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Abstract

One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In
this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene
expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used
to select differentially expressed genes as disease genes for quite a long time, while the latter has been widely used to study
the mechanism of diseases. With the existing protein-protein interaction data from STRING (Search Tool for the Retrieval of
Interacting Genes), a weighted functional protein association network was constructed. By means of the mRMR (Maximum
Relevance Minimum Redundancy) approach, six genes were identified that can distinguish the colorectal tumors and
normal adjacent colonic tissues from their gene expression profiles. Meanwhile, according to the shortest path approach,
we further found an additional 35 genes, of which some have been reported to be relevant to colorectal cancer and some
are very likely to be relevant to it. Interestingly, the genes we identified from both the gene expression profiles and the
functional protein association network have more cancer genes than the genes identified from the gene expression profiles
alone. Besides, these genes also had greater functional similarity with the reported colorectal cancer genes than the genes
identified from the gene expression profiles alone. All these indicate that our method as presented in this paper is quite
promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for
identifying colorectal cancer genes. It has not escaped our notice that the method can be applied to identify the genes of
other diseases as well.
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Introduction

Colorectal cancer (CRC) is one of the most common

malignancies in the western countries and a major cause of

cancer-related death. Early detection of CRC could reduce the

morbidity and improve the prognosis. Therefore, it is of great

importance to identify cancer-related genes that could be used as

biomarker for early diagnosis.

Recently, with the development of high-throughput biotechnol-

ogies, a large amount of biological data has been generated, such

as yeast two-hybrid systems, protein complex and gene expression

profiles, etc. These data are useful resources for deducing and

understanding gene functions [1,2,3,4,5,6,7,8]. So far the protein-

protein interaction (PPI) data has been widely used for gene

function prediction with the assumption that interacting proteins

share the same or have similar functions and hence may be

involved in the same pathway. This ‘‘guilty by association’’ rule

was first proposed by Nabieva et al. [9] and can also be used to

identify cancer related genes.

STRING is an online database resource which is an

abbreviation for Search Tool for the Retrieval of Interacting
Genes [10]. It provides both experimental as well as predicted

interaction information with a confidence score. Algorithms based

on PPI suggest that proteins with short distances to each other in

the network are more likely to share the common biological

functions [11,12,13,14], and that interactive neighbors are more

likely to have identical biological function than non-interactive

ones [15,16]. This is because the query protein and its interactive

proteins may form a protein complex to perform a particular

function or involved in a same pathway.

Although the successful application of the high-throughput data

for gene function perdition and identification of novel genes

associated with cancers, the errors in the high-throughput data

have not been well solved yet. In this paper, we proposed a new
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method for identifying CRC related genes by integrating gene

expression profile and a weighted functional protein association

network constructed with PPI data from STRING. This method

can make up the defect of only using high-throughput data.

Meanwhile, the mRMR (maximum relevance minimum re-
dundancy) algorithm [17] was utilized to identify six promising

candidate genes distinguishing tumor and the normal colorectal

samples. The Dijkstra’s algorithm [18] was used to construct the

shortest paths between each pair of the six genes. Moreover,

additional 35 genes on these shortest paths were also identified and

analyzed. For such (6z35)~41 gene thus identified, it was

observed that they contained more cancer genes than the genes

identified from the gene expression profiles alone. Furthermore,

the 41 genes also had greater functional similarity with the

reported CRC genes than the genes identified from gene

expression profiles alone. It is anticipated that some of the 41

genes thus identified might belong to novel CRC related genes.

Materials and Methods

Dataset
Weused the gene expression data from the colorectal cancer study

of Hinoue et al. [19]. The gene expression profiling of 26 colorectal

tumors and matched histologically normal adjacent colonic tissue

samples were retrieved from NCBI Gene Expression Omnibus

(GEO) with the accession number of GSE25070. The gene

expression profile was obtained using the Illumina Ref-8 whole-

genome expression BeadChip with 24526 probes corresponding to

18491 genes. Signal intensity was log2 transformed and then

normalized with RSN (Robust Spline Normalization) method.

Tissue sample representation
Based on the above, the representation of a tissue sample can be

formulated as a 24526-D (dimensional vector), as given by

P~ y1 y2 � � � yu � � � y24526½ �T ð1Þ

where P represents the tissue sample, yu the value of it’s u-th
probe, and T the transpose matrix (cf. Eq.6 of [20]).

Cancer related gene list and two colorectal cancer
related gene lists
We compiled three gene lists from public databases and

published works to compare with the 41 candidate genes we

identified. These three genes lists included one cancer related gene

list and two colorectal cancer related gene lists.

742 cancer-related genes were derived from three sources. First,

we obtained 457 cancer-related genes from the Cancer Gene

Census of the Sanger Centre. Secondly, we retrieved cancer-

related genes from the Atlas of Genetics and Cytogenetic in

Oncology [21]. The third part was collected from the Human

Protein Reference Database [22]. See Supporting Information S1.

The first colorectal cancer related gene list was retrieved from the

study of Sabates-Bellver and coworkers [23]. They compared the

transcriptomes of 32 adenomas with normal mucosa from the same

individuals and identified 438 genes with markedly altered

expression in colorectal adenomas compared with normal mucosa

with Affymetrix U133 Plus 2.0 array. See Supporting Informa-

tion S1.

The second colorectal cancer related gene list was retrieved

form a recent work of Nagaraj et al. [24]. They proposed

a Boolean based systems biology approach with guilt-by-

association algorithm to identify novel cancer-associated genes.

We compiled all the 134 novel CRC related genes identified in this

study. See Supporting Information S1.

PPI data from STRING
The initial weighted PPI network was retrieved from STRING

(version 9.0) [10] (http://string.embl.de/), which is a large database

of known and predicted protein interactions. Proteins in the

interaction network were represented with nodes, while the

interaction between any two proteins therein was represented with

an edge. These interactions contain direct (physical) and indirect

(functional) interactions, derived from numerous sources such as

experimental repositories, computational prediction methods. In

the network, each edge is marked with a score to quantify the

interaction confidence, i.e., the likelihood that an interaction may

occur.

The mRMR (maximum relevance minimum redundancy)
method
To find the genes that can distinguish colorectal tumors and

normal adjacent tissues, we used the mRMR method, which was

originally developed by Peng et al. [17] for analyzing the

microarray data. The mRMR method could rank genes according

to their relevance to the class of samples concerned, and

meanwhile also could take the redundancy of genes into account.

Those genes, which have the best trade-off between the maximum

relevance to the sample class and the minimum redundancy, were

considered as ‘‘good’’ biomarkers.

Both the relevance and redundancy were quantified by the

following mutual information (MI):

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð2Þ

where x and y are vectors, p(x,y) is their joint probabilistic

density, and p(x) and p(y) are the marginal probabilistic densities.

To quantify both the relevance and redundancy, let us define V
as the whole gene set, VS as the already-selected gene set

containing m genes and Vt as the to-be-selected gene set

containing n genes. The relevance D between the gene f in Vt

and the target c can be calculated by:

D~I(f ,c) ð3Þ

The redundancy R between the gene f in Vt and all the genes in

Vs can be calculated by:

R~
1

m

X
fi[Vs

I(f ,fi) ð4Þ

In order to obtain the gene fi in Vt with the maximum relevance

and minimum redundancy, let us combine Eq.3 and Eq.4, as can

be formulated as follows:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj ,fi)

2
4

3
5 (j~1,2, � � � ,n) ð5Þ

Given a gene set with N(~mzn) genes, the mRMR operation for

the gene evaluation will continue N rounds. After these

evaluations, the mRMR method will generate a gene set S as

formulated by

Identification of Colorectal Cancer Related Genes
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S~ f1
0
,f2

0
, � � � ,fh

0
, � � � ,fN

0n o
ð6Þ

where the index h(1, 2, � � � , N) indicates which round the gene is

selected. The smaller the index h is, the earlier the gene satisfied

Eq.5 and the better the gene is.

Prediction engine
In this study, the Nearest Neighbor Algorithm (NNA) [25,26],

which has been widely used in bioinformatics and computational

biology [3,27,28,29,30,31,32,33,34], was adopted to predict the

class of colorectal tissue samples. The ‘‘nearness’’ was calculated

according to the following equation

D(P1,P2)~1{
P1,P2

P1k k: P2k k ð7Þ

where P1 and P2 are two vectors representing two tissue samples,

P1
:P2 is their dot product, P1k k and P2k k are their moduluses. The

smaller theD(P1,P2), themore similar the two samples are [35]. For

an intuitive illustration of how NNA works, see Fig.5 of [20].

Performance validation
The following three cross-validation methods are often used in

statistics for validating a statistical prediction method: independent

dataset test, subsampling test, and jackknife test [36]. However,

among the three validation methods, the jackknife test is the least

arbitrary due to the following facts. (i) For the independent dataset

test, although all the samples used to test the predictor are outside the

training dataset used to train the prediction engine so as to exclude

the ‘‘memory’’ effect or bias, the way of how to select the

independent samples to test the predictor could be quite arbitrary

unless the number of independent samples is sufficiently large. This

kind of arbitrariness might lead to completely opposite conclusions.

For instance, the conclusion that a predictor yielded a higher success

rate than the other predictor for a given independent testing dataset

might become just opposite when tested by another independent

testing dataset [36]. (ii) For the subsampling test, the concrete

procedure usually used in literatures is the 5-fold, 7-fold or 10-fold

cross-validation. The problem with this kind of subsampling test is

that the number of possible selections in dividing a benchmark

dataset is extremely large even for a very simple and small dataset, as

elucidated in [37] and demonstrated by Eqs.28–30 in [20].

Therefore, in any actual subsampling cross-validation tests, only

a very tiny fraction of the possible selections are taken into account.

Since different selections will always result in different outcomes

even for a same benchmark dataset and a same predictor, the

subsampling test cannot avoid the arbitrariness either. A testmethod

unable to yield a unique outcome cannot be regarded as a good one.

(iii) In the jackknife test, all the samples in the benchmark dataset will

be singled out one-by-one and tested by the predictor trained by the

remaining samples. During the process of jackknifing, both the

training dataset and testing dataset are actually open, and each

sample will be in turnmoved between the two. The jackknife test can

exclude the ‘‘memory’’ effect. Also, the arbitrariness problem as

mentioned above for the independent dataset test and subsampling

test can be avoided because the outcome obtained by the jackknife

test is always unique for a given benchmark dataset. Accordingly, the

jackknife test has been widely and increasingly used to inspect the

quality of various predictors (see, e.g.,

[30,31,32,38,39,40,41,42,43,44,45,46]). Accordingly, in this study

the jackknife test was also used to examine the quality of the current

prediction method.

The prediction accuracy was formulated by

Accuracy~
TPzTN

TPzTNzFPzFN
ð8Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; and FN, the false negative.

Incremental feature selection (IFS)
Based on the ranked genes according to their importance after

mRMRevaluation, we used the Incremental Feature Selection (IFS)

(see, e.g., [1,47]) to determine the optimal number of genes as

biomarkers. During the IFS procedure, genes in the ranked gene set

are added one by one from higher to lower rank. A new gene set is

composed when one gene is added. Thus N gene sets would be

composed when given N ranked genes. Thei-th gene set is

Si~ff1,f2, � � � ,fig (1ƒiƒN) ð9Þ

For each of the N gene sets, an NNA predictor was constructed and

examined using the jackknife test to the benchmark dataset. By

doing so we obtained an IFS table with one column for the index i

and another column for the prediction accuracy. Thus, we could

obtain the optimal gene set (Soptimal), withwhich the predictorwould

yield the best prediction accuracy.

Graph approach and shortest paths tracing
Graphs are a useful vehicle for studying complex biological

systems because they can provide intuitive insights and the overall

structure property, as demonstrated by various studies on a series of

important biological topics (see, e.g.,

[48,49,50,51,52,53,54,55,56,57,58]). In this study, we first con-

structed a graph G(V, E) with the PPI data from STRING. In the

graph, an edge was assigned for each pair of genes if they were in

interaction with each other. The weight of edge E in graph G was

derived from the confidence score according to the equation

wG~1000|(1{w0), wherewG is the weight in graphGwhilew0 is

the confidence score between two proteins concerned. Thus, we get

a functional protein association network with edge weight. Dijkstra’s

algorithm [18] was used to find the shortest path from each of the six

genes to all the other five genes in the graph. Then we picked out all

the genes existing in the shortest paths and rank these genes

according to their betweenness.

KEGG enrichment analysis
Functional annotation tool of DAVID [59] was used for KEGG

pathway enrichment analysis. The enrichment p-value was

corrected to control family-wide false discovery rate under certain

rate (e.g., #0.05) with Benjamin multiple testing correction

method [60]. All the genes on the BeadChip were selected as

background during the enrichment analysis.

Results

mRMR results
The expression profile was retrieved from GEO with the

accession number of GSE25070, which contained 52 samples and

24,526 probes and was transformed to a CSV file with 52 rows

and 24526 columns as the input of mRMR. Each probe

represented a feature and the 26 tumor samples belonged to class

1 while the paired26 paired normal samples belonged to class 2.

After running the mRMR software, we obtained two tables (see

Supporting Information S2), of which one was called MaxRel

Identification of Colorectal Cancer Related Genes
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table that ranked the probes according to their relevance to the

class of samples, and the other called mRMR feature table that

listed the probes with the maximum relevance and minimum

redundancy to the class of samples.

Six candidate genes identified by NNA and IFS
On the basis of the outputs of mRMR, we constructed 1000

feature subsets according to Eq.9. As described in the Materials

and Methods section, we tested the predictor with one feature, two

features, three features, etc., and the IFS result can be found in

Supporting Information S3. Shown in Fig. 1 is the IFS curve

plotted based on the data of Supporting Information S3. In the

IFS curve, the X-axis is the number of probes used for

classification, and the Y-axis is the prediction accuracies of the

nearest neighbor algorithm evaluated by the jackknife test. The

maximum accuracy was 1 when 6 features were included. The

optimal probe set included 6 probes corresponding to 6 different

genes, which were GUCA2B, PI16, CDH3, SPIB, BEST2, and

HMGCLL1 (Table 1).

Shortest paths genes
Meanwhile, we constructed an undirected graph with the PPI

data from STRING. Then we picked out two genes from the six

genes identified with the mRMR method as described above, and

found out the shortest path between these two genes with the

Dijkstra’s algorithm. We obtained a total of 15 shortest paths with

lowest cost (Supporting Information S4). Shown in Fig. 2 are the

15 shortest paths between the six candidate genes, where the

interaction confidence was labeled on the edge for each of the

interaction gene pairs. There were a total of 35 genes on the

shortest paths and we ranked these genes according to their

betweenness (Table 2). Among these 35 genes, AR has the largest

betweenness of 7, meaning that there are 7 shortest paths going

through this gene. Accordingly, AR may play an important role in

connecting the six candidate genes and hence may be related to

CRC. Such a conclusion is fully consistent with the fact that AR

protein was found in normal colorectal mucosa as well as in most

CRC [61,62], implying that the AR receptor is responsible for the

mitogenic effects of the hormone as will be further discussed later.

To test whether our 35 shortest path genes were hubs in the

background network or not, we ran a permutation to count the

occurrence time of our 35 shortest path genes in the shortest

paths between 6 random selected genes when they has greater

Figure 1. IFS curve for the colorectal tumors and matched normal adjacent tissue samples classification. In the IFS curve, the X-axis is
for the number of probes used for classification, and the Y-axis for the prediction accuracies by the nearest neighbor algorithm (NNA) evaluated by
the jackknife (Leave-One-Out) cross-validation test. The peak accuracy was 1 with six probes. The top 6 probes in the mRMR probe list formed the
optimal discriminative probe set.
doi:10.1371/journal.pone.0033393.g001

Table 1. mRMR top six genes.

order Probe name Symbol EntrezID Protein ID

1 ILMN_1735578 GUCA2B 2981 ENSP00000361662

2 ILMN_1766264 PI16 221476 ENSP00000362778

3 ILMN_1704294 CDH3 1001 ENSP00000264012

4 ILMN_2143314 SPIB 6689 ENSP00000270632

5 ILMN_1755796 BEST2 54831 ENSP00000042931

6 ILMN_2339192 HMGCLL1 54511 ENSP00000381654

doi:10.1371/journal.pone.0033393.t001

Identification of Colorectal Cancer Related Genes
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betweenness than that in our study. We repeated this process

5000 times, and the p-value was calculated as the proportion of

occurrence time of the 35 genes in 5000 permutation. For detail,

please see Table 2. There were 10 shortest path genes whose p-

values were not significant. TP53 was a star molecular involved

in numerous biological processes and nearly related to all kinds

of cancers [63]. Therefore, it is nothing surprising that TP53

appeared many times in shortest path between 6 randomly

picked genes. For EP300, it has been reported that this gene can

acetylate TP53 and associated with lots of tumors [64].

CTNNB1 and GSK3B belong to the Wnt signaling pathway,

the role of which in caners has been well documented [65]. For

the remaining insignificant 6 genes, their betweennesses in our

study were all one (Table 2), and hence the number of

occurrences for these genes in random shortest paths is prone to

be greater than one. Most of these insignificant 6 shortest path

genes fall behind in Table 2 according to their betweennesses,

suggesting that they might not be important. Besides these 10

genes, the remaining 25 shortest path genes in our study were

identified to be significant.

Figure 2. 15 shortest paths between the six genes identified with mRMR method. The 15 shortest paths between the six candidate genes
were identified with Dijkstra’s algorithm based on the PPI data from STRING. Yellow roundrect represents the top six candidate genes identified by
the mRMR method. Red round represents the 35 genes existing within the range of the shortest paths. Numbers on edges represent the edge
weights to quantify the interaction confidence. The smaller the number is, the stronger the interaction between two nodes is. See the text in the
Section of ‘‘Graph approach and shortest paths tracing’’ for the quantitative relation of the edge weight with the confidence score between two
proteins concerned.
doi:10.1371/journal.pone.0033393.g002
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MaxRel table gene KEGG enrichment
Using the functional annotation tool of DAVID, the KEGG

pathway enrichment analysis was carried out for the genes

corresponding to the 1000 probes listed in the MaxRel. The

enrichment results showed that these genes were significantly

enriched in the energy metabolism pathways, including fatty acid

metabolism, pentose and glucuronate interconversions, as well as

starch and sucrose metabolism (Table 3). These results suggested
that metabolism of nutrients may play critical role in the

tumorigenesis of CRC.

Six candidate genes and shortest paths genes of KEGG
enrichment
The KEGG pathway enrichment analysis was also performed

on the 41 genes including the top six genes in the mRMR list and

35 genes in the shortest paths between these six genes with the

functional annotation tool of DAVID. The enrichment result thus

obtained showed that these genes were significantly enriched in

the canonic cancer related pathways, such as prostate cancer,

pathways in cancer, Wnt signaling pathway, cell cycle, colorectal

cancer, thyroid cancer, and so on. It is instructive to note that

among these pathways, some have been proved to be relevant to

colorectal cancer including Wnt signaling pathway, cell cycle,

colorectal cancer and insulin signaling pathway (Table 4).

Overlap with cancer related gene list and two CRC
related gene lists
We compiled 742 cancer-related genes from the following three

different sources: Cancer Gene Census from the Sanger Centre,

Atlas of Genetics and Cytogenetic in Oncology [21], and Human

Protein Reference Database [22]. It was observed that 8 out of the

41 genes identified by us were proven to be cancer-related genes.

Also, it was indicated by the Fisher’s exact test that these 41 genes

were significantly related to cancer (p-value = 0.0001908). See

Supporting Information S5.

Moreover, we collected 438 genes that were differentially

expressed between colorectal adenomas and normal mucosa from

previous study [23]. Interestingly, the aforementioned 41 candi-

date genes identified by us had an overlap of 4 genes with the 438

genes, and the overlap was quite significant (p-value = 0.01057,

Fisher’s exact test). See Supporting Information S5.

Recently, the Boolean based systems biology approach was

employed to identify 134 novel CRC related genes [24], of which

three were identified by us in this study and the overlap was

significant (p-value = 0.002017, Fisher’s exact test). See Supporting

Information S5.

Discussion

KEGG enrichment of MaxRel genes
The genes corresponding to the 1000 probes listed in the

MaxRel table were significantly enriched in the energy metabo-

lism pathways, including fatty acid metabolism, pentose and

glucuronate interconversions, as well as starch and sucrose

metabolism. It has been shown that diet has an important effect

on the CRC development. Our finding is quite consistent with the

fact that genetic polymorphisms influencing the metabolism of

nutrients play an important role in the etiology of CRC and

colorectal adenomatous polyps [62].

Multiple lines of evidences have indicated the implication or

involvement of fat in the etiology of CRC [66]. The crucial role of

fatty acids in numerous biological processes suggests that alteration

in fatty acid metabolizing genes contributes to colon carcinogen-

esis [67]. It has been shown that starch and sucrose metabolism

and pentose and glucuronateinterconversions were closely related

to cancers. Christensen et al. [68] demonstrated that starch and

sucrose metabolism and pentose and glucuronateinterconversions

pathway were hypomethylated in isocitrate dehydrogenase mutant

tumors. In addition, these two metabolic pathways were found to

be significantly related to the risk of developing estrogen receptor-

negative breast cancer [69].

A recent CRC disease-specific transcriptome research showed

that starch and sucrose metabolism was one of the 7 common

pathway significant differentially regulated using two different

microarray platforms including Affymetrix HGU133 Plus2.0 array

Table 2. Shortest paths genes.

order Protein id symbol betweenness P-value

1 ENSP00000363822 AR 7 0*

2 ENSP00000269305 TP53 6 0.3442

3 ENSP00000230354 TBP 5 0.0066*

4 ENSP00000250003 MYOD1 5 0.0006*

5 ENSP00000263253 EP300 5 0.0598

6 ENSP00000287936 HMGCR 5 0*

7 ENSP00000314151 KLK3 5 0*

8 ENSP00000344456 CTNNB1 5 0.0984

9 ENSP00000344741 INSIG1 5 0*

10 ENSP00000349508 CHD4 5 0*

11 ENSP00000351363 MSMB 5 0*

12 ENSP00000354620 FOXJ3 5 0*

13 ENSP00000362649 HDAC1 5 0.0108*

14 ENSP00000396219 MEF2C 5 0*

15 ENSP00000417884 TRIM27 5 0*

16 ENSP00000342470 NR1H3 4 0.005*

17 ENSP00000354476 SREBF2 4 0.0038*

18 ENSP00000363868 ABCA1 4 0.0098*

19 ENSP00000361066 NCOA3 3 0.0038*

20 ENSP00000419692 RXRA 3 0.0098*

21 ENSP00000324806 GSK3B 2 0.1016

22 ENSP00000399968 NCOA2 2 0.0308*

23 ENSP00000206249 ESR1 1 0.1968

24 ENSP00000254227 NR0B2 1 0.0346*

25 ENSP00000262367 CREBBP 1 0.0754

26 ENSP00000265565 SCAP 1 0.0088*

27 ENSP00000268712 NCOR1 1 0.0176*

28 ENSP00000297146 GPR85 1 0.0104*

29 ENSP00000304895 IRS1 1 0.0976

30 ENSP00000329357 SP1 1 0.1242

31 ENSP00000348069 SREBF1 1 0.023*

32 ENSP00000348551 NCOR2 1 0.0162*

33 ENSP00000348827 THRB 1 0.0082*

34 ENSP00000348986 INS-IGF2 1 0.0898

35 ENSP00000353483 MAPK8 1 0.1194

*: P-value,0.05, significant.
doi:10.1371/journal.pone.0033393.t002
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and the CRC disease specific array. Besides, fatty acid metabolism

was identified as significantly differentially regulated pathway

using colorectal disease specific array [70].

Six candidate genes identified by mRMR, NNA and IFS
In this study, we have identified the following six genes:

GUCA2B, PI16, CDH3, SPIB, BEST2, and HMGCLL1. Below,

let us briefly discuss their relationships with colorectal cancer.

GUCA2B (uroguanylin) is an endogenous activator of the

guanylate cyclase-2C receptor found to be down regulated 8-fold

in adenoma, and its expression is detected in blood and urine

[71].Therefore, GUCA2B could be regarded as a non-invasive

biomarker for the early detection of CRC. In addition, the radio

labeled uroguanylin analogs have been used for detection of

CRC in vivo [72].

PI16 (Peptidase inhibitor 16) is detected within the testis,

prostate, small intestine, colon, and ovary with immunohisto-

chemical analyses [73]. Decrease of PI16 level was detected in

prostate cancer [73] and gastric cancer [74]. Our result also

showed that the expression of PI16 in colorectal adenocarcinoma

was significant decreased compared with the adjacent non-tumor

colorectal tissue, which was consistent with the result of the

research in prostate cancer and gastric cancer. Since PI16 is not

well characterized and so far there is no report whatsoever about

PI16 in colorectal cancer etiology, our result implied that PI16

may become a promising biomarker for colorectal cancer early

diagnosis.

CDH3 is a classical cadherin, the demethylation of which is

frequently detected in the advanced CRC which was associated

with the overexpression of CDH3 [75]. Besides CRC, CDH3 was

also overexpressed in the majority of pancreatic cancer and gastric

cancer, but not in their noncancerous counterparts or in normal

tissues. Thus CDH3 was regarded as a novel tumor-associated

antigen useful for immunotherapy and early diagnosis of gastric

cancer and CRC [76].

SPIB is a transcription factor of the E-twenty-six (ETS) family,

which is known to act as positive or negative regulators of gene

expression. SPIB is an adenoma condition-specific down regulated

gene and its expression underwent a striking decrease in CRC

tissues indicating that SPIB may serve as potential markers of

CRC invasiveness and metastasis [77].

BEST2 (also known as VMD2L1) encodes a protein of the

bestrophin family. Both RT-PCR analyses and X-gal staining

revealed tissue-restricted BEST2 and VMD2L2 abundantly

expressed in colon [78,79]. It has been show that BEST2

mediates bicarbonate transport by goblet cells in mouse colon

[80]. Straub et al. [81] identified BEST2 as one of the methylation

markers for early detection and prognosis of CRC. Therefore,

BEST2 was expected to become a therapy target for CRC with

demethylation agent.

HMGCLL1 has been show to be related to various cancers,

such as pancreatic cancers [82], glioblastoma multiforme [83],

breast and colorectal cancers [84]. HMGCLL1 is one of the genes

containing somatic mutations in pancreatic cancer [82]. Though

mutation in HMGCLL1 has been reported to be involved in these

cancers, the specific mechanisms underlying remain to be

elucidated.

Table 3. MaxRel table genes KEGG enrichment.

Term KEGG ID Counta Percentageb P-value Benjamini Adjusted P-Value

Fatty acid metabolism 00071 11 1.2 8.4E-5 1.5E-2

Pentose and glucuronate
interconversions

00040 7 0.8 3.0E-4 2.7E-2

Starch and sucrose metabolism 00500 10 1.1 6.6E-4 3.8E-2

aThe number of genes belonging to a certain pathway.
bThe percentage of genes belonging to a certain pathway account for all the genes underwent KEGG pathway analysis.
doi:10.1371/journal.pone.0033393.t003

Table 4. mRMR top six genes and shortest path genes KEGG enrichment.

Term KEGG ID Counta Percentageb P-value
Benjamini Adjusted
P-Value

Prostate cancer 05215 8 19.5 3.80E-08 2.40E-06

Pathways in cancer 05200 10 24.4 2.60E-06 8.00E-05

Wnt signaling pathway 04310 6 14.6 3.00E-04 6.30E-03

Huntington’s disease 05016 6 14.6 6.70E-04 1.10E-02

Notch signaling pathway 04330 4 9.8 8.80E-04 1.10E-02

Cell cycle 04110 5 12.2 1.50E-03 1.60E-02

Insulin signaling pathway 04910 5 12.2 2.00E-03 1.80E-02

Colorectal cancer 05210 4 9.8 4.70E-03 3.60E-02

Thyroid cancer 05216 3 7.3 6.20E-03 4.20E-02

Melanogenesis 04916 4 9.8 7.40E-03 4.60E-02

aThe number of genes belonging to a certain pathway.
bThe percentage of genes belonging to a certain pathway account for all the genes underwent KEGG pathway analysis.
doi:10.1371/journal.pone.0033393.t004
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Shortest path genes
We totally identified 35 shortest paths genes. As we can see from

Table 2, some shortest path genes such as TP53, EP300,

CTNNB1 and GSK3B were not significant for CRC due to their

universality in numerous cancers. However, these genes have been

well documented to be relevant to CRC, and also their role in

CRC has been well characterized [85]. Besides these genes, most

of the other shortest genes listed in Table 2 were quite specific to

CRC (p-value,0.05). Below, let us focus on the specific genes with

the large betweenness values and discuss the relationship of such

genes with CRC.

AR (androgen receptor) is a ligand dependent transcription

factor, which is involved in the control of cellular proliferation and

differentiation [86]. Several studies have provided supporting

evidences for its involvement of sex steroid hormones (estrogens

and androgens) in the etiology and progression of CRC [87]. AR

protein has been shown to be expressed in normal colorectal

mucosa and in most colorectal cancer [61,62], supporting that

CRC expressing the AR receptor may respond to mitogenic effects

of the hormone. Moreover, somatic reductions of the androgen

receptor CAG repeat occur frequently, through a pathway

different from microsatellite instability and early during colon

carcinogenesis. Apparent growth selection of cells harboring

shortened AR alleles suggests that androgens contribute to colon

carcinogenesis in a yet unknown way [61].

TBP (the TATA-binding protein) is a key eukaryotic transcrip-

tion factor used by all three cellular RNA polymerases. Compared

to normal colon epithelium, TBP expression is elevated in the case

of human colon carcinomas. Both Ras-dependent and Ras-

independent mechanisms mediate the increases of TBP expression

in colon carcinoma cell lines. Thus, TBP may be a crucial

component in dysregulated signaling for causing tumors [88].

MYOD1 promoter methylation occurs in various malignancies

including CRC. MYOD1 promoter methylation was detectable in

tumor and normal colorectal samples, but was significantly higher

in tumor than in normal mucosa. Patients without MYOD1

hypermethylation showed significantly longer survival than those

with hypermethylation. Therefore, MYOD1 hypermethylation

plays an important role in CRC and may be a novel prognostic

factor [89].

HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase)

is an enzyme that catalyzes the rate-limiting step of cholesterol

biosynthesis. HMGCR alternative splicing of exon 13 is not only

a biomarker, but also a determinant of statin efficacy, which is

a class of cholesterol-lowering drugs that inhibit HMGCR.

HMGCR was used not only for the treatment of hypercholester-

olemia, but also as a chemopreventive agent for CRC [90]. A

genetic test of HMGCR was utilized to determine in which

patients cholesterol-lowering statin drugs might have the most

benefit in reducing the risk of CRC. A recent research has found

a genetic variant may affect the way of how statins control both

colorectal cancer and cardiovascular disease risk [91].

KLK3 (also known as prostate-specific antigen, PSA) is

a kallikrein-like serine protease that is a widely used biomarker

for prostate cancer [92]. In addition to prostate cancer, breast,

colon, ovarian, liver and kidney tumors can also produce KLK3

[93]. Recently, several other members of KLK family like KLK7

have shown promise as potential biomarkers for various cancers

including colon cancer [94,95,96]. Thus, with the progress of

research, KLK3 may become a biomarker for CRC as well.

CHD (Chromodomain helicase DNA-binding protein) is

a regulator of the chromatin remodeling process. CHD4

expression was detected in gastric cancers and CRCs by

immunohistochemistry. It has been reported that loss of CHD4

expression was observed in 56.4% of the gastric cancers and

55.7% of the CRCs. In addition, Frameshift mutation and loss of

expression of CHD genes are common in gastric cancers and

CRCs with MSI-H. These alterations might contribute to cancer

pathogenesis by deregulating CHD-mediated chromatin remodel-

ing [97].

MSMB encodesb-microsemino protein, which is a proposed

biomarker for prostate cancer [98]. Genome-wide association

studies (GWAS) have identified a variant, rs10993994, on

chromosome 10q11 which is associated with prostate cancer risk.

So far, there is no report about MSMB in CRC etiology.

However, the expression of MSMB was detected in colon

epithelial cells by immunohistochemistry [99]. Thus, it may be

a potential biomarker for colorectal cancer diagnosis although it is

remained to be verified.

FOXJ3 is a member of Human Forkhead-box (FOX) gene

family. It has been shown that genetic and epigenetic changes of

FOX family genes as well as alterations occurring in target genes

of FOX transcription factors family could lead to human disease

including carcinogenesis [100]. Recently, Niittymaki et al. [101]

identified a SNP, rs2761880, locates in the binding site of FOXJ3

in CRC. It has been proposed that many of the predisposition loci

for CRC are involved in control of gene expression by targeting

transcription factor binding sites. In addition, oligonucleotide

microarray analysis of distinct gene expression patterns in CRC

tissues harboring BRAF and K-ras mutations has shown that

FOXJ3 was identified by PAM (Prediction analysis of microarrays)

and the jackknife (or leave-one-out) cross validation as candidate

to distinguish the mutant groups [102].

HDAC1 (Histone deacetylase 1) is involved in tumorigenesis

through their regulation of cell proliferation, differentiation and

survival. In cancer cells, HDAC1 represses the expression of tumor

suppress genes such as p21/WAF1/CIP1 and Bax, leading to

aberrant cell proliferation and cell viability [103]. HDAC1 and

HDAC3 are overexpressed in colon cancer cells and in primary

colon cancer, and siRNA (small interfering RNA) mediated

silencing of HDAC1 and HDAC3 in colon cancer cells induced

apoptosis [104].

MEF2C (myocyte enhancer factor 2C) is a member of the

MEF2 family of transcription factors. Recently, MEF2C was

identified as a potential oncogenic transcription factor associated

with CRC [24]. Besides, it has been shown that MEF2C was

hypermethylated. Also, it was indicated by the significantly down-

regulated in colon cancer that MEF2C may play a role in CRC

etiology [105].

NR1H3 is a transcription factor involved in lipid homeostasis

and inflammation. Recent evidences indicated that miRNAs can

bind to the 39untranslatedregions (UTRs) of mRNAs and regulates

their translation. Genetic polymorphisms can locate in miRNA

binding sites. Thus, miRNA regulation may be influenced by

polymorphisms on the 39UTRs. NR1H3 was identified as

Table 5. The overlap between 41 genes identified from three
different methods and 742 cancer genes.

Overlap with 742 Cancer
genes p-value

Our 41 genes 8

Top 41 mRMR genes 4 0.03965

Top 41 t-test genes 2 4.923e-05

doi:10.1371/journal.pone.0033393.t005
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a candidate gene that harboring polymorphic in miRNA target

sites which was associated with risk of sporadic CRC [106]. The

specific relationship between NR1H3 and CRC remains to be

further elucidated.

Overlap between selected genes and known cancer
genes as well as known CRC related genes
Statistic test showed that the overlap between the 41 genes

identified in our study and the 742 cancer-related genes we

compiled was quite significant (p-value = 0.0001908). The KEGG

analysis result of such 41 genes also implied that they were

significantly enriched in cancer-related pathways (p-value = 8.00E-

05). Taken together, it indicated that the 41 genes identified by us

were closely associated with cancer. In addition, the overlaps of

such 41 candidate genes with the previous (p-value = 0.01057) and

recent (p-value = 0.002017) reported CRC biomarkers were

significant. This suggested that the 41 candidate genes have the

potential to be used as biomarkers for CRC diagnosis.

In addition, we compared the 41 genes identified by us with the

top 41 genes in mRMR feature list and the top 41 differentially

expressed genes identified by the traditional t-test method of R

language [107]. See the Supporting Information S6 for such three

sets of 41 genes. As can be seen from there, the 41 genes identified

by us contain 8 cancer genes, which is more than 4 (p-

value = 0.03965, proportion test) and 2 (p-value = 4.923e-05,

proportion test) cancer genes than those contained in the 41

genes identified by mRMR and the 41 genes identified by the t-

test, respectively (Table 5).

Functional similarity between selected genes and known
CRC related genes
In this study, five gene sets were defined. The first gene set is our

41 selected genes. The second gene set is the top 41 mRMR genes.

The third gene set is the top 41 t-test genes that have the smallest t-

test p values. The second and third gene sets were from gene

expression profiles alone. Our 41 gene were selected based on both

gene expression profiles and protein interaction network. The

fourth gene set is the 742 cancer genes mentioned above. The fifth

gene set is the combined known CRC related genes of 742 cancer

related genes, 438 genes from Sabates-Bellver’s study [23]and 134

colorectal cancer related genes from Nagaraj’s study [24]. These

five gene sets can be found in the Supporting Information S6.

To compare the functional similarity between our selected genes

and the known CRC related genes, we constructed their functional

profiles using the 2log10 of the hypergeometric test p value on

Gene Ontology (GO) terms [1,5,108]. Then we calculated the

Pearson correlation coefficient of their functional profiles [1,109].

The functional similarities of the functional profiles for the five

gene sets were shown in Table 6. Our 41 genes had greater

functional similarity with the cancer genes and the known CRC

genes than the genes identified from gene expression profiles

alone: top 41 mRMR genes and top 41 t-test genes. This suggests

that the genes selected by our method are more reliable than the

genes identified from the gene expression profiles alone.

Combining the gene expression profiles and protein interaction

network together can improve the identification of disease genes.

The reason why our method can generate more reliable results is

because that the shortest pathway approach integrated here is based

on all the information of genes fromdatabase, textmining, etc. that is

quite stable and can avoid the false positives. In contrast to this, the

method based on the gene expression data can cause lots of false

positives. It is anticipated that ourmethodmay become a useful tool,

or at least play a complementary role to the existing method, for

identifying colorectal cancer genes.

It is instructive to point out that our method may have some

limitations. This is because some hub genes that may simultaneously

interact with lots of other genes can also occur in our shortest path

and the randomly selected shortest paths, such as TP53 and EP300.

Nevertheless, our method can provide a p-value to evaluate the

significance that can be used to distinguish the hubs in the network

background.

Conclusion
We proposed a novel method to identify cancer related genes.We

applied this method on CRC and identified 41 genes which had the

most potential to be biomarker for CRC early diagnose. Statistic test

andKEGGanalysis showed that the 41 candidate genes identified in

our study are not only closely related to cancer but also have great

potential to become biomarker for CRC diagnosis. In addition, the

41 candidate genes contain more cancer genes than the genes

identified from gene expression profiles alone, and functional

similarity analysis revealed that our genes had greater functional

similarity with the reported CRC genes than the genes identified

from gene expression profiles alone. We believe that our method

may be helpful (or at least play a stimulative role) for predicting novel

cancer related genes, and that it might have the potential

applicability for the cancer research.

Supporting Information

Supporting Information S1 The cancer-related gene list
and the two colorectal cancer-related gene lists.
(XLS)

Supporting Information S2 The MaxRel features table
and mRMR features table.
(XLS)

Supporting Information S3 Feature numbers and the
first order accuracy which the IFS curve plot was based
on.
(XLS)

Supporting Information S4 The 15 shortest paths with
the lowest cost presented with protein and gene,
respectively.
(DOC)

Supporting Information S5 The overlap between the 41
candidate genes and the three other datasets and the
corresponding Fisher’s exact test.
(DOC)

Supporting Information S6 Five gene sets. First gene set is

our 41 selected genes. The second gene set is the top 41 mRMR

genes. The third gene set is the top 41 t-test genes that have the

smallest t-test p values. The second and third gene sets were from

gene expression profiles alone. Our 41 gene were selected based

Table 6. The functional similarity between our 41 genes and
known colorectal cancer genes.

Cancer genes Colorectal cancer genes

Our 41 genes 0.606068* 0.491953*

Top 41 mRMR genes 0.163112* 0.244468*

Top 41 t-test genes 0.203573* 0.269548*

*Pearson correlation coefficient of functional profiles.
doi:10.1371/journal.pone.0033393.t006
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on both gene expression profiles and protein interaction network.

The fourth gene set is the 742 cancer genes. The fifth gene set is

the combined known colorectal cancer related genes.

(XLS)
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