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Abstract

Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in
medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered
skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either
embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and
has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells
called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides
cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vasculariza-
tion of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved
allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most
recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE
with innovative methods of molecular biology and stem-cell technology appears to be very promising.

Keywords: tissue engineering e regenerative medicine  cell transplantation e gene transfer @ mesenchymal stem cells @ AV
loop e vascularization e angiogenesis e telocytes @ embryonal stem cells

Introduction

Questions of the quality of life (QOL) of any individual human being  and are afraid of depending on medical machinery and nursing. With
have to be inevitably considered when tackling the problems of age-  all the tremendous achievements of modern medicine, we have
ing, because many people are seriously concerned about their future  become able to extend human life span considerably. Nevertheless,
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Fig. 1 ‘The Fountain of Youth’ is the title of a painting of Lucas Cranach
the elder of 1546. The picture represents a bath in which from one side
aged women rise in the water which they leave on the other side rejuve-
nated. Source : Wikipedia[http://de.wikipedia.org/w/index.php?title=Datei:
Lucas_Cranach_d._%C3%84._007.jpg&filetimestamp=20050519080127

this achievement often comes along with a dramatic loss of the QOL.
The hope to find Fountains of Youth is possibly one of the oldest
dreams of mankind and stands for the desire to live a long and ful-
filled life without loss of quality (Fig. 1).

When the idea of constructing living tissue equivalents and/or
organs in the laboratory by means of cell-culture techniques and the
use of biomaterials first came up and was then coined ‘Tissue Engi-
neering’ this multi-disciplinary approach to regenerate lost tissue or
organ functions was conceived as the light at the end of the tunnel to
overcome organ shortage in transplantation medicine and to overcome
the hitherto unsolved donor site morbidity problems associated with
tissue transfer. The mere idea of creating tissue in the laboratory has
led to many collaborations between clinicians and specialists from var-
ious basic areas in biomedicine and engineering and applied sciences.
Hence, researchers in the field of tissue engineering and RM are now
applying the principles of cell culture and transplantation, material sci-
ence and bioengineering to construct biological substitutes that will
restore and maintain normal function in diseased and injured tissues
[1-3]. Scientific specialties that seem not to be involved in the first
place are nevertheless also intrigued by this emerging field, as can be
seen by international conferences of Computational Biology and Bioin-
formatics that strive to identify the rapidly growing body of knowledge
with statistical techniques, genetic networking, comparative genomics,
computational biochemistry and biophysics, computational biomodel-
ling, macromolecular structure prediction, mathematical biology and
medical informatics, to name just a few examples.

However, despite tremendous efforts and progress in standardiz-
ing cell culture techniques and developing customized biomaterials to
substitute lost organ functions, the translation of laboratory achieve-
ments into clinical scenarios has not been equally successful so far.
This is partly due to the three dimensional attitude of organs and tis-
sue that necessitate a microvascular network to allow for sufficient
blood flow and oxygenation of cells even in the middle of any given
construct to keep them viable. Extrinsic vascularization depends on
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the ingrowth of a vascular network from the outside. This is a natural
limitation to cell survival within three dimensional scaffolds during
the initial phase following implantation of tissue-engineered substi-
tutes into recipient organisms.

Several ways have been followed to overcome these problems.
One way was to combine cell-seeded tissue substitutes by including
endothelial cells to achieve earlier vascular ingrowth [4]. However,
this idea may be helpful in the long-term, but does not circumvent the
critical problem of the initial lack of vascular supply. This holds also
true for the addition of various growth factors that may enhance any
kind of vascularization, but still depends on the ingrowth of capillaries
from the recipient into the middle of any given construct, which is a
process of at least several days. Other groups therefore have intro-
duced more surgical approaches by creating a vascular network first
and then transplant completely vascularized constructs using arterial
and venous loop models. Such models are by far more complex and
depend on an enormous microsurgical expertise to guarantee suc-
cessful vascular connections on an supramicrosurgical level [5]. Uti-
lizing this technique in small animal models and in a clinically relevant
scale in large animal models [6], first clinical results with long-term
success over more than 4 years are now on the verge.

While all ‘classical’ TE approaches depend on the use of autolo-
gous adult or progenitor cells with more or less capacity of cell
renewal and limited cell division cycles, to avoid the problem of immu-
nosuppression, another brilliant perspective was added when tech-
niques of harvesting and modulating adult or embryonic stem cells
were standardized, and then logically became a target in TE. The utili-
zation of the stem-cell capacity seems to be a logical step within the
TE concept and has spread much optimism among the TE community.
Especially for the substitution of worn out tissue, it is more than
promising that organ regeneration with stem cells, formerly unknown
in adult mammals, seems to be as logical as the basic TE concept was
thought to be when the idea first came up in the early 1990s.

According to Atala, the stem-cell field is also advancing rapidly,
opening new avenues for this type of therapy. For example, therapeu-
tic cloning and cellular reprogramming may one day provide a poten-
tially limitless source of cells for TE applications. While stem cells are
still in the research phase, some therapies arising from TE endeav-
ours have already entered the clinical setting successfully, indicating
the promise RM holds for the future [7]. The focus in TE and RM for
human applications is currently directed towards adult stem cells,
mesenchymal stem cells (MSC) and induced pluripotent stem cells
[8]. The latter ones are somatic cells (such as skin-derived fibroblasts
etc.), reprogrammed into an embryonic cell-like state. This is
achieved with somatic cell nuclear transfer or through ectopic expres-
sion of pluripotency-specific transcription factors with subsequent
culturing under embryonic stem-cell conditions [9]. Although numer-
ous laboratories around the world are now engaged in the develop-
ment of new tools such as stem cells and biologically active
scaffolds, it is not yet clear if this technique really is at the threshold
of maturity as a clinical method for restoration of organ function in
humans, as some authors propagate [7].

Nevertheless, in general, it has become clear that the stem-cell
promise has entered the field of TE and the term Regenerative Medi-
cine is now conceived as the superordinate concept [10-12]. It has
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been said that scientists now are taking fresh looks at well-known
clinical problems of replacement of a large variety of organs, such as
the bone [13], skin [14], the spinal cord [15], peripheral nerves [16],
articular cartilage [17], the conjunctiva [18], heart valves [19] and
urological organs [20], while still other investigators are working out
the mechanistic pathways of regeneration and the theoretical implica-
tions of growing back organs in an adult [21].

Intrinsic and extrinsic vascularization
of TE constructs — the AV-loop model

The basic potential of regeneration of three dimensional tissue structures
depends on the presence of a suitable biomaterial that can promote cell
growth and proliferation. Only when such biomaterials can effectively
interact with the surrounding tissue and incite the host to populate the
graft with new tissue, the survival of any transplanted cell within a con-
struct is made possible and can ultimately lead to the regeneration of lost
or malfunctioning tissue [22]. The induction of angiogenesis by means
of microsurgical creation of an arterio-venous loop has been shown to
be one very effective way to achieve full blood supply to TE constructs
from the very first moment after transplantation [23-29] (Fig. 2).

The clinical scenario encompasses a number of difficult problems
to solve as radiation therapy has become one of the main treatment
options within the concept of multimodal tumour therapy. Following
irradiation, the recipient site for any kind of tissue transfer lacks a
normal vascularization potential. Neovascularization cannot easily
appear from irradiated wound beds, and makes the common
approach of transplanting TE constructs that solely rely on extrinsic
vascularization from the periphery of the construct to appear compul-
sively ineffective [30]. As oxygen and nutrition supply of the cells is
limited to @ maximum range of 200 um into a given matrix, the nutri-
tional supply by diffusion alone necessarily brings difficulties with
itself. To overcome the oftentimes limited survival of cells in the cen-
tre of a large construct — because of the initially lacking vasculariza-
tion — the in vivo creation of arterio-venous loops evolved over the

Fig. 2Micro Ct of TricOS® matrix in an AV-loop within an isolation
chamber at 2 weeks after implantation showing sprouting of new micro-
vessels out of the arteriovenous loop.
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last years. It aims to generate constructs with a predictable and dedi-
cated neovascular network that allows for sufficient vascular supply
directly after the vascular connection to the recipient bed has been
created [31] (Fig. 3). This necessitates microsurgical skills and
makes this approach highly dependent on expert microsurgeons. This
concept is clinically used in microsurgical centres to customize tis-
sues that are thought to be transplanted into a special problem wound
or defect zone as so called pre-fabricated or pre-laminated free flaps
[32-44] that rely on the intrinsic mode of vascularization and are not
depending on extrinsic vascularization. Although this type of flap is
usually not the first line of defect coverage, the requirements for more
complex clinical tissue replacement with various surfaces or custom-
ized soft- and hard-tissue flaps is increasing. However, this modifica-
tion clinically depends on at least two different interventions when 3D
complex tissue substitutes are to be implanted following their pre-
vascularization [45, 46]. The critical influence of the local recipient
environment is minimized with this technique.

Since intrinsic vascularization was found to be highly effective in
transplanting viable cells within a 3D tissue-engineered construct, our
group has combined this method with application of fibrin-gel immo-
bilized angiogenetic growth factors [24, 25] because of its controlled
release using fibrin gel as a drug-release system [47-56]. We also
combined the arteriovenous loop model with the standard approach
of extrinsic vascularization to enhance the ingrowth of nourishing
vessels and the arborization of the microvasculature. In summary,
Arkudas et al. were able to show that the combination of extrinsic
and intrinsic pathways significantly accelerates axial vascularization
of bioartificial tissues [57]. When the arteriovenous loop model that
combines extrinsic and intrinsic vascularization modes to enhance
vascularization of bioartificial matrices was modified in an experimen-
tal setting, an arteriovenous loop was created in the medial thighs of
24 rats and this loop was placed in a newly developed titanium cham-
ber. At various explantation time-points between 2 and 8 weeks, con-
structs were perfused by differently coloured dyes to determine the
amount of tissue vascularized by either the intrinsic or the extrinsic
vascular pathway. Although an equal number of blood vessels were
found originating from the centre and the periphery, 83% of all ves-
sels were found to have a connection to the intrinsic arteriovenous
loop system as soon as 2 weeks after implantation [57]. In this study,
a continuous increase of the relative proportion of vessels connected
to the arteriovenous loop was found over the observation period. At
8 weeks, communications between the newly formed vessels and the
arteriovenous loop were visible in 97% of all vessels [57]. By this
study, it was shown for the first time that an enhancement of angio-
genesis in an axially vascularized tissue construct by an additional
extrinsic vascular pathway is feasible. By 2 weeks, both pathways
showed connections. This finding indicates that transplantation of the
entire construct using the AV-loop as a pedicle can be performed at
an earlier time-point than using either technique alone.

Gene transfer techniques

Bleiziffer et al. gave an overview on the therapeutic potential of gene
transfer strategies in combination with TE and RM [58]. This group

1159

Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



Fig. 3 Corrosion Cast of an axial neovascular assembly, in vivo vascular construct, 2 weeks after vascular induction. Left: Overview of a nascent capil-
lary network. Middle: sprouting angiogenic event. A new capillary sprout emerging from the parent vessel by endothelial pericytic proliferation Right:
intussusceptive angiogenic events. The parent vessel is divided into two distinct new vessels for the purpose of vascular growth or remodelling.

also studied the application of endothelial progenitor cells to be uti-
lized for TE and RM purposes [4, 59]. In summary, modulating the
genetic code of cells utilized in TE and RM holds promise in various
ways and has been under intense investigation for years. Viral vectors
in particular have the advantage of superior transduction efficiency,
but their use is limited by safety concerns [60-71]. Large-scale trans-
duction of target cells is most efficiently achieved using adenovirus at
high titres, which involves the risk of vector toxicity [72]. Long-term
gene expression can be achieved using retrovirus, but insertional viral
remnants remain a major concern. Polymer-based gene delivery sys-
tems offer promising advantages over traditional gene delivery sys-
tems by prolonging gene expression, avoiding distribution to distant
tissues and systemic circulation, reduced toxicity and decreased
immune response [73].

Optimization and control of gene expression remains a challenge
that needs to be addressed, given the deleterious effects of inade-
quately high levels of transgene expression [74]. Several technical
concepts have been developed to address these issues. Yao et al.
developed a Tetracycline-repressor-based highly sensitive tetracy-
cline-dependent transcription switch (T-Rex™ System, Invitrogen).
The T-Rex™ system was integrated into a replication-deficient HSV-1
vector. It could be demonstrated that in vitro infection of different cell
types using the tet-conditional virus resulted in tetracycline depen-
dent 300-1000-fold regulation of expression [74].

Another promising direction is the use of stem cells and progeni-
tor cells as a vehicle for gene delivery. Currently, the ethical issues
associated with the use of embryonic stem cells make adult stem
cells and progenitor cells a particularly attractive choice. Adult tissues
require these cell types for continuous self-renewal [23, 75-77]. Mul-
tipotent stem cells are found in most adult tissues and can generate a
certain spectrum of differentiated cell lineages depending on their
location. Progenitor cells, on the other hand, are unipotent, capable of
generating one specific cell type. In the case of shortage of an autolo-
gous cell source, allogenic or xenogeneic sources become an option.
Even elimination by the host immune system is the key obstacle to
xenotranspantation that must be solved to guarantee success. Taken
together, gene delivery in combination with TE applications may
greatly enhance therapeutic options to (re-)generate tissue severed or
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lost by disease or trauma. Polymeric release and substrate-mediated
gene delivery from natural or synthetic scaffolds can be carried out
through both viral and non-viral vector systems. The efficacy of gene
delivery systems in TE could be further enhanced by employing gene
expression regulation, co-transplantation of stem cells or progenitor
cells and use of xenogenic tissue or cell sources.

Combining mesenchymal stem cells
with the AV-loop model of intrinsic
vascularization

As the clinical application of MSC to regenerate defect or lost tissue
would face serious regulatory problems in terms of producing and
transplanting such cells outside the operating room before they can
be retransplanted to the donor and recipient, we investigated ways to
circumvent this barrier. In a large animal model we were able to show
that directly auto-transplanted MSC induce bone formation in a cera-
mic bone substitute in an ectopic sheep model [78].

As bone defect regeneration is believed to be one of the more
challenging issues in TE, we have chosen this critical model to study
the effect of various vascularization processes in TE [23, 26, 79-81]
(Fig. 4). Recently, there has been an increasing focus on the use of
MSC in this context [82]. In most animal transplantation models,
MSC are isolated and expanded before auto cell transplantation,
which might be critical for clinical application in the future. Hence,
this study compares the potential of directly auto-transplanted versus
in vitro-expanded MSC with or without bone morphogenetic protein-2
(BMP-2) to induce bone formation in a large volume ceramic bone
substitute in the sheep model. In these experiments, MSC were
isolated from bone marrow aspirates and either directly auto-
transplanted or expanded in vitro and characterized using fluores-
cence-activated cell sorting (FACS) and RT-PCR analysis before
subcutaneous implantation in combination with BMP-2 and p-trical-
cium phosphate/hydroxyapatite (B-TCP/HA) granules. GConstructs
were explanted after 1 to 12 weeks followed by histological and RT-
PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+)
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Fig. 4HE staining of newly formed bone (*) attached to a HA/TCP
matrix (TricOS®, #) 8 weeks after implantation of an arteriovenous loop
in the medial thigh of a rat and application of primary osteoblasts and
2.5 + g BMP2. Vascularization of matrices is visible by India Ink-filled
vessels (arrows).

after selection by Ficoll gradient centrifugation, while directly auto-
transplanted MSC-populations expressed CD29 and CD166 at lower
levels [78]. Both, directly auto-transplanted and expanded MSC, were
found to be constantly proliferating, and showed a decreasing apop-
tosis over time in vivo. Directly auto-transplanted MSC led to de novo
bone formation in a heterotopic sheep model using a p-TCP/HA
matrix comparable to the application of 60 pg/ml BMP-2 only or
implantation of expanded MSC. Bone matrix proteins were up-regu-
lated in constructs following direct auto-transplantation and in
expanded MSC as well as in BMP-2 constructs. Up-regulation was
detected using immunohistology methods and RT-PCR. Dense vascu-
larization was demonstrated by CD31 immunohistology staining in all
three groups. As, in this model, ectopic bone could be generated by
using directly auto-transplanted or expanded MSC with B-TCP/HA
granules alone, it can be concluded that BMP-2 stimulation might
become dispensable in the future. This would provide an attractive
and a clinically feasible approach to bone TE [78].

TE and RM in the context of cancer
research

Naturally, many of the advances in cell culture and the studies of cell—
cell as well as cell-biomaterial interactions in TE and RM have also
gained attraction from other sides in medical research. A better under-
standing of cell adherence phenomena and the ability of cell-scaffold
constructs to mimic biological processes, especially with regard to
the vascularization cascades, could also help to better understand
mechanisms of tumour angiogenesis by analysing the basic mecha-
nisms of morphogenesis, differentiation and cancer development and
progression [83]. Models to study the behaviour of tumour cells under
culture conditions and in the context of biomaterials as a carrier of
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malignant cells in various experimental conditions could also be used
to develop anti-cancer therapies. Hence, technology platforms origi-
nally developed for TE applications produce valuable models that
mimic three-dimensional (3D) tissue organization and function to
enhance the understanding of cell/tissue function under normal and
pathological situations [84]. Investigating angiogenetic processes and
factors in tumourigenesis can be seen as a key to establish ways of
targeting angiogenesis in tumours. As an offspring from angiogenesis
research, meanwhile several anti-angiogenic agents have been
accepted for clinical application as attractive targeted therapeutics for
the treatment of cancer. When the areas of tumour angiogenesis,
combination therapies and drug delivery systems are combined, this
knowledge is closely related to the understanding of the basic princi-
ples that are applied in TE models. Studies with 3D model systems
have repeatedly identified complex interacting roles of matrix stiffness
and composition, integrins, growth factor receptors and signalling in
growth and cancer [84]. These insights suggest that plasticity, regula-
tion and suppression of these processes can provide strategies and
therapeutic targets for future cancer therapies. Hutmacher et al. have
stated that the historical perspective of the fields of TE and controlled
release of therapeutics, including inhibitors of angiogenesis in
tumours, is becoming clearly evident as a major future advance in
merging these fields. New delivery systems are expected to greatly
enhance the ability to deliver drugs locally and in therapeutic concen-
trations to relevant sites in living organisms. Investigating the phe-
nomena of angiogenesis and anti-angiogenesis in 3D in vivo models
such as the Arterio-Venous (AV) loop mode in a separated and iso-
lated chamber within a living organism adds another and reproducibly
significant horizon to this perspective and opens new modalities for
translational research in this field [84, 85].

Newly discovered cells of potential
benefit for RM

Another exciting discovery are telocytes, a new type on interstitial
cells, that might well influence RM approaches, especially in the con-
text of cardiac regeneration. The short history of telocytes detection
was published in 2010, as a case of serendipity [86]. The existence of
these cells was reported within interstitium of many cavitary and non-
cavitary organs [87-103], as well as in heart (epicardium [104], myo-
cardium [87, 88] and endocardium [105]) (Fig. 5).

Telocytes have unique features, as it was demonstrated in cell cul-
tures and by electron microscopy. The main characteristic that clearly
distinguishes telocytes from all other interstitial cell types is the pres-
ence cell body prolongations (usually 1-5 visible cell prolongations),
which were termed telopodes. Thus, the shortest definition of telocyte
is: cell with telopodes. The main features of telopodes are: (1) their
length: usually tens to hundreds of um, (2) the monofiliform aspect:
an alternation of dilated segments (termed podoms) and thin seg-
ments (termed podomers), (3) podomers are very thin (in some
regions thinner than 0.2 um, being under the resolving power of light
microscopy), (4) podoms accommodate mitochondria, elements of
endoplasmic reticulum and caveolae, which are involved in calcium
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Fig. 5 Transmission electron microscopy. (A) Human atrial myocardium.
A telocyte (digitally coloured in blue) is located among atrial cardiomyo-
cytes (the atrial granules are obvious). Telopodes are situated in between
cardiomyocytes (Tp1, Tp2, Tp4, Tp5), and another telopode (Tp3) with
close spatial relation with the blood vessels. The apposition of Tp1 and
Tp2 suggests that telocytes are realizing a network, by homo-cellular
junctions. (B) 1-yr old mouse subepicardial stem-cell niche. Close rela-
tionship in between a telocyte and its telopode with a cardiomyocyte pro-
genitor (the cell containing leptofibrills — ‘zebra-like’ striations — Z). The
arrow indicates desmosome — the origin for a future intercalated disc. The
telocyte have shedding vesicles (asterisks) — digitally coloured in violet. N
— nucleus, m — mitochondria Kindly provided by Prof. L.M. Popescu,
National Institute of Pathology, Bucharest, Romania.

movements. Telopodes have a dichotomous branching pattern, mak-
ing a three-dimensional network due to homo- and heterocellular
junctions. Telocytes release shed vesicles and/or exosomes, thus
sending macromolecular signals to neighbouring cells and thereby
modifying their transcriptional activity, eventually.

By transmission electron microscopy (TEM) were identified car-
diac stem-cell niches in subepicardium [106, 107], pulmonary sub-
epithelial niches in the bronchiolar tree [97], as well as non-satellite
(resident) progenitor cell niches among skeletal muscle fibres [95]. In
all aforementioned structures, telocytes and telopodes were identified
in close contact with progenitor cells. Moreover, electron microscope
tomography revealed complex nanoscopic junctions between telo-
cytes, or between telocytes and resident progenitor cells [93, 94,
106]. Apparently, telopodes provide tracks for the ‘evolution’ (sliding)
of precursor cells towards their mature condition, and also their
integration into organ microscopic architecture. Telocytes, via their
paracrine secretion (including microRNAs), produce an adequate
microenvironment for precursor cells.

Cardiac regeneration might have the potential to reverse the con-
sequences of myocardial infarction. In this context, stem-cell therapy
was promoted as a potential solution.
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Experimental myocardial infarction models have been imple-
mented for studying the ultrastructural recovery after the acute
obliteration of coronary artery. Telocytes are (in)directly involved in
neo-angiogenesis after (experimental) myocardial infarction [108]. By
TEM, immunocytochemistry and analysis of expression of several
proangiogenic microRNAs were provided evidence for telocytes
involvement in neo-angiogenesis after myocardial infarction. Ultra-
structurally, there are close spatial relationships between telocytes
and neoangiogenic elements. Telocytes have multiple direct nanocon-
tacts with endothelial cells, where the extracellular space seems oblit-
erated. On the other hand, telocytes are involved in neoangiognesis,
presumably via paracrine secretion, as shown by immunocytochemis-
try for VEGF or NOS2. In addition, by RTqPCR was demonstrated the
positive expression of telocytes for several angiogenic microRNAs,
such as let-7e, 10a, 21, 27b, 100, 126-3p, 130a, 143, 155 and 503.

These findings suggest an important participation of telocytes in
neo-angiogenesis during the late stage of myocardial infarction. This
adds to our understanding of cellular and molecular events and opens
another perspective of potential keys to solve the present day prob-
lems in TEand RM.

Summary

In summary, this article systematically seeks to comment some of the
most recent advances in the field of TE and RM. The evolving area of
stem cells will have to be addressed in a separate overview. By high-
lighting selected topics of specific advances with various technical
approaches, the variety of interconnections and possibilities is clearly
visible. The dynamic of these developments underlines that different
fields of biotechnology must be seen as a driving force in the develop-
ment of new disciplines that might change conventional medicine and
health systems considerably in the near future. Following the initial
hype with TE, it is now the broader term of RM that is concerned with
the development and application of innovative medical therapies that
aim to support the regeneration of damaged organs or to fully or par-
tially restore damaged parts of the human organism. This means that
in addition to the more out-of-the-human-body ex vivo approach of
the original TE concept, RM seeks to activate the natural healing
resources of the body to achieve a full restoration of health, which
might ultimately and optimally be achieved with a one-time treatment.
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