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Abstract: The effect of statins on aminoglycoside-induced ototoxicity is controversial. This study
aimed to explore the role of pravastatin (PV) in kanamycin-induced hearing loss in rats. Adult rats
were intraperitoneally treated with 20 mg/kg/day of kanamycin (KM) for 10 days. In the PV- and
PV + KM-treated rats, 25 mg/kg/day of PV was intraperitoneally administered for 5 days. The
auditory brainstem response (ABR) thresholds were measured before and after drug treatment using
a smartEP system at 4, 8, 16, and 32 kHz. Cochlear changes in poly ADP-ribose (PAR) polymerase
(PARP), PAR, and caspase 3 were estimated using Western blotting. PV administration did not
increase the ABR thresholds. The KM-treated rats showed elevated ABR thresholds at 4, 8, 16, and
32 kHz. The PV + KM-treated rats demonstrated lower ABR thresholds than the KM-treated rats at 4,
8, and 16 kHz. The cochlear outer hair cells and spiral ganglion cells were relatively preserved in
the PV + KM-treated rats when compared with that in the KM-treated rats. The cochlear expression
levels of PARP, PAR, and caspase 3 were higher in the KM-treated rats. The PV + KM-treated rats
showed lower levels of PARP, PAR, and caspase 3 than the KM-treated rats. PV protected cochleae
from KM-induced hearing loss in rats. The regulation of autophagy and apoptosis mediated the
otoprotective effects of PV.
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1. Introduction

Aminoglycosides induce irreversible hearing loss by activating oxidative stress, and
the resulting inflammation induces cell death in cochlear outer hair cells and spiral ganglion
cells [1]. Gentamicin-induced activation of caspases leads to apoptosis in cochlear hair
cells, which was reversed by caspase inhibitors in a study using guinea pigs [2]. In
addition to activated apoptosis, excessive autophagy leads to cochlear injury resulting in
aminoglycoside-induced hearing loss [3]. Controlled or adaptive autophagy promotes
cell survival by degrading cellular organelles via autophagosomes [4]. The dysregulated
autophagy accelerates apoptosis. Aminoglycosides induce time-dependent accumulation
of autophagosomes in the organ of Corti, thereby aggravating auditory thresholds in
rats [5]. The inhibition of autophagy using rapamycin improves gentamicin-induced
hearing loss [5]. Rapamycin decreases autophagic signaling via the mammalian target of
rapamycin (mTOR), a serine-threonine kinase [6].

Statins are inhibitors of 2-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reduc-
tase, a rate-limiting enzyme for cholesterol synthesis, and are used to lower cholesterol lev-
els in clinical settings. In addition to their lipid-lowering capacities, statins have pleiotropic
functions that relieve inflammation and neurodegeneration [7,8]. Furthermore, statins help
preserve the cochlea against noise, aging, and cisplatin treatment [9,10]. In a preclinical
study, the otoprotective effect of pravastatin (PV) was observed in noise-induced hearing
loss in mice [9]. In addition, a clinical trial demonstrated a lower rate of cisplatin-induced
hearing loss with concurrent prescription of atorvastatin in patients with head and neck
cancer (adjusted odds ratio = 0.47, 95% confidence intervals = 0.30–0.78) [10].
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The effects of statins on aminoglycoside-induced hearing loss have been investi-
gated [11–13]. An in vitro study demonstrated that simvastatin protected the hair cells of
the organ of Corti against gentamicin-induced ototoxicity [13]. On the contrary, simvastatin
induced hair loss with a dose–response association in a study using a zebrafish lateral
line [12]. The zebrafish lateral line lacks supporting structures, including the stria vascu-
laris, and resembles vestibular hair cells more than cochlear hair cells. Another in vitro and
ex vivo study reported decreased cytoplasmic projections in mouse cochlear neuroblasts
and primary rat cochlear explants after simvastatin treatment [11]. The neonatal cochleae
are vulnerable to drug toxicity, and supplementation with mevalonate can reverse the toxic
effects of simvastatin [11]. Thus, the toxic effect of statins were not determined in an in vivo
model. To unravel the effects of statins on aminoglycoside-induced ototoxicity, an in vivo
study in mammals is warranted.

We hypothesized that PV could attenuate cochlear injury induced by kanamycin (KM)
by alleviating oxidative stress and regulating autophagy. To examine this postulation, rats
with KM-induced ototoxicity were compared with those concurrently administered with
PV. A hydrophilic statin of PV was chosen because it was less likely to diffuse through
nonspecific tissues than lipophilic statins and presented a pleiotropic mechanism different
from that of lipophilic statins [14,15].

2. Results

The hearing levels changed at 4, 8, 16, and 32 kHz after KM treatment (Figure 1). The
average auditory brainstem response (ABR) threshold at 4 kHz was 70.0 dB sound pressure
level (SPL) (SD = 5.35) in the post-KM-treated rats vs. 31.23 dB SPL (SD = 3.54) in the
pre-KM-treated rats (p < 0.001). At 8 kHz, the average ABR threshold was 68.75 dB SPL
(SD = 4.79) in the post-KM-treated rats vs. 42.50 dB SPL (SD = 1.64) in the pre-KM-treated
rats (p < 0.001). At 16 kHz, the pre- and post-KM-treated rats had ABR thresholds of
62.50 dB SPL (SD = 11.65) and 30.00 dB SPL (SD = 5.35), respectively (p < 0.001). At 32 kHz,
the pre- and post-KM-treated rats had ABR thresholds of 90.00 dB SPL (SD = 9.26) and
43.75 dB SPL (SD = 7.44), respectively (p < 0.001). The ABR thresholds of the control and PV
groups did not differ between pre- and post-treatment at any of the measured frequencies.
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Figure 1. The auditory brainstem response (ABR) thresholds at 4, 8, 16, and 32 kHz of each group 
were measured using smartEP system. The KM-treated rats demonstrated increased hearing thresh-
olds at 4, 8, 16, and 32 kHz after KM administration, compared with those before drug administra-
tion. The PV + KM-treated rats showed lower hearing thresholds at 4, 8, and 16 kHz than the KM-

Figure 1. The auditory brainstem response (ABR) thresholds at 4, 8, 16, and 32 kHz of each group were
measured using smartEP system. The KM-treated rats demonstrated increased hearing thresholds at
4, 8, 16, and 32 kHz after KM administration, compared with those before drug administration. The
PV + KM-treated rats showed lower hearing thresholds at 4, 8, and 16 kHz than the KM-treated rats.
(* p < 0.05, paired t-test between pre- and post-drug treatment; ** p < 0.005, unpaired t-test between
groups).
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The PV group did not exhibit any changes in hearing levels. Histological examination
of cochleae showed that cochlear outer hair cells and spiral ganglion cells were preserved
in the PV rats (Figures 2 and 3).
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group (red: myosin 7a-positive cells, blue: DAPI-positive cells, purple: myosin 7a and DAPI-positive
cells; * p < 0.05, Mann–Whitney U test between the control and KM groups, ** p < 0.005, Mann–
Whitney U test between the KM and PV + KM groups).

The PV + KM group demonstrated a higher ABR threshold at 32 kHz after drug treat-
ment (75.00 dB SPL [SD = 20.70], p = 0.010) than before treatment (48.75 dB SPL (SD = 12.46)).
When compared with the KM group, the PV + KM group had lower ABR thresholds at 4, 8,
and 16 kHz (37.50 dB SPL (SD = 17.53), p < 0.001; 46.25 dB SPL (SD = 10.60), p = 0.002; and
35.00 dB SPL (SD = 10.69), p < 0.001, respectively). The ABR threshold at 32 kHz did not
differ between the KM and PV + KM groups.

The cochleae showed disorientation and loss of outer hair cells and spiral ganglion
cells following KM administration (Figure 2). However, the PV + KM-treated rats showed
oriented and intact organs of Corti when compared with the KM-treated rats. The KM-
treated rats demonstrated a higher loss of outer hair cells when compared with the vehicle
rats (13.69% (SD = 2.26) vs. 8.33% (SD = 2.84), p = 0.003) (Figure 3). The PV + KM-treated
rats showed preserved outer hair cells when compared with the KM-treated rats (13.89%
(SD = 2.13) vs. 10.61% (SD = 2.95), p = 0.040).

The expression of PARP, PAR, and caspase 3 was higher in the KM-treated rats than
in the vehicle rats (Figure 4). When compared with the vehicle rats, the KM-treated rats
demonstrated 1.85-fold higher levels of PARP (SD = 0.52, p = 0.005). The PAR expression
was 3.06-fold higher in the KM-treated rats than in the vehicle rats (SD = 1.06, p = 0.002).
Caspase 3 showed a 1.58-fold higher expression level in the KM-treated rats than in the
vehicle rats (SD = 0.38, p = 0.008).
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Figure 4. The Western blotting results of PARP, PAR, and caspase 3. The PV + KM group demonstrated
lower levels of PARP, PAR, and caspase 3 than the KM group (* p < 0.05, Mann–Whitney U test
between the control and KM groups; ** p < 0.005, Mann-Whitney U test between the KM and
PV + KM groups).

The expression levels of PARP, PAR, and caspase 3 were lower in the PV + KM than
that in the KM-treated rats: 1.85 (SD = 0.52) vs. 1.04 (SD = 0.31), p = 0.009 for PARP; 3.06
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(SD = 1.06) vs. 1.00 (SD = 0.54), p = 0.002 for PAR; 1.58 (SD = 0.38) vs. 1.00 (SD = 0.21),
p = 0.008 for caspase 3.

3. Discussion

Pravastatin alleviated cochlear injury and hearing loss induced by kanamycin in rat
models. Cochlear outer hair cells and spiral ganglion cells were less injured in the PV + KM-
treated rats than that in the KM-treated rats. Furthermore, the hearing thresholds were
lower at 4, 8, and 16 kHz in the PV + KM-treated rats than those in the KM-treated rats. PV
inhibited apoptosis and dysregulated autophagy in the KM-treated rats. The results of the
present study improved previous knowledge by identifying the otoprotective effects of PV
in an in vivo model of aminoglycoside-induced hearing loss.

In the present study, PARP, PAR, and caspase 3 levels increased following KM adminis-
tration. PARP is a nuclear enzyme that can be activated by external stimuli such as oxidative
stress [16]. PARP activation depletes NAD+ and ATP and accumulates PAR polymer, which
in turn binds to AIF and translocates to the nucleus [17]. The energy depletion of NAD+
and ATP can result in necrosis. In addition, PARP-induced PAR accumulation is a char-
acteristic of parthanatos (PARP-dependent cell death). Under oxidative stress, PARP-1 is
activated and promotes PAR synthesis in cochlear marginal cells of the stria vascularis [18].
Moreover, recent data have pointed to the mediating role of PARP in autophagy [15]. As
PARP, PAR, and caspase 3 were upregulated in the KM-treated rats, it is presumed that
multiple regulated cell death mechanisms of apoptosis, parthanatos, and autophagy were
activated in KM-induced ototoxicity. In line with the present results, previous research has
demonstrated activation of PARP-1 and autophagy after aminoglycoside administration.
Streptomycin treatment induces AIF translocation from the mitochondria to the cytoplasm,
which activates PARP-1 in neonatal rat cochlear explants [19]. AIF has dual functions of re-
dox regulation in the mitochondria and apoptosis in the nucleus, referred to as necroptosis
(programmed necrosis) [20].

PV treatment ameliorated the increased expression of PARP, PAR, and caspase 3 in
the KM-induced ototoxicity model in the present study. Similarly, several previous
studies have reported the relieving effects of statins on PARP activation and regulation
of autophagy [15,21]. PV modulated autophagy through pathways involving PARP in a
cell line study [15]. Furthermore, PV protects against dexamethasone-induced avascular
necrosis of the femoral head by regulating autophagy [21]. Simvastatin, a lipophilic statin,
diminished gentamicin-induced ototoxicity via activation of Akt signaling, which is related
to autophagy, in an in vitro study [13]. In addition, PV can protect the cochlea from ototoxic
injury by relieving oxidative stress [9]. Statins are thought to relieve oxidative stress by in-
hibiting the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex [22].
By suppressing isoprenylation, statins inhibit the activation of small GTP-binding proteins,
which serve as activators of the NADPH oxidase complex [22]. In addition to the protective
effects on outer hair cells of cochlea, PV administration improved the spiral ganglion cell
population in the present study. To support our findings, an in vitro drug screening study
demonstrated another statin, cerivastatin, promoted and regenerated neurites in the mouse
spiral ganglia [23].

As statins, including pravastatin, are clinically available drugs, the applications of
statins in patients with aminoglycoside-induced hearing loss could be cost-effective. The
dose adjustment for the clinical use of pravastatin requires further study. We used a hy-
drophilic statin, pravastatin, whereas prior studies on the effects of statins mostly used
lipophilic statins, such as atorvastatin, simvastatin, and lovastatin [10,11,13,24]. We admin-
istered a hydrophilic statin because lipophilic statins have potential ototoxic effects in vitro
and ex vivo [11,12]. In addition, lipophilic statins induce a higher risk of adverse effects,
such as statin-associated muscle symptoms and neurologic disorders due to non-selective
diffusion and solubility across the blood–brain barrier [14,24]. The present study was
limited due to the lack of the information on the optimal types and dose of statins on the
ototoxicity. Future study will be warranted to delineate the current limitations.
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4. Materials and Methods
4.1. Animal Groups and Noise Exposure

This study was approved by the Institutional Animal Care and Use Committee of
the CHA University Medical School (IACUC200166). The study followed the guidelines
of the Institutional Animal Care and Use Committee of CHA University Medical School.
During the study period, standard lab chow and water were provided regularly. The
32 Sprague–Dawley rats (postnatal 8–11 weeks, n = 8 per group) were divided into the
control, PV, KM, and PV + KM groups (Figure 5). Rats in the PV group were administered
PV at 25 mg/kg/day intraperitoneally (i.p.) for the first 5 days. The dose of PV was
selected based on the previous study [9]. Rats in the KM group were administered KM
at 20 mg/kg/day i.p. for 10 days [25]. The PV + KM-treated rats were injected with
25 mg/kg/day of PV and 20 mg/kg/day of KM i.p. for the first 5 days, followed by
20 mg/kg/day of KM for 5 days. The vehicle rats were treated with equal amounts
(50 mL/kg) of normal saline for 10 days. After hearing levels were examined, all rats were
euthanized with CO2 gas. The cochleae were dissected, and hematoxylin and eosin (H&E)
stain (ab245880, abcam, Cambridge, UK) was used for histological examination (cochlear
whole mounts, n = 2 per group) and Western blotting (n = 6 per group).
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were classified into the vehicle, pravastatin (PV), kanamycin (KM), and PV + KM groups (n = 8 per
group). Rats in the KM group were administered KM (20 mg/kg/day) i.p. for 10 days. Rats in the PV
group were administered PV (25 mg/kg/day) i.p. for 5 days. The rats in the PV + KM group were
injected with 25 mg/kg/day of PV and 20 mg/kg/day of KM i.p. for the first 5 days, and then with
20 mg/kg/day of KM for 5 days.

4.2. Hearing Function Tests

The hearing levels were examined before and after drug administration in all rats.
The auditory brainstem response (ABR) thresholds at 4, 8, 16, and 32 kHz were estimated
(SmartEP, Intelligent Hearing System; Miami, FL, USA) [26] (Figure 2). The reference,
ground, and ground electrodes were placed at the vertex, contralateral thigh, and ipsilat-
eral retroauricular area, respectively. Pure tone auditory stimuli of 4, 8, 16, and 32 kHz
(duration: 1562 µs, envelope: Blackman, stimulation rate: 21.1/s, amplitude: 90–20 dB SPL,
1024 sweeps) were delivered using an EC1 electrostatic speaker coupled with an earphone.
The hearing threshold was set as the lowest sound amplitude that evoked Wave III.

4.3. Histological Examination of Cochleae

Cochlear whole mounts (two rats per group) were prepared to examine the mor-
phology of the outer hair cells of the cochlea [27,28]. The cochleae were dissected, and
the otic capsule bone was decalcified. Free-floating, dissected cochlear outer hair cells
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were subjected to immunofluorescent staining. The primary antibodies 1:1000 anti-myosin
7A (Sc74516; Santa Cruz) were incubated overnight at 4 ◦C. The secondary antibodies
1:2000 Alexa 594 anti-mouse IgG (ab150108; Abcam) and 4′,6-diamidino-2-phenylindole
dihydrochloride (DAPI) were incubated for 2–3 h. The cochlear tissues were mounted
on slides and imaged using a confocal microscope (Zeiss LSM 880; Zeiss, Land Baden-
Württemberg, Germany).

H&E staining (n = 2 rats per group) was performed to examine the organ of Corti and
spiral ganglion cells [29,30]. Dissected cochleae were embedded in paraffin blocks, and the
cochlear blocks were sectioned at a thickness of 10 µm. The slides were stained with H&E
solutions (hematoxylin for 5 min and eosin for 45 s). The stained slides were examined
using the EVOSTM XL Core Imaging System (#AMEX1000; Invitrogen, Carlsbad, CA, USA).

4.4. Western Blotting

The protein expression levels of poly ADP-ribose (PAR) polymerase (PARP), PAR,
and caspase 3 were examined in each group of rats (n = 4 rats per group). Proteins were
extracted from cochlear tissue (Pre-prep, Intron). The protein concentrations were calcu-
lated using a microplate reader and compared with bicinchoninic acid (BCA) standards.
The quantified equivalent quantities of proteins were resolved using 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in running buffer for 90 min at
80–100 V. Gels were then transferred to polyvinylidene difluoride membranes (Merck
Millipore, Burlington, MA, USA) after activation in 20% methanol. SDS-PAGE was con-
ducted in blocking buffer (5% non-fat dry milk in Tris-buffered saline containing Tween-20)
for 90 min at 300 mA. The membranes were socked in 1:1000 of anti-PARP (9532S; Cell
Signaling Technology, Danvers, MA, USA), anti-PAR (ALX-804-220-R100; Enzo, Farming-
dale, NY, USA), and anti-caspase 3 (9662S; Cell Signaling Technology, Danvers, MA, USA)
overnight in a cold room (4 ◦C). After washing with TBST (Tris-buffered saline with 0.1%
Tween® 20 Detergent) solution three times, the membranes were incubated with 1:2000 of
horseradish peroxidase (HRP)-conjugated secondary antibodies (anti-rabbit IgG, HRP-
linked; #7074S, Cell Signaling Technology and goat anti-mouse IgG H&L (HRP); #ab97023,
Abcam, Cambridge, UK) for 2 h. After washing with TBST solution, the membranes were
activated in an enhanced chemiluminescence kit (Bio-Rad, Hercules, CA, USA) for 1–2 min.
The membranes were analyzed using the ImageJ software (National Institutes of Health,
Bethesda, MD, USA). Each protein band was estimated, and the intensity of each band was
compared with that of β-actin. The protein expression levels in each group were evaluated
based on that in the vehicle group.

4.5. Statistical Analysis

Hearing levels were analyzed using paired t-tests for each group (pre- vs. post-
treatment). After testing for a normal distribution using the Shapiro–Wilk test, cochlear
outer hair cell loss and protein expression in each group were analyzed using the Mann–
Whitney U test. All data are presented as the average and standard deviation (SD). Statistical
significance was set at p ≤ 0.05. All analyses were conducted using the SPSS software (ver.
21.0; IBM Corp.; Armonk, NY, USA).

5. Conclusions

PV attenuates KM-induced cochlear injury and hearing loss in rats. Moreover, PV may
control the dysregulation of apoptosis and autophagy via molecular cascades involving
PARP and PAR.
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