
Xue et al. 
Journal of Orthopaedic Surgery and Research          (2022) 17:414  
https://doi.org/10.1186/s13018-022-03314-y

RESEARCH ARTICLE

Radiomics analysis using MR imaging 
of subchondral bone for identification of knee 
osteoarthritis
Zhihao Xue2, Liao Wang3, Qi Sun1, Jia Xu4, Ying Liu5, Songtao Ai1, Lichi Zhang2* and Chenglei Liu1* 

Abstract 

Background:  To develop a magnetic resonance imaging (MRI)-based radiomics predictive model for the identifica-
tion of knee osteoarthritis (OA), based on the tibial and femoral subchondral bone, and compare with the trabecular 
structural parameter-based model.

Methods:  Eighty-eight consecutive knees were scanned with 3T MRI and scored using MRI osteoarthritis Knee 
Scores (MOAKS), in which 56 knees were diagnosed to have OA. The modality of sagittal three-dimensional balanced 
fast-field echo sequence (3D BFFE) was used to image the subchondral bone. Four trabecular structural parameters 
(bone volume fraction [BV/TV], trabecular thickness [Tb.Th], trabecular separation [Tb.Sp], and trabecular number) 
and 93 radiomics features were extracted from four regions of the lateral and medial aspects of the femur condyle 
and tibial plateau. Least absolute shrinkage and selection operator (LASSO) was used for feature selection. Machine 
learning-based support vector machine models were constructed to identify knee OA. The performance of the mod-
els was assessed by area under the curve (AUC) of the receiver operator characteristic (ROC). The correlation between 
radiomics features and trabecular structural parameters was analyzed using Pearson’s correlation coefficient.

Results:  Our radiomics-based classification model achieved the AUC score of 0.961 (95% confidence interval [CI], 
0.912–1.000) when distinguishing between normal and knee OA, which was higher than that of the trabecular 
parameter-based model (AUC, 0.873; 95% CI, 0.788–0.957). The first-order, texture, and Laplacian of Gaussian-based 
radiomics features correlated positively with Tb.Th and BV/TV, but negatively with Tb.Sp (P < 0.05).

Conclusions:  Our results suggested that our MRI-based radiomics models can be used as biomarkers for the clas-
sification of OA and are superior to the conventional structural parameter-based model.
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Introduction
Osteoarthritis (OA) is the most common age-related 
degenerative joint disorder that causes joint pain and 
disability [1]. Currently, efficacious disease-modifying 
treatments for OA are still lacking due to its unclear 
pathological mechanism. Most of the research interest in 
the past has focused on cartilage degeneration. OA is a 
whole-joint disease involving the cartilage, subchondral 
bone, and synovium [2]. Particularly, the importance of 
subchondral bone in OA onset and progression has been 
well established [3, 4]. Subchondral bone alterations 
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occurred in parallel with or predated cartilage loss in pre-
clinical experimental studies [5]. Bone marrow edema, 
like bone marrow lesions (BML), is associated with pain 
in OA patients [6]. Furthermore, bone-targeted OA ther-
apies improve OA symptoms or slow OA bone change 
progression[7]. Therefore, sensitive biomarkers of sub-
chondral bone alteration have the potential to improve 
the early diagnosis of OA, monitor OA progression, and 
evaluate treatment response.

Recently, several imaging modalities have been used 
to quantitatively assess subchondral microstructure. 
Radiography-based bone structure assessment has been 
performed using density measurement, fractal signa-
ture analysis, and trabecular microstructure analysis 
[8–10]. The results demonstrate that structural or den-
sity changes in the subchondral bone are associated with 
the onset and progression of OA. Some texture features-
based models on X-rays have shown values in the predic-
tion of knee OA and bone fragility assessment [11–13]. 
However, a two-dimensional (2D) plain radiograph is a 
projection of a three-dimensional (3D) structure, which 
lacks information on other joint structures involved in 
the disease progression. Compared to radiography, mag-
netic resonance imaging (MRI) is considered the optimal 
imaging modality for OA assessment due to its ability to 
produce a 3D structure and simultaneously image other 
tissues such as the cartilage, subchondral bone, and 
menisci [14]. Several magnetic resonance (MR) semi-
quantitative scoring systems or quantitative methods of 
subchondral bone microstructure analysis have also been 
attempted, including trabecular morphological param-
eters, topological parameters, and texture analysis [15–
17]. While the initial results are promising, there remain 
several issues: For example, the calculated morphological 
or topological parameters are highly sensitive to changes 
in image acquisition parameters, leading to poor repro-
ducibility and limited generalizability. Although previous 
studies have shown that MRI texture features are signifi-
cantly associated with ground-truth subchondral bone 
histomorphometry at the tibial plateau [18], the texture 
method involved is able to analyze a restricted number 
of slices and uses a limited number of features, and the 
predictive validity for early OA remains unclear.

Recently, radiomics was introduced to assess tissue 
and lesion characteristics. Compared to texture analysis, 
the radiomics method can provide more features based 
on images with different filtering without the limita-
tion of requiring dedicated texture analysis programs, 
thus presenting greater possibilities for developing new 
image-based diagnostic biomarkers [19]. Radiomics is 
commonly used in clinical oncology for cancer detection, 
diagnosis, prognosis, and treatment response prediction 
[20]. However, the number of studies using this approach 

to investigate bone diseases is limited. Recently, some 
studies have evaluated MRI-based radiomics features 
for the assessment of knee OA. Hirvasniemi et  al. [21] 
used MRI-based radiomics features from the tibial bone 
combined with machine learning to identify OA. How-
ever, the radiomics features were extracted only from the 
tibia. Given that more loading forces are concentrated in 
the two femoral condyles of the knee joint, we speculate 
that the constructed predictive model based on radiom-
ics information extracted from the femoral condyle and 
combined with machine learning may improve diagnostic 
performance. Therefore, in this study, we aim to develop 
a novel magnetic resonance imaging (MRI)-based radi-
omics predictive model for the identification of knee OA 
based on the tibial and femoral subchondral bone and 
compared with the conventional trabecular structural 
parameter-based model.

Materials and methods
Participants
This retrospective study was approved by the institu-
tional review board of Shanghai Ninth People’s Hospital 
(No.SH9H-2020-T395-2). Written informed consent was 
obtained from all participants. This was a cross-sectional 
study carried out at our institution between October 
2020 and May 2021. Eighty-eight consecutive subjects 
were recruited by an orthopedic surgeon with 10 years of 
experience. The exclusion criterions were as follows: his-
tory of previous ipsilateral knee injury or surgery, inflam-
matory arthritis, osteonecrosis, metabolic bone disorder, 
and other diseases that affect the bone structure; MRI 
was contraindicated or with poor image quality. The 
heights and weights of the participants were recorded at 
the time of examination. All participants completed the 
standardized Western Ontario and McMaster Universi-
ties Arthritis Index questionnaire for pain, stiffness, and 
functional impairment to evaluate the severity of knee 
symptoms. In this study, we selected a sample size of 88, 
which is also similar to our previous feasibility studies for 
assessing subchondral bone [22].

MRI acquisition
All participants were scanned using a 3  T MRI scanner 
(Achieva 3.0TX; Philips Healthcare, Best, Netherlands) 
with an eight-channel knee coil (Philips Healthcare). 
The knee flexion angle was adjusted to 20–30°, and an 
immobilization sponge was used to increase participant 
comfort and reduce motion artifacts. The MRI protocol 
included four sequences. A sagittal 3D balanced fast-
field echo (3D BFFE) sequence (repetition time/time 
to echo [TR/TE] = 10/5.0, field of view [FOV] = 14  cm, 
matrix = 640 × 640, flip angle = 15°, in-plane spatial reso-
lution = 0.234 mm × 0.234 mm, slice thickness = 1.5 mm, 
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sensitivity encoding [SENSE] = 2, scan time = 8  min 
14  s) was used to image the trabecular bone. A sagittal 
fat-suppressed 3D water-selective cartilage sequence 
(TR/TE = 20/6.0, FOV = 14  cm, matrix = 640 × 640, 
flip angle = 30°, in-plane spatial resolution 
0.35 mm × 0.35 mm slice thickness = 1.5 mm, SENCE = 2, 
scan time = 5 min 40 s) was used to image articular car-
tilage. Sagittal and coronal 2D fast spin-echo proton den-
sity-weighted sequences with fat suppression were used 
to evaluate BMLs and osteophytes (TR/TE = 2500/30, 
FOV = 16  cm, matrix = 356 × 280, flip angle = 90°, in-
plane spatial resolution 0.50  mm × 0.50  mm, section 
thickness = 3 mm).

MRI assessment
Knee MRIs were scored by two board-certified radiolo-
gists using the MRI Osteoarthritis Knee Score (MOAKS) 
[23]. Two readers were extensively trained as described 
previously and blinded to the subjects’ clinical informa-
tion [15]. Using MOAKS, the knee was divided into 14 
subregions for scoring articular cartilage and BMLs. Car-
tilage loss was defined as MOAKS Grades 0–3 depend-
ing on size. A BML was defined as a hyperintensity on 
proton density-weighted imaging and graded as MOAKS 
Grades 0–3 depending on size by volume. For osteophyte 
scoring, each of the 12 locations was scored and graded 
according to size as follows: Grade 0, none; Grade 1, 
small; Grade 2, medium; and Grade 3, large. Each patient 
was given an overall cartilage loss, BML, and osteophyte 
score based on the most severe lesion in each of the sub-
regions. Finally, the total score for each participant was 
calculated by adding the cartilage, BML, and osteophyte 
scores.

The identification of structural OA on MRI was based 
on previously proposed definition [24]. In brief, tibiofem-
oral OA was defined as the presence of definite osteo-
phyte formation or full thickness cartilage loss or at least 
one of the following features: (1) subchondral bone mar-
row lesion or cyst not associated with meniscal or liga-
mentous attachments. (2) Partial thickness cartilage loss. 
(3) meniscal subluxation, maceration or degenerative 
tear [24]. Furthermore, the severity of OA was graded 
using the 5 Kellgren & Lawrence (KL) grades, mild OA 
was defined as KL (1–2) and advanced OA was KL (3–4) 
[25]. The normal cohort was defined as no knee pain and 
MOAKS grades 0.

Segmentation of subchondral bone regions
The 3D BFFE scans were used in the subchondral bone 
quantitative analyses. Four subchondral bone regions 
of the whole knee weight bearing articular surface were 
selected as regions of interest (ROIs): the medial femoral 
condyle (MF), lateral femoral condyle (LF), medial tibial 

plateau (MT), and lateral tibial plateau (LT) (Fig. 1a). We 
delineated 10  mm-wide band-like structure covered by 
cartilage in the sagittal image as the ROI (Fig. 1a). Note 
that, ROIs were segmented with the aid of 2D U-net con-
volutional neural network [26] that previous studies dem-
onstrated its efficacy and precision in quickly generating 
segmentation [27]. To train the network, we firstly delin-
eated the ROIs in 20 samples beforehand, then selected 
100 2D slices from each images to get hundreds of images 
as training data to construct the U-net model. Then, we 
used it to segment the ROIs for the remaining images. 
The automatically acquired segmentations were manually 
revised by a skilled radiologist (CL) using ITK-SNAP, a 
free open-source software tool (www.​itk-​snap.​org).

Subchondral structural parameters measurements
For trabecular structural assessment, four trabecular 
morphological parameters, trabecular thickness (Tb.Th), 
trabecular separation (Tb.Sp), bone volume/total volume 
(BV/TV), and trabecular number (Tb.N), were measured 
according to the method of Sell et al. [28]. The ROIs were 
binarized using local adaptive thresholding to segment 
the image into trabeculae and marrow following the pre-
vious study [29]. The local thickness was calculated using 
distance transformation [30], which was assigned to each 
pixel in the trabeculae as the Euclidean distance from the 
pixel to the nearest pixel of the marrow. Redundant pix-
els were then removed by skeletonizing the trabeculae to 
produce morphological skeletons. Therefore, the over-
all mean width of the trabeculae Tb.Th was obtained by 
using the average of all pixels in the skeletons. Similarly, 
Tb.Sp was calculated by applying the same method to the 
marrow pixels. Figure 1b shows the trabecular structures 
obtained from the MR images. All image-processing pro-
cesses were implemented using skimage [31] in Python 
(https://​scikit-​image.​org/).

Radiomic features extraction
Radiomic features of the subchondral bone were 
extracted from the four ROIs with no filtering (original 
image) and with Laplacian of Gaussian (LoG) filtering 
(σ = 1.0, 1.5, 2.0, and 2.5  mm). The extracted first-order 
and texture features included six classes: 1) first-order 
statistics (n = 18), 2) gray-level co-occurrence matrix 
(n = 24), 3) gray-level run length matrix (n = 16), 4) gray-
level size zone matrix (n = 16), 5) neighboring gray-tone 
difference matrix (n = 5), and 6) gray-level dependence 
matrix (n = 14), totaling 93 features (reported in Addi-
tional file 2: Table S1). The extraction was implemented 
using PyRadiomics (https://​pyrad​iomics.​readt​hedocs.​io/​
en/​latest/), a toolkit recently developed in Python for the 
standardized automatic extraction of radiomics features 
[32].

http://www.itk-snap.org
https://scikit-image.org/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Feature selection and model construction
Before constructing the classification model, redundant 
features should be eliminated to reduce computation 
complexity and prevent overfitting issues. Hence, we 
conducted feature selection by applying the least abso-
lute shrinkage and selection operator (LASSO) [33]. 
The feature values were z-scores standardized prior 
to the feature selection. Generally, LASSO introduces 
a penalty term that is equal to the absolute sum of 
regression coefficients. Depending on the penalty term, 
LASSO minimizes all regression coefficients toward 
zero and makes the coefficients zero for irrelevant fea-
tures. To optimize the penalty parameter of LASSO, 
we performed five-fold cross-validation with 10,000 
iterations. We then investigated whether the selected 
features significantly differed between positive and neg-
ative patients, and features with P < 0.05 were reserved. 
To prevent multicollinearity from resulting in inac-
curate parameters for the final classification models, 
Pearson’s correlation coefficients were calculated after 
LASSO, and one of two features with Pearson’s coeffi-
cients of r > 0.90 was eliminated.

Subsequently, four support vector machine (SVM) 
models were established to classify normal vs. OA, nor-
mal vs. mild OA, mild OA vs. advanced OA, and normal 
vs. advanced OA using the selected radiomics features. 
Different kernel functions of SVM were tested to find 
the best-performing model, including linear, radial basis 
function (RBF), cubic, and sigmoid kernel functions. The 
models were then trained and validated using fivefold 
cross-validation method. To show the relative merits of 
radiomics features compared with trabecular parameters, 
we constructed models using all four trabecular param-
eters to classify OA. The process of our study is schemati-
cally summarized in Fig. 2.

Statistical analysis
Categorical data were compared using the chi-square 
test, while age and body mass index (BMI) were com-
pared using one-way analysis of variance (ANOVA). 
For structural parameters and radiomics features, 
descriptive statistics were calculated, and differences 
in each indicator between the four regions were also 
analyzed using analysis of covariance (ANCOVA), 

Fig. 1  Region delineation and trabecular bone segmentation. a Four regions of interests (ROIs) were segmented from knee joint MR images named 
medial femoral condyle (MF), lateral femoral condyle (LF), medial tibial plateau (MT) and lateral tibial plateau (LT). b Obtained trabecular bone 
segmentation at the lateral femur. From left to right: binarized using adaptive threshold; after the distance transformation; after moving redundant 
pixels, which was obtained by multiplying the second one with the morphological skeletons
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taking the significant demographic characteristics as 
covariates. The covariates were also incorporated as 
predictors in the model. Differences in radiomics fea-
tures between the two groups were investigated using 
the Mann–Whitney U test. Differences were consid-
ered significant at the two-sided P < 0.05. Pearson’s 
correlation coefficients for features and trabecular 
parameters were obtained using null hypothesis sig-
nificance testing, and significance was set at P < 0.05. 
When evaluating the diagnostic performance of SVM 
models, receiver operating characteristic (ROC) curves 
were plotted, and the area under the curve (AUC) was 
calculated along with its 95% confidence intervals 
(CIs). Other indicators of accuracy, sensitivity, speci-
ficity, and the F1 score were also used to assess the 
predictive power of the models.

Results
Participant characteristics
Demographic characteristics of the 88 patients are sum-
marized in Table  1. According to MOAKS scores and 
KL grades, 32 had no OA, 27 had mild OA, and 29 had 
advanced OA. The intra- and interobserver reliability 
results have been previously published [15, 34]. There 
was significant difference in age among the three groups 
(P < 0.001), whereas sex, BMI, and whether the left or 
right knee was affected were no significant differences 
among the three groups (P > 0.05). Therefore, we included 
age in our models as a predictor of OA.

Morphological parameter analysis
Four trabecular structural parameters were obtained per 
subject. The reproducibility for the trabecular structural 
parameter has been previously published [35]. The mean 

Fig. 2  The workflow used in this study. From left to right: MRI scans (3D BFFE sequences for subchondral bone); Labeling the subjects with different 
severities of OA, and delineating the four regions of interest; Calculating the structural parameters and radiomics features; Performing statistical 
analysis, constructing and evaluating the models

Table 1  Subjects demographic and clinical characteristics

BMI Body mass index, MOKAS MRI Osteoarthritis Knee Score

Variables Total (n = 88) Normal (n = 32) Mild OA (n = 27) Advanced OA (n = 29) P value

Age(years) 52.2 ± 15.3 37.2 ± 9.4 56.5 ± 9.9 64.7 ± 9.9  < 0.001

Gender 0.44

 Male 39(44.3%) 17((53.1%) 11(40.7%) 11(37.9%)

 Female 49(55.7%) 15(46.9%) 16(59.3%) 18(62.1%)

BMI 24.6 ± 3.1 23.8 ± 2.6 24.9 ± 3.5 25.3 ± 2.8 0.13

Knee 0.66

 Left knee 43(48.8%) 18(56.2%) 12(44.4%) 15(51.7%)

 Right knee 45(51.2%) 14(43.8%) 15(55.6%) 14(48.3%)

 MOKAS 3.44 ± 3.21 0.00 3.30 ± 1.13 7.38 ± 1.17  < 0.001
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values and standard deviations of each parameter are 
presented in Table  2. From the results, in OA patients, 
not only the tibial plateau but also the femoral condyle 
had a higher BV/TV than those of the normal cohort. 
Also, higher Tb.Th was present at the plateau (P < 0.05). 
Similar differences were also observed between patients 
with mild and advanced OA.

Radiomic features and correlation analysis
A total of 93 features from each ROI were extracted from 
the MR images. Twenty-nine features were selected for 
normal vs. OA (LF, 6 features; MF, 8 features; LT, 4 fea-
tures; and MT, 11 features), whereas 31 features were 
selected for mild OA vs. severe OA (LF, 11 features; MF, 
10 features; LT, 3 features; and MT, 7 features). In normal 
vs. severe OA, 28 features were present (LF, 7; MF, 12; LT, 
3; and MT, 6), and when classifying knees with and with-
out mild OA, 13 features were selected (LF, 4; MF, 5; LT, 
2; and MT, 2).

Attention should be paid to the differences in radiom-
ics features between both different groups and regions. 
Figure  3 compares the data distributions of six radiom-
ics features from different groups and regions. In differ-
ent ROIs with the same OA severity, some first-order 
features (e.g., 10th percentile of intensity), high-order 
texture features (e.g., Long Run High Gray-Level Empha-
sis), and features from LoG-filtered images (e.g., mean 
intensity) demonstrated significant differences, whereas 

Table 2  Subchondral structural parameters in the femoral 
condyle and tibia plateau

Data are mean ± standard deviation. The significance between groups is shown 
based on ANCOVA with adjustment for age
a  P < 0.05 in comparison with control subjects
b  P < 0.05 in comparison between mild OA and advanced OA

Normal (n = 32) Mild OA (n = 27) Advanced OA (n = 29)

Lateral femoral condyle

BV/TV 0.269 ± 0.005 0.269 ± 0.005 0.273 ± 0.006 a b

Tb.Th 0.166 ± 0.004 0.166 ± 0.004 0.168 ± 0.004

Tb.Sp 0.452 ± 0.008 0.452 ± 0.008 0.448 ± 0.013

Tb.N 1.615 ± 0.031 1.615 ± 0.030 1.621 ± 0.040

Medial femoral condyle

BV/TV 0.269 ± 0.006 0.269 ± 0.005 0.273 ± 0.005 a b

Tb.Th 0.162 ± 0.004 0.163 ± 0.004 0.164 ± 0.003

Tb.Sp 0.442 ± 0.010 0.444 ± 0.010 0.437 ± 0.009 a b

Tb.N 1.652 ± 0.032 1.644 ± 0.034 1.662 ± 0.029

Lateral tibia plateau

BV/TV 0.266 ± 0.006 0.267 ± 0.005 0.268 ± 0.006

Tb.Th 0.162 ± 0.004 0.164 ± 0.006 0.166 ± 0.005 b

Tb.Sp 0.449 ± 0.009 0.451 ± 0.011 0.452 ± 0.009

Tb.N 1.633 ± 0.029 1.625 ± 0.042 1.617 ± 0.033

Medial tibia plateau

BV/TV 0.264 ± 0.006 0.264 ± 0.005 0.269 ± 0.005 a b

Tb.Th 0.159 ± 0.004 0.159 ± 0.004 0.163 ± 0.004 a b

Tb.Sp 0.443 ± 0.011 0.442 ± 0.009 0.442 ± 0.008

Tb.N 1.660 ± 0.035 1.664 ± 0.035 1.651 ± 0.027

Fig. 3  Comparison of six radiomics features between normal, mild OA and advanced OA groups in the four regions. Error bars represent the 95% 
confidence interval
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these features differed between OA severities’ groups in 
the same regions.

Additionally, the selected features showed a correlation 
with the four trabecular structural parameters calculated 
from the MR images. To show the strength and direction 
of correlation statistically, features with a moderate cor-
relation (r > 0.4, P < 0.05) with at least one parameter are 
listed in Table 3.

Prediction performance evaluation
The SVM models based on the selected features success-
fully classified patients with and without OA. The com-
parison of different kernel functions shows that the RBF 
kernel is most suitable for the prediction of OA (seen in 
Additional file 1: Fig. S1). As observed in Fig. 4, the AUC 
was 0.961 (95% CI, 0.912–1.000) in classifying normal 
vs. OA, with the model combining radiomics features 
extracted from all four regions. The AUC was 0.873 (95% 
CI, 0.788–0.957), which was obtained using trabecu-
lar parameters as model variables. Similar results were 
observed for the other three classifications. The AUC was 
0.995 (95% CI, 0.975–1.000) in classifying mild vs. severe 
OA, 0.997 (0.983–1.000) in classifying normal vs. severe 
OA and 0.919 (0.847–0.991) in classifying normal vs. 
mild OA, which were all higher than those when using 
trabecular parameters (Table  4, Fig.  4). The obtained 
AUCs were higher for classifying advanced OA than that 
for mild OA.

Discussion
In this study, we constructed a predictive model based 
on MRI radiomics features extracted from the subchon-
dral bone of the femur and tibia to identify OA. The 

results showed that multi-ROI radiomics-based models 
have a high AUC for distinguishing knee OA. The high 
diagnostic performance indicated that the radiomics-
based model of subchondral bone has the potential to be 
a powerful tool for discerning knee OA, and it is more 
sensitive than models based on trabecular morphological 
parameters.

Emerging evidence suggests that deterioration of the 
subchondral bone microstructure could alter the stress 
distribution and load absorption of cartilage, and this is 
thought to cause physical damage [3]. In this study, our 
results showed that patients with OA of the MT had a 
higher BV/TV and thickened trabecular bone than nor-
mal in the tibial plateau. This was consistent with a previ-
ous study describing alterations in the subchondral bone 
[36, 37]. We attribute it that the majority of participants 
had predominantly medial compartment disease, and the 
medial tibia had better biomechanics [38]. Similarly, in 
the medial femur, higher BV/TV and lower Tb.Sp were 
observed in advanced OA. In the lateral femur, the BV/
TV was also higher in patients with OA. These findings 
indicate that trabecular structural parameters could 
potentially reflect subchondral bone sclerosis, and that 
these parameters may be biomarkers for OA progression. 
Therefore, we constructed a predictive model based on 
structural parameters to identify OA, but the diagnostic 
performance was not sufficient (AUC 0.751 in normal vs. 
mild OA). This may be attributed to the limited spatial 
resolution of MRI and image binarization using arbitrary 
thresholds.

To improve diagnostic performance, we performed 3D 
radiomics analysis of the subchondral bone structure. 
Radiomics analysis showed that knees with OA had more 

Table 3  Pearson’s correlation coefficients between radiomics features and trabecular bone parameters in four regions

LF Lateral femoral condyle, MF Medial femoral condyle, LT Lateral tibial plateau, MT Medial tibial plateau. Significant correlations are highlighted with asterisks (* or **). 
*P < 0.05; **P < 0.01

ROI Filter Feature Tb.Th Tb.Sp BV/TV TbN

LF original glcm_Imc1 0.420** 0.006 −0.386** 0.146

MF original glcm_Imc1 − 0.412** 0.151 − 0.473** 0.015

original gldm_DependenceVariance 0.245* −0.589** 0.665** 0.418**

LoG(σ1.0 mm) glrlm_RunVariance 0.131 −0.453** 0.463** 0.342**

LT original gldm_DependenceVariance 0.557** −0.140 0.722** −0.132

original glrlm_LongRunHighGrayLevelEmphasis 0.669** 0.324** 0.519** −0.517

LoG(σ1.0 mm) firstorder_Mean −0.577** −0.429** −0.342** 0.553**

MT original glcm_MaximumProbability 0.370** −0.537** 0.712** 0.292**

original gldm_DependenceVariance 0.463** − 0.524** 0.789** 0.243*

original gldm_LargeDependenceHighGrayLevelEmphasis 0.671** 0.049 0.585** −0.312**

original glszm_SmallAreaLowGrayLevelEmphasis 0.171 −0.376** 0.421** 0.236*

LoG(σ1.0 mm) firstorder_Median − 0.584** − 0.219* −0.390** 0.415**

LoG(σ1.5 mm) firstorder_Median − 0.489** − 0.273** −0.268* 0.421**
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heterogeneous and less spatially organized subchondral 
bone than those without. In our study, more advanced 
OA was associated with a higher dependence variance, 
indicating greater heterogeneity. Lower informational 
measure of correlation 1 and higher informational meas-
ure of correlation 2 (definitions can be found on PyRa-
diomics) showed lower complexity (or more uniformity) 
of the intensity within the regions of subchondral bone, 
which is consistent with a previous texture analysis based 
on T1-weighted sequences [39]. Radiomics features from 

LoG-filtered images also play an important role in distin-
guishing OA severity, providing more information than 
when using texture analysis on the same image. As an 
edge detection operator, LoG enhances intensity changes 
in images and thus can reflect structural changes in the 
bone. Radiomics analysis also demonstrated that higher 
OA severity levels had lower mean intensity values in the 
LoG-filtered images.

Based on radiomics features, we obtained a higher 
diagnostic performance for classifying OA than when 

Fig. 4  The receiver operating characteristic (ROC) curves of normal vs. OA, mild vs. advanced OA, normal vs. advanced OA and normal vs. mild OA
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using models based on trabecular structural param-
eters (AUC 0.961 vs.0.873). These results were also 
confirmed by MacKay et  al. [40] that texture analysis 
outperforms trabecular structural analysis when dis-
tinguishing OA patients from healthy controls. Com-
pared with the study of Hirvasniemi J. et  al.[21], our 
predictive model yielded a relatively higher discrimi-
nation ability for OA (AUC, 0.961 vs. 0.800), implying 
that multi-ROI radiomics feature analysis can make 
improvements for the identification of knee OA.

Furthermore, we investigated the correlation between 
selected radiomics features and trabecular structural 
parameters to find more possible interpretations of the 
radiomics features. Calculating morphological struc-
tural parameters from the ROIs in MR images is more 
practical and sufficiently reliable compared to histo-
morphometry. Pearson’s correlation coefficients dem-
onstrated that several radiomics features were strongly 
correlated with trabecular parameters (r > 0.6, P < 0.05), 
suggesting that changes in the microstructure of sub-
chondral bone may reflect the multidimensional radi-
omics features of MR images. For example, increased 
dependence variance within the lateral tibia and medial 
femur were strongly associated with higher Tb.Th, BV/
TV, and Tb.N, but with lower Tb.Sp. These changes 
represent a trabecular structural alteration in the pro-
gression of OA.

This study had several limitations. First, the number 
of patients was limited, which might have introduced 
more stochastic effects. Second, this study was mono-
centric, and the generalizability of our model requires 
further investigation in multicenter MRI datasets with 
larger sample sizes. Third, the 3D BFFE sequences used 
in this study are not commonly available for routine use 
due to their longer acquisition time, leading to limited 
generalizability. Finally, the inclusion of clinical risk 
factors and changes in the cartilage may improve the 
model’s diagnostic performance for assessing the sever-
ity of knee OA.

Conclusions
Radiomics features extracted from both the femoral and 
tibial subchondral bone revealed differences between 
knees with and without OA, which can be used as quanti-
tative biomarkers for OA in the future. MRI-based multi-
ROI radiomics features may help investigate OA-related 
microstructural changes.
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