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Anatomical Partition-Based Deep Learning:
An Automatic Nasopharyngeal MRI

Recognition Scheme
Song Li, MD,1 Hong-Li Hua, MS,1 Fen Li, PhD,2 Yong-Gang Kong, MD,1,2 Zhi-Ling Zhu, MS,3

Sheng-Lan Li, MD,4 Xi-Xiang Chen, MS,4 Yu-Qin Deng, MD,1* and Ze-Zhang Tao, MD1,2*

Background: Training deep learning (DL) models to automatically recognize diseases in nasopharyngeal MRI is a challeng-
ing task, and optimizing the performance of DL models is difficult.
Purpose: To develop a method of training anatomical partition-based DL model which integrates knowledge of clinical
anatomical regions in otorhinolaryngology to automatically recognize diseases in nasopharyngeal MRI.
Study Type: Single-center retrospective study.
Population: A total of 2485 patients with nasopharyngeal diseases (age range 14–82 years, female, 779[31.3%]) and
600 people with normal nasopharynx (age range 18–78 years, female, 281[46.8%]) were included.
Sequence: 3.0 T; T2WI fast spin-echo sequence.
Assessment: Full images (512 � 512) of 3085 patients constituted 100% of the dataset, 50% and 25% of which were ran-
domly retained as two new datasets. Two new series of images (seg112 image [112 � 112] and seg224 image [224 � 224])
were automatically generated by a segmentation model. Four pretrained neural networks for nasopharyngeal diseases
classification were trained under the nine datasets (full image, seg112 image, and seg224 image, each with 100% dataset,
50% dataset, and 25% dataset).
Statistical Tests: The receiver operating characteristic curve was used to evaluate the performance of the models. Analysis
of variance was used to compare the performance of the models built with different datasets. Statistical significance was
set at P < 0.05.
Results: When the 100% dataset was used for training, the performances of the models trained with the seg112 images
(average area under the curve [aAUC] 0.949 � 0.052), seg224 images (aAUC 0.948 � 0.053), and full images (aAUC
0.935 � 0.053) were similar (P = 0.611). When the 25% dataset was used for training, the mean aAUC of the models that
were trained with seg112 images (0.823 � 0.116) and seg224 images (0.765 � 0.155) was significantly higher than the
models that were trained with full images (0.640 � 0.154).
Data Conclusion: The proposed method can potentially improve the performance of the DL model for automatic recogni-
tion of diseases in nasopharyngeal MRI.
Level of Evidence: 4
Technical Efficacy Stage: 1

J. MAGN. RESON. IMAGING 2022;56:1220–1229.

Training artificial intelligence (AI) models to automatically
recognize diseases in medical images has been a topic of

interest in recent years.1,2 Automatic recognition of diseases
in nasopharyngeal MRI is one of the most challenging tasks

in this field and several studies have made efforts. For exam-
ple, Wong et al conducted a study to automatically detect
early-stage nasopharyngeal carcinoma (NPC) and discriminate
it from benign hyperplasia using noncontrast-enhanced
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MRI.3 Ke et al developed a dual-task deep learning
(DL) model to detect and segment NPC automatically in
MRI.4 However, these studies focused on NPC, and the
methods employed do not delve on the specificity of medical
imaging itself.

MRI has special features that differ from nonmedical
imaging. The naming and classification of diseases are closely
related to anatomy. For example, otorhinolaryngology MRI
can be clinically divided into the following areas: nasal cavity,
paranasal sinus, orbit, middle skull base, nasopharynx, para-
pharyngeal spaces, temporal area, lateral skull base, and intra-
cranial areas. Rather than being randomly located in the image
like a cat in a picture, most diseases are in a corresponding ana-
tomical area in the image. For example, adenoids would always
be in the nasopharynx and never in the temporal area. There-
fore, we believe that it would be better to train a DL model to
recognize diseases of nasopharyngeal MRI based on anatomical
partitions than based on the full image.

The aim of this study was to evaluate whether a method
of training DL models using MRI based on anatomical parti-
tion, which integrates knowledge of clinical anatomical region
division in otorhinolaryngology, improved model perfor-
mance for nasopharyngeal diseases classification and reduced
data costs compared to the traditional methods based on full
images.

Materials and Methods
Patients Information
The study protocol was approved by the Institutional Review Board
of the authors’ institution, and the requirement to obtain informed

consent from the patients was waived. Since this study was defined
as a methodological study, only images of nasopharyngeal diseases
rather than all diseases of nasopharynx were collected to determine
the advantages of the proposed methodology. A total of 3085 naso-
pharyngeal MRI scans, including those with NPC, nasopharyngeal
lymphoid hyperplasia (LH), nasopharyngeal lymphoma, chordoma
invading the nasopharynx, craniopharyngioma invading the naso-
pharynx, and normal nasopharynx (from 600 participants with nor-
mal nasopharynx and tumor-free slices of the above lesions)
produced between January 1, 2014 and December 31, 2020, were
retrospectively collected (Table 1). Patient information are described
in detail in the Patients and Image Acquisition section of the
Supporting Information.

MRI Data Acquisition
MRI was obtained using 3.0-T MR imaging systems (GE, Discovery
MR 750 and Signa HDxt). Axial T2-weighted images collected in
DICOM format were acquired. The parameters for the images were
as follows: repetition time 2699–4480 msec, echo time 67–
117 msec, flip angle 111�–142�, slice thickness 4–6 mm, pixel size
1.25 mm � 1.25 mm, and matrix size 512 � 512.

Image Processing
To build models that could automatically segment the per-
inasopharyngeal area and recognize diseases in this area, datasets for
training segmentation DL models and for training nasopharyngeal
disorders classification DL models need to be prepared.

Dataset for Training Segmentation DL Models
Six hundred slices were randomly selected from all categories of dis-
ease images to establish the dataset. The perinasopharyngeal area in
the image was marked using the ITK-SNAP software (Version 3.6.0,

TABLE 1. Characteristics of Patients in the Training and Test Cohorts

Training Cohort
Slices (Patient)

Test Cohort
Slices (Patient) Total Slices (Patient) Age Range (year)

Sex

M F

NPC 4529 (1369) 992 (454) 5521(1823) 16–82 1302 521

LH 231 (159) 71 (53) 302 (212) 14–67 97 115

Lymphoma 152 (85) 38 (29) 190 (114) 14–81 83 31

Chordoma 362 (84) 115 (29) 377 (113) 14–76 78 35

Craniopharyngioma 328 (169) 75 (54) 403 (223) 14–77 146 77

Normal 4375 (-) 1353 (-) 5728 (-) - - -

Total 9977 (1866) 2644 (619) 12621 (2485) 14–82 1706 779

The training and test groups were divided by patient as a unit, according to an approximate ratio of 3:1. For all categories of diseases,
we only selected the slices with a visible mass near the nasopharyngeal area, and the slices with a mass that was very small or beyond the
perinasopharyngeal area were not included. The images of the normal nasopharynx were obtained from the MRIs of 600 people under-
going routine physical examinations and nontumor slices in the perinasopharyngeal area of the MRIs of the five diseases mentioned. As
the number of these patients cannot be effectively determined, “-” is used.
NPC = nasopharyngeal carcinoma; LH = nasopharyngeal lymphatic hyperplasia; Normal = normal nasopharynx; M = Male;
F = Female.
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University of Pennsylvania, Philadelphia, PA, USA).5 The task was
performed by a junior otolaryngologist (L.S., with 3 years of experi-
ence) and reviewed by another senior otolaryngologist (D.Y.Q., with
10 years of experience). The definition of the perinasopharyngeal
area was described in the Dataset for Segmentation section of
Supporting Information.

Dataset for Training Classification DL Models
The dataset of the classification model included a total of 12,621
images. The patients in each category were divided into a training
cohort and a test cohort in a 3:1 ratio. To explore whether the
method of training DL models based on anatomical partition has
the advantage of reducing data costs, we randomly assigned 50%

FIGURE 1: Semantic segmentation models based on U-net and Deeplabv3 were trained to automatically generate the seg112 and
seg224 images.

FIGURE 2: Training of the four neural networks using the nine datasets (full, seg112, and seg224 images, each with 100%, 50%, and
25% datasets). LH = nasopharyngeal lymphoid hyperplasia; NPC = nasopharyngeal carcinoma.
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images and 25% images of the training cohort of each category to
form two new datasets (50% and 25% dataset) and compared the
performances of the DL models trained in different datasets. Fur-
thermore, to explore whether the method of training DL models
based on anatomical partition can improve the performance of the
DL model compared to the traditional method based on the full
image (512 � 512), the better-performing segmentation DL model
was employed to construct two new image formats (the seg112
image [112 � 112] and seg224 image [224 � 224]) from the full
images. To obtain a seg112 image, the geometric center of the seg-
mentation region predicted by the employed segmentation DL
model was extended 56 pixels up, down, left, and right, respectively,
to form a 112 � 112 square segmentation region. The seg224 image
was obtained by extending the geometric center by 112 pixels using
the same method. Therefore, nine datasets (full image, seg112
image, and seg224 image, each with 100% dataset, 50% dataset,
and 25% dataset) were created for training the nasopharyngeal dis-
eases classification DL models.

Network Architecture
Our platform was based on the Pytorch library (version 1.9.0) with
CUDA (version 10.0) for GPU (NVIDIA Tesla T4, NVIDIA cor-
poration, Santa Clara, CA, USA) acceleration on a Windows operat-
ing system (Server 2019 data center version 64 bit, 8 vCPU

31 GiB). The U-net6 and the Deeplabv37 were used to build the
semantic segmentation models (Fig. 1). The U-net and the
Deeplabv3 were used to build the semantic segmentation models
while the RMSprop optimizer was used to train the models with a
batch size of 32, and the initial learning rate was set to 0.001. Both
semantic segmentation models were trained for 40 epochs. Four
common pretrained DL networks were transferred for diseases classi-
fication DL models building: EfficientNet-B0,8 Legacy SE-
ResNet34,9 MobileNetV3 Large100,10 and DenseNet121.11 The
nine datasets were used for training each model separately. There-
fore, a total of 36 (4 � 9) DL models for nasopharyngeal diseases
classification were established (Fig. 2). The stochastic gradient
descent (SGD) optimizer was used to train the networks with a
batch size of 32, the initial learning rate was set to 0.001, and each
model was trained for 40 epochs.

Quantitative Evaluation Scheme of Interpretability
The interpretability of the models is extremely important when AI is
applied in the medical field. When the prediction basis of an AI
model is not well understood and if it is unknown when it may be
wrong, it is difficult to entrust medical decisions from its results,
especially since neural networks are often described as black box
models.12,13 Considering that interpretability differs significantly
between tasks because it is highly subjective and the Grad-CAM,14

FIGURE 3: Evaluation rules of interpretability of deep learning (DL) model. The red area represents the area where the lesion is
located, and the yellow-green bright area is the extracted feature maps which indicates the classification basis of the model. The
Grad-CAM diagrams of A1, A2, and A3 show that the features extracted by the model are almost not in the lesion area, which is
rated as 0; B1, B2, and B3 show that only a small part of the features extracted by the model are in the lesion area, which is rated as
0.25 points; C1, C2, and C3 show that about half of the features extracted by the model are in the lesion area, which is rated as 0.5
points; D1, D2, and D3 show that most of the features extracted by the model are in the lesion area, which is rated as 0.75; E1, E2,
and E3 show that almost all the features extracted by the model are in the lesion area, which is rated as 1 point.
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which is generated based on neural network feature engineering,
does not allow for a quantitative evaluation of the model’s interpret-
ability, we developed a quantitative evaluation scheme for Grad-
CAM in a group that included two radiologists after consulting with
an AI expert (G.X.Q. from School of Computer Science, Wuhan
University). The quantitative evaluation of the interpretability of the
DL model was developed based on the experience of the radiologists
in diagnosing nasopharyngeal lesions (mainly based on the internal
features of the mass). The evaluation criteria were set as follows:
almost all the bright yellow areas on Grad-CAM were on the mass,
1 point; most of the bright yellow areas were on the mass, 0.75
points; approximately half of the bright yellow areas were on the
mass, 0.5 points; only few yellow bright areas were on the mass,
0.25 points; and almost all bright yellow areas were not on the mass,
0 points (Fig. 3). Two otolaryngologists (L.S. with 5 years of experi-
ence and Z.Z.L. with 4 years of experience) and a radiologist (C.X.
X. with 15 years of experience) independently scored each correctly
classified Grad-CAM images and calculated the average Grad-CAM
score of each model.

Statistical Analysis
Dice similarity coefficients (Dice) were used to evaluate the perfor-
mance of the semantic segmentation models. The receiver operating
characteristic (ROC) curves were used to evaluate the performance
of classification models. As there were 36 classification models in this
study, the mean value of the area under the curve (AUC) of each

model for each dataset was calculated to facilitate the analysis of the
results. The AUC of each model for each disease was grouped based
on the 100%, 50%, and 25% datasets, respectively, and analysis of
variance was used to compare the performance of the models built
with the three datasets. Independent samples t-test was used to com-
pare Grad-CAM score. Analyses were performed using IBM SPSS
Statistics for Windows, version 24.0 (IBM Corp., Armonk, NY,
USA). Statistical significance was set at P < 0.05.

Results
Results of the Semantic Segmentation Models
After 40 epochs of training, the performances of U-net and
Deeplabv3 quickly stabilized. The Dice scores of the U-net
and Deeplabv3 were 0.805 � 0.021 and 0.897 � 0.029,
respectively. Because the performance of Deeplabv3 was bet-
ter than that of U-net, the seg112 and seg224 images were
generated from the full images using the trained Deeplabv3.
The examples of segmentation for both models are displayed
in Fig. 4.

Performance of Classification Models
When the 100% dataset was used as the training dataset of
the models, the aAUCs of the EfficientNet-B0, Legacy SE-
ResNet34, MobileNetV3 Large100, and DenseNet121

FIGURE 4: Segmentation examples of U-net and Deeplabv3.
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trained with seg112 images were 0.955 � 0.064,
0.943 � 0.051, 0.957 � 0.043, and 0.942 � 0.059, respec-
tively, while for those trained with seg224 images, the aAUCs
were 0.965 � 0.036, 0.937 � 0.077, 0.943 � 0.050, and
0.947 � 0.054, respectively, and for those trained with full
images, the aAUCs were 0.940 � 0.055, 0.928 � 0.061,
0.935 � 0.047, and 0.938 � 0.063, respectively (Fig. 5). When
evaluated using the ROC curve, the DL models trained with
the 100% dataset show similar performance with the seg112,
seg224, and full images (P = 0.611). The mean aAUC of the
four DL models trained with the full image (0.935 � 0.053)

was 0.014 and 0.013 lower than the mean aAUC of the four
DL models trained with the seg112 image (0.949 � 0.052) and
seg224 image (0.948 � 0.053), respectively (Fig. 6).

When the 50% dataset was used as the training dataset of
the models, the aAUCs of the EfficientNet-B0, Legacy SE-
ResNet34, MobileNetV3 Large100, and DenseNet121 net-
works trained with seg112 images were 0.905 � 0.085,
0.925 � 0.054, 0.875 � 0.112, and 0.915 � 0.064, respec-
tively, while for those trained with seg224 images, the aAUCs
were 0.875 � 0.099, 0.862 � 0.095, 0.863 � 0.111, and
0.845 � 0.084, respectively, and for those trained with full
images, the aAUCs were 0.863 � 0.132, 0.833 � 0.089,
0.772 � 0.155, and 0.753 � 0.145, respectively (Fig. 7). The
performances of the DL models trained with the 50% dataset
were significantly lower than those of the neural networks
trained with the 100% dataset (Fig. 6). Among them, the per-
formance with the seg112 images dropped by 0.044, seg224
images by 0.087, and full images by 0.130. The MobileNetV3
Large100 and DenseNet121 trained with the full images lost
the ability to discriminate chordoma (AUC is close to 0.5).

When the 25% dataset was used as the training dataset
of the models, the aAUCs of the EfficientNet-B0, Legacy SE-
ResNet34, MobileNetV3 Large100, and DenseNet121 net-
works trained with the seg112 images were 0.863 � 0.116,
0.830 � 0.107, 0.777 � 0.136, and 0.820 � 0.118,

FIGURE 5: Receiver operating characteristic (ROC) curves of the EfficientNet-B0, Legacy SE-ResNet34, MobileNetV3 Large100, and
DenseNet121 trained with the seg112, seg224, and full images using the 100% dataset in the test cohort. aAUC = average area
under the curve of the six categories.
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FIGURE 6: Average areas under the curve (aAUCs) of the models
trained with different image sizes (112 � 112, 224 � 224, and
512 � 512) using 100%, 50%, and 25% datasets in the test cohort.
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FIGURE 7: Receiver operating characteristic (ROC) curves of the EfficientNet-B0, Legacy SE-ResNet34, MobileNetV3 Large100, and
DenseNet121 trained with the seg112, seg224, and full images using the 50% dataset in the test cohort. aAUC = average area
under the curve of the six categories.

FIGURE 8: Receiver operating characteristic (ROC) curves of the EfficientNet-B0, Legacy SE-ResNet34, MobileNetV3 Large100, and
DenseNet121 trained with the seg112, seg224, and full images using the 25% dataset in the test cohort. aAUC = average area
under the curve of the six categories.
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respectively, while for those trained with seg224 images, the
aAUCs were 0.830 � 0.094, 0.797 � 0.155, 0.697 � 0.199,
and 0.735 � 0.156, respectively, and for those trained with
full images, the aAUCs were 0.740 � 0.139, 0.662 � 0.126,
0.560 � 0.186, and 0.597 � 0.117, respectively (Fig. 8).
The mean aAUC of the four DL models trained with the full
image (0.640 � 0.154) was significantly lower than the mean
aAUC of the four DL models trained with the seg112 image
(0.823 � 0.116) and the seg224 image (0.765 � 0.155),
respectively (Fig. 6). The performances of the four neural net-
works trained with the 25% dataset were significantly lower
than those of the neural network trained with the 50%
dataset. The ROC curves of MobileNetV3 Large100 and
DenseNet121 trained with the full images almost collapsed,
and they lost the ability to discriminate most diseases (the
AUC of the model is close to 0.5 for most diseases), and the
best-performing EfficientNet-B0 lost the ability to discrimi-
nate chordoma (AUC = 0.53). Furthermore, the classifica-
tion ability of the models trained with the seg224 images
began to decline sharply.

Evaluation of Interpretability
In the test cohort of each disease category under the 100%
dataset of the full, seg224, and seg112 images, the four
trained neural networks generated a total of 31,728 Grad-
CAM images. Figure 9 presents the evaluation results of each
model by reviewers 1, 2, and 3. The results show that the
interpretability of the model trained by the seg112 images
(0.735 � 0.097) is significantly better than those of the
models trained by the seg224 (0.242 � 0.037) and full
images (0.245 � 0.043). Examples of the Grad-CAM images
of the four trained neural networks for the five types of dis-
eases and normal nasopharynx are presented in the Results
section of the Supporting Information.

Discussion
In this study, using the nasopharyngeal region on MRI as an
example, we developed a method of training anatomical
partition-based DL model for automatic disease recognition
using nasopharyngeal MRI. The results indicate that the
method enabled the DL model to perform better with a small
dataset compared with the traditional method. Moreover, we
established a quantitative evaluation method for evaluating
interpretability of the DL model based on the characteristics
of the tasks in this study. The results indicate that the train-
ing method we developed equips the DL model with better
interpretability.

Traditional machine learning models for classification
tasks, such as the classic cat and dog recognition model,15

label the images and input them into the network for train-
ing, which could not reflect prior knowledge. The same strat-
egy is used in many medical image processing tasks.16,17

However, medical images possess special features that differ
from nonmedical images. For example, the pixels that repre-
sent animals can be anywhere in the image, whereas anatomi-
cally based diseases tend to be in a corresponding anatomical
area in MRI. To reflect this difference and provide the model
with prior anatomical knowledge, we envisioned that when
training DL models to automatically recognize diseases on
MRI, the whole image can be anatomically decomposed. The
results are in line with our assumptions that the performance
of the models trained with the seg112 image is better than
those trained with the full image under the same training
dataset and the performance of the models trained with the
full image decreases sharply when the size of the training
dataset is reduced. Whereas, the models trained with the
seg112 image maintained adequate performance even with
the 25% dataset. Medical image analysis method using neural
networks based on limited data is an important issue to be

FIGURE 9: Interpretability of the four models evaluated by reviewer 1, reviewer 2, and reviewer 3.
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addressed. Since the incidence of different diseases varies con-
siderably, only small datasets exist for many diseases, and data
imbalance is common in medicine. The issue of training a
robust DL model with a small dataset needs to be addressed
urgently. Computer experts are committed to constructing
effective mathematical algorithms to enable AI to extract valu-
able information from limited images.18,19 However, the spe-
cial features that make medical images different from
nonmedical pictures have not been paid enough attention.
Our training method provides a feasible solution from a phy-
sician’s perspective.

Since the interpretability of the DL model is closely
related to medical safety, it is difficult to entrust medical
decisions based on results from AI in which the predic-
tion basis is not yet well understood, especially since the
neural network is usually described as a black box.12,13

Many studies have claimed that a DL model has achieved
a high level of performance for a specific task, but the
interpretability of the model has not been evaluated.20,21

The prediction of the networks may be based on infor-
mation that is unrelated to prior medical knowledge. Our
results showed that the models trained with the seg112
images had better interpretability compared with the
models trained with the full images, which further affirms
the potential of the developed method in this study.

Another potential advantage of the developed
method in realizing automatic MRI recognition in the
future is that the training and update costs of the DL
model will be reduced. Training a DL model for auto-
matic recognition of diseases in MRI based on traditional
methods requires sufficient disease data to be collected at
one time. For example, MRI at the nasopharyngeal level
includes the temporal bone region, nasal cavity and par-
anasal sinus region, orbital region, intracranial region,
nasopharyngeal region, and parapharyngeal space region.
There are a variety of diseases in each region, and the
availability of image data from many of these diseases is
limited. Therefore, it takes time to collect image data of
all anatomical regions for DL model training based on tra-
ditional methods. In addition, the training cost of the net-
work is high and updating the network after incorporating
additional diseases is costly when the training cohort is
large and the disease categories are numerous. However,
training the DL model based on an anatomical partition
does not require a large dataset at one time, as only the
diseases of the corresponding anatomical area are required.
Moreover, updating the DL model for the full image
could be achieved by updating only the anatomical
partition-based DL model, which reduces cost. Therefore,
this training scheme has the potential to be more feasible
than conventional methods despite the need for further
studies to establish its reliability.

Limitations
First, the variety of the nasopharyngeal diseases and the sam-
ple size of disease included in the dataset were small, which
result to the DL model performing below the acceptable
clinical threshold for diagnostic imaging. Second, external
validation, which can verify the generalizability of the
model, was not performed. External validation is important
especially for studies that have trained a model for a specific
task. Considering that the purpose of our research was not
to train a state-of-art model, but to develop a methodology,
external validation was not considered. However, the gener-
alizability of the method could be investigated in future
studies.

Conclusion
Our study demonstrated that the method of training DL
model based on anatomical partition can potentially improve
performance, reduce data costs, and optimize the interpret-
ability of a DL model for automatic recognition of nasopha-
ryngeal diseases in MRI when compared with traditional
training methods.
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