV proviral vector encoding an intron-interrupted GFP

reporter gene. In this indicator cell line, GFP is only expressed

after mobilization by an infecting gammaretrovirus during a

second round of infection. Briefly, 0.46105 DERSE cells/well

were added in 24-well plate. After 24–48 hours, the cells were

mixed with 200 ul of plasma samples or normal plasma spiked

with XMRV. The plate was centrifuged at 1500 rpm (Eppendorf

Centrifuge # 5810 R) for 5 minutes, and then incubated at 37uC
overnight. Plasma was very carefully replaced with fresh RPMI

complete media, and transferred to a 6-well plate to expand as

required (usually after 4–5 days post infection). When cells became

confluent, they were transferred to a T-25 flask and maintained for

21 days post infection. GFP expression in cells at different days

post-infection was determined using fluorescence microscopy.

Results

By using serial 1:10 dilutions of XMRV plasmid DNA with

known copy numbers based on absorbance A260 of the purified

plasmid VP62, 10 copies and one copy of plasmid DNA were

detected in the first- and second-round PCR, a lower detection

limit of one copy of proviral DNA using our current nested PCR

conditions was achieved. The sensitivity of the PCR assays was

also evaluated using XMRV DNA extracted from a series of 1:10

dilutions of 22Rv1 cells (CRL-2505, ATCC, Gaithersburg, MD)

that harbor multiple copies of integrated XMRV provirus and

constitutively produce infectious virus [24]. The current nested

PCR assay could detect XMRV DNA from single 22Rv1 cells

(data not shown). Using this assay, none of the 110 plasma samples

were positive for XMRV or MLV-related virus with either

XMRV gag primer sets although the positive control was

successfully amplified in each PCR run (Fig. 1A). Total nucleic

acid from 71 PBMC samples was also tested but found to be

negative for XMRV or MLV-related virus using both nested DNA

PCR and RT-PCR assays (Fig. 1B, Table 1). Both assays were

used since it was reported that RT-PCR could be more sensitive

than DNA PCR for detection of XMRV in activated PBMCs [7].

Any bands with similar size of XMRV positive control were

excised from the gel, purified and sequenced. No XMRV

sequences were found on sequence analysis. A specific hGAPDH

gene was amplified from all 71 PBMC samples (Fig. 1C),

indicating the integrity of the extracted DNA.

Detection of XMRV in Blood Donors
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Using DERSE cells, the GFP signal could be detected within

three days of XMRV infection, with the number of GFP-positive

cells increasing over subsequent days. The DERSE GFP culture

method is highly sensitive as it can detect around 2000 copies of

XMRV. In our study, DERSE cells could be successfully infected

by culture supernatant of the 22Rv1 cell line which carries XMRV

[24] (Fig. 2A) and displayed fluorescence 4 days after infection

(Fig. 2B). GFP expression was observed 18 days post infection in

cells that were infected with 2000 copies of XMRV. However,

none of the 33 plasma samples tested displayed visible fluorescence

signal even after 21 days post infection (Fig. 2D). The culture

supernatants were also negative for XMRV using both quantita-

tive PCR and RT-PCR (data not shown).

Discussion

The above results strongly support the conclusion that XMRV

and other MLV-related viruses are absent in healthy blood donors

in the population we studied. The rigorous testing employed and

use of highly sensitive PCR and cell culture methods to evaluate

the presence of both nucleic acid and infectious virus provide

strong evidence to support this conclusion. The failure to detect

XMRV in U.S. blood donor samples is unlikely due to the

sensitivity of PCR assays because they have been shown to be at

least as sensitive as those previously reported [22], and comparable

to those used by other labs enrolled in the assay evaluation study

sponsored by the Blood XMRV SRWG [21]. XMRV positive and

negative controls were correctly identified in both PCR and co-

culture experiments in our study indicating the accuracy of test

performance and validity of assay runs. In addition, the sample

size we tested was sufficiently large enough to potentially identify

at least 3–4 XMRV or MLV-related virus positive samples since

between 4–6% of healthy controls including blood donors were

reported to be positive for XMRV or MLV-like viruses in previous

studies conducted in the U.S. [2,6,19]. Therefore, based on testing

using highly sensitive detection assays we did not find evidence of

XMRV or MLV-related virus infection in the U.S. blood donor

samples we tested.

Our results are consistent with other recent findings that have

been reported in the U.S. Gao et al tested 425 plasma samples

from U.S. blood donors using a transcription mediated amplifi-

cation (TMA) assay and did not detect XMRV in these samples

[25]. Their assay was reported to be one of the most sensitive

assays in the assay evaluation study sponsored by the Blood

XMRV SRWG [21]. Qiu et al reported that only 0.1% of the U.S.

blood donors were positive for anti-XMRV antibodies by using

their prototype direct chemiluminescent immunoassays (CMIAs)

on the automated ARCHITECTH instrument for detecting anti-

XMRV assay, which is the first immunoassay that has been

evaluated by the well characterized XMRV infected animal bleeds

[26]. Switzer et al were unable to detect XMRV infection in 51

healthy controls and 43 U.S. blood donors using PCR and

serology assays [27]. Kunstman et al tested 996 samples from the

Chicago Multicenter AIDS Cohort Study (562 HIV-1 positive and

434 at high risk for HIV-1 infection, but HIV-1 negative

individuals), none of them were XMRV positive [28]. Henrich

et al were unable to detect XMRV infection in PBMC samples

from 43 HIV positive individuals, 97 rheumatoid arthritis patients,

26 transplant recipients and 95 general patients [29].

XMRV was also not or rarely detected in general populations

worldwide. Only about 1% of control groups were found to be

positive for XMRV in Germany [10], the U.K [12] and Japan

[30], but no XMRV was detected in Chinese blood donors [31].

Negative results were reported for XMRV testing of blood donors

or individuals infected HIV-1 in Africa [22]. These results indicate

Figure 1. PCR screening for XMRV or MLV-related virus. (A) PCR
products of 11 plasma samples (lane 1–11) collected in NIH Blood Bank
with XMRV gag gene primer pair. Lane 12 was positive control of XMRV.
(B) PCR products of 11 PBMC samples (lane 1–11) collected in the NIH
Blood Bank with XMRV gag gene primer pair. Lane 12 was positive
control of XMRV. (C) hGAPDH gene. Lane 1–11 was results for 11 PBMC
samples while lane 12 was positive control for hGAPDH.
doi:10.1371/journal.pone.0027391.g001

Table 1. Detection of XMRV in the plasma and PBMC samples
from the NIH Blood Bank1.

Sample PCR results DERSE results

No. tested No. positive No. tested No. positive

Plasma 110 0 33 0

PBMCs 71 0 0 0

1Viral RNA isolated from plasma was analyzed for XMRV and HIV-1 using RT-
nested PCR while genomic DNA extracted from PBMCs was analyzed for XMRV
and HIV-1 using nested PCR and (q)PCR.

GAPDH was amplified in parallel as an internal control.
doi:10.1371/journal.pone.0027391.t001

Figure 2. GFP signal detection in DERSE cell culture. (A) Light
microscopy image for positive control. DERSE cells were infected with
culture supernatant from 22Rv1 cell. (B) Fluorescence microscopy image
for XMRV positive control. Panel C (light microscopy image) and D
(fluorescence microscopy image) for blood donor plasma in which no
XMRV was detected.
doi:10.1371/journal.pone.0027391.g002
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that XMRV or other MLV-like viruses may be very rare, or

absent in the general population overall. In contrast, our results

support the recent findings that the current positive detection of

XMRV or MLV-related virus in human samples may be due to

mouse DNA contamination rather than a true human infection.

Robinson et al reported that XMRV positive prostate cancer

tissues and 21.5% of XMRV negative cases were positive for

mouse IAP sequence [15]. Oakes et al found that by using a less

specific PCR assay, both XMRV and/or MLV were detected in

CFS patients. However, all positive samples were also positive for

mouse IAP while no contamination was observed in any of the

negative control samples [13]. Sato et al reported that endogenous

MLV was amplified in a commercial RT-PCR kit using standard

primers for XMRV [16]. The contamination originated from the

hybridoma cell line from which the monoclonal antibody used in

the polymerase reaction mixture to facilitate hot-start PCR was

prepared. Hue et al also demonstrated that XMRV specific

primers can amplify murine endogenous viral sequences [14].

These results indicate that mouse DNA contamination is

widespread and can confound XMRV detection in human

samples.

Furthermore, Hue et al compared the published XMRV

sequences with those from 22Rv1 cell, which is infected with

XMRV and found that the genetic distance among 22Rv1-derived

sequences exceeds that of patient-associated sequences, indicating

that patient-associated XMRV sequences are consistent with

laboratory contamination rather than a true human infection [14].

The 22Rv1 cell line was derived from a human prostate cancer

xenograft (CWR22) that was serially passaged in nude mice in

1990s. Interestingly, it was recently shown by Paprotka et al that

XMRV resulted from recombination between two endogenous

MLVs during passage of the CWR22 PC xenograft [17],

suggesting that the laboratory-derived virus may have contami-

nated samples for more than a decade and thereby contributed to

the inconsistent positive detection reported by various laboratories

that had used them for these studies and over extended periods of

time. The relevant published studies on XMRV and MLRV

findings in CFS, PCA and blood donors are listed in the Table S1.

In summary, we screened 110 plasma samples and 71 PBMC

samples collected from U.S. blood donors using well characterized

and highly sensitive PCR and culture assays. The testing employed

independent test operators and rigorous testing conditions aimed

at avoiding contamination. Under these conditions, none of the

samples were found to be positive for XMRV or MLV-related

virus sequences or infectious virus. Our results failed to

demonstrate the presence of XMRV or MLV-related viruses in

the samples we tested, and provide strong evidence for the absence

of XMRV or MLV-related virus in the U.S. blood donor

population we studied.

Supporting Information

Table S1 Relevant Published Studies on XMRV and
MLRV Findings in CFS, PCA and Blood Donors.

(DOC)
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