
Data and text mining

EpitopeVec: linear epitope prediction using deep protein

sequence embeddings

Akash Bahai 1,2, Ehsaneddin Asgari 1,3, Mohammad R. K. Mofrad3,4,

Andreas Kloetgen1 and Alice C. McHardy1,2,*

1Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig 38124, Germany,
2Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38106, Germany,
3Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California,

Berkeley, CA 94720, USA and 4Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Lab, Berkeley, CA 94720,

USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on December 12, 2020; revised on May 28, 2021; editorial decision on June 17, 2021; accepted on June 25, 2021

Abstract

Motivation: B-cell epitopes (BCEs) play a pivotal role in the development of peptide vaccines, immuno-diagnostic
reagents and antibody production, and thus in infectious disease prevention and diagnostics in general.
Experimental methods used to determine BCEs are costly and time-consuming. Therefore, it is essential to develop
computational methods for the rapid identification of BCEs. Although several computational methods have been
developed for this task, generalizability is still a major concern, where cross-testing of the classifiers trained and
tested on different datasets has revealed accuracies of 51–53%.

Results: We describe a new method called EpitopeVec, which uses a combination of residue properties, modified anti-
genicity scales, and protein language model-based representations (protein vectors) as features of peptides for linear
BCE predictions. Extensive benchmarking of EpitopeVec and other state-of-the-art methods for linear BCE prediction
on several large and small datasets, as well as cross-testing, demonstrated an improvement in the performance of
EpitopeVec over other methods in terms of accuracy and area under the curve. As the predictive performance
depended on the species origin of the respective antigens (viral, bacterial and eukaryotic), we also trained our method
on a large viral dataset to create a dedicated linear viral BCE predictor with improved cross-testing performance.

Availability and implementation: The software is available at https://github.com/hzi-bifo/epitope-prediction.

Contact: alice.mchardy@helmholtz-hzi.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antibodies are critical components of the humoral immune response
that recognize and bind to the antigens of pathogens, such as bac-
teria or viruses (Janeway, 2012). The region of an antigen recog-
nized by these antibodies is known as an epitope and it can either be
a continuous stretch of amino acids within an antigen protein se-
quence (linear epitope) or amino acids potentially separated in the
sequence but located closely in the 3D protein structure (conform-
ational epitope). In particular, the identification of B-cell epitopes
(BCEs) is important for applications, such as peptide-based vaccine
design (Dudek et al., 2010), immuno-diagnostic tests (Noya et al.,
2005) and synthetic antibody production (Hancock and O’Reilly,
2005). As the experimental determination of BCEs is time-
consuming and expensive, computational prediction can play a

pivotal role in the development of new vaccines and drugs against
common viral pathogens such as human immunodeficiency virus,
hepatitis or influenza viruses (Bryson et al., 2010; Dudek et al.,
2010; Pellequer et al., 1991; Sanchez-Trincado et al., 2017).
Although the majority of naturally occurring BCEs are conform-
ational (Barlow et al., 1986), the prediction of linear BCEs has
received much attention (Flower, 2007), as they are used for the syn-
thesis of peptide-based vaccines among others (Malonis et al., 2020;
Soria-Guerra et al., 2015).

The earliest methods for epitope prediction evaluated only one
physiochemical property of the constituent amino acids, such as sur-
face accessibility (Emini et al., 1985), flexibility (Karplus and
Schulz, 1985), hydrophobicity (Levitt, 1976), or antigenicity
(Kolaskar and Tongaonkar, 1990). Some of these methods that are
still accessible online include PREDITOP (Pellequer and Westhof,
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1993), PEOPLE (Alix, 1999) and BEPITOPE (Odorico and
Pellequer, 2003). These algorithms calculate the average amino acid
propensity scale for individual features over a sliding window along
the query protein sequence. If these predicted scales are above a cer-
tain cut-off for a continuous stretch of the protein, then the respect-
ive region on the sequence is determined to be a linear BCE.
However, an assessment of 484 propensity scales revealed that such
scales are unreliable for detecting BCEs and barely outperformed
random BCE selection when based on a single amino acid feature or
even a combination of features (Blythe and Flower, 2005).

With the increased availability of experimentally identified epito-
pes, new methods have been based on several propensity scales and
included additional amino acid features that had not been included
before (Yang and Yu, 2009). Such methods, which use machine-
learning (ML) approaches to distinguish BCEs from non-BCEs in
the amino acid sequence, have shown better accuracy than single
propensity scale-based methods. For training the ML model, BCEs
are presented as feature vectors derived from different amino acid
properties, such as the amino acid composition (AAC), the amino
acid pair (AAP) antigenicity scale (Chen et al., 2007) or the amino
acid trimer (AAT) antigenicity scale (Yao et al., 2012). Some exam-
ples of ML-based methods for BCE prediction are BepiPred (Larsen
et al., 2006), ABCPred (Saha and Raghava, 2006), LBTope (Singh
et al., 2013), AAP (Chen et al., 2007), APCPred (Shen et al., 2015),
BCPreds (El-Manzalawy et al., 2008), Cobe-Pro (Sweredoski and
Baldi, 2009), SVMTrip (Yao et al., 2012), iBCE-El (Manavalan
et al., 2018), BepiPred 2.0 (Jespersen et al., 2017), DLBEpitope (Liu
et al., 2020) and EpiDope (Collatz et al., 2021) . A notable issue
seems to be that all the aforementioned methods lack high accuracy
in a cross-testing approach, where ML training and testing are per-
formed on independent datasets, which raises doubts about the gen-
eralizability of all such approaches (Galanis et al., 2021; Sun et al.,
2018).

1.1 Contributions
Here, we describe a new method that combines commonly used pro-
pensity scales, residue features and modified antigenicity scales with
ProtVec (Asgari, 2019; Asgari and Mofrad, 2015; Asgari et al.,
2019b) for vector representation of the peptides instead of the com-
monly used one-hot encoding method. Notably, EpiDope, a recently
published study, also makes use of protein embeddings, but it uses
context-aware embeddings for each residue in the sequence by using
a vector with a length of 1000, whereas ProtVec embeddings are
context-independent and encode the entire sequence by using a vec-
tor with a length of 300. Previously, sequence-based embeddings
have been used successfully in functional-structural protein annota-
tion tasks, such as predictions of secondary structures (Asgari et al.,
2019a; Li and Yu, 2016), the effects of mutations on protein–pro-
tein interactions (Zhou et al., 2020), protein functions (Asgari and
Mofrad, 2015; Bonetta and Valentino, 2020; Zhou et al., 2019) and
structural motifs (Liu et al., 2018). We used a support vector ma-
chine (SVM) with a Radial Basis Function (RBF) kernel as our

predictive model. We trained and tested our method on multiple
small and large datasets derived from the Bcipep (Saha et al., 2005)
and Immune Epitope Database (IEDB) (Vita et al., 2010) and com-
pared its performance with the state-of-the-art methods. We also
cross-tested some of the methods (BepiPred, iBCE-EL, BepiPred2.0,
DLBEpitope and EpiDope) on datasets on which they had not been
tested before to verify the reliability and generalizability of these
approaches. To establish a fair comparison, we trained our method
on the same datasets on which the original methods were trained
and tested the performance on the same test sets that the original
methods used. Lastly, we trained our method on a large viral dataset
in order to construct a predictor for linear viral BCEs as a resource
available for the community.

2 Materials and methods

2.1 Datasets
Most of the methods published in the literature were trained on
datasets compiled from databases of experimentally verified epito-
pes, such as Bcipep or IEDB. Earlier methods, such as ABCPred,
BCPreds and AAP, were trained on datasets compiled from the
Bcipep database. More recent methods, such as LBTope, SVMTrip,
iBCE-El, BepiPred 2.0, DLBEpitope and EpiDope, were trained on
datasets compiled from the IEDB. We compiled a list of benchmark-
ing datasets and compared our method with the previously pub-
lished studies using these datasets for a fair and comprehensive
comparison (Table 1 and Supplementary Section 1).

2.1.1 Viral dataset

We downloaded viral peptides from the IEDB in which peptides
were reported as epitopes (positive) and non-epitopes (negative).
The peptide length was not fixed and it varied from 6 to 46 amino
acids. We used CD-HIT (Huang et al., 2010) to remove homologous
peptide sequences (cut-off: 80% for positive and 90% for negative
sequences) in the dataset. As the same peptide can be reported to be
an epitope and a non-epitope in different neutralization experi-
ments, we removed the peptides that were common in both sets to fi-
nally obtain a dataset of 4432 peptides that were epitopes (positive)
and 8460 peptides that were non-epitopes (negative).

2.2 Feature representation of peptides
2.2.1 Amino acid composition

The AAC is represented by a vector specifying the relative abun-
dance of each amino acid in the peptide. It can be formulated as:

AACðPÞ ¼ ðf1; f2; f3; . . . ; f20Þ; (1)

where fi ¼ Ri

N i ¼ 1; 2; . . . ;20Þð is the percentage comprised by amino

acid type i, Ri is the count of type i in the peptide and N is the pep-
tide length.

2.2.2 Dipeptide composition

Dipeptide composition (DPC) is represented by a vector specifying
the abundance of dipeptides normalized by all possible dipeptide
combinations for a peptide P. It has a fixed length of 400 (20�20)
features. It can be formulated as:

DPCðPÞ ¼ ðf1; f2; f3; . . . ; f400Þ; (2)

where fi ¼ Ri

N i ¼ 1; 2; . . . ; 400Þð is the percentage of composition of

dipeptide type i, Ri is the count of type i in the peptide and N is the
peptide length.

2.2.3 AAP antigenicity scale

The AAP antigenicity scale was introduced by Chen et al. (2007). It
is the ratio of how frequently AAPs occur in the positive set com-
pared with the negative set. The antigenicity value for each dipeptide
is the logarithm of the frequency in the positive set divided by the
frequency in the negative set. We normalized the scale between þ1

Table 1. Summary of the datasets used in the benchmarking of our

approach

Dataset Original

method

Epitopes Non-

epitopes

Source Length

BCPreds BCPreds 701 701 Bcipep 20

ABCPred16 ABCPred 700 700 Bcipep 16

Chen AAP 872 872 Bcipep 20

Blind387 ABCPred 187 200 Various Not fixed

LBTope_fixed_nr LBTope 7824 7853 IEDB 20

iBCE-EL training iBCE-EL 4440 5485 IEDB Not fixed

iBCE-EL ind. iBCE-EL 1110 1408 IEDB Not fixed

Viral New 4432 8460 IEDB Not fixed

Note: The datasets are available at https://github.com/hzi-bifo/epitope-pre

diction-paper.
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and �1 to avoid the dominance of an individual propensity value.
For the positive set, we used the Bcipep dataset; for the negative
dataset, we chose the entire UniProt50 database from Swiss-Prot
(Bairoch, 2000), which contains 561 908 protein sequences:

RAAP ¼ log
fþAAP

f�AAP

 !
: (3)

2.2.4 AAT antigenicity scale

The AAT antigenicity scale was first introduced in SVMTrip (Yao
et al., 2012). It is similar to the AAP scale, except that it uses amino
acid triplets instead of AAPs. The AAT scale is the logarithm of the
ratio of the frequency of amino acid triplets in the positive set to
their frequency in the negative set. The scale is normalized between
þ1 and �1, similar to the AAP scale:

RAAT ¼ log
fþAAT

f�AAT

 !
: (4)

2.2.5 K-mer representation

Segmentation of biological sequences into a bag of overlapping
fixed-length k-mers is one of the most common representations in
bioinformatics research. K-mer representations are widely used in
the areas of proteomics (Grabherr et al., 2011), genomics (Alipanahi
et al., 2015; Jolma et al., 2013), epigenomics (Awazu, 2017;
Giancarlo et al., 2015) and metagenomics (Asgari et al., 2018;
Wood and Salzberg, 2014). To create a k-mer representation of a
given protein sequence, the sequences are divided into overlapping
subsequences of length k (k-mers). Subsequently, they are repre-
sented as a frequency vector of all possible amino acid k-mers
(vectorsize ¼ j20jk, where 20 is the number of amino acids).

2.2.6 ProtVec sequence embeddings

Recently, in natural language processing (NLP), continuous vector
representations of words known as word embeddings have become
a very popular approach for word representations in downstream
ML tasks. The general idea is to learn a vector representation of
words in the course of neural probabilistic language modeling, and
then use the learned representation as a general-purpose representa-
tion of words in any NLP task. Language modeling is the task of
assigning a probability to a given sequence of words or predicting
the next word, given the previous words. There are two main rea-
sons for choosing language model-based representations: (i) lan-
guage modeling is unsupervised and information or metadata other
than the raw sentences are not needed, which lets us leverage a large
amount of available text on the web for training a powerful repre-
sentation and (ii) language modeling is a general-purpose task, so a
representation that is relevant to language modeling is also relevant
for syntactic and semantic similarities, helping machines in NLP
tasks (e.g. machine translation, parsing, part-of-speech tagging or
information retrieval).

Inspired by this idea, in a previous work, we proposed distrib-
uted vector representations of biological sequence segments instead
of k-mers, namely bio-vector for general use, and ProtVec for pro-
teins. We used the skip-gram neural network for this purpose. Skip-
gram is a neural network with an objective analogous to a language
modeling task (Bojanowski et al., 2016; Mikolov et al., 2013).
However, instead of predicting the next word (or next k-mer) from
the previous words, the task is to predict the surrounding words for
a given word. We use large protein sequence databases (e.g. Swiss-
Prot) without any metadata for training a general-purpose represen-
tation of protein k-mers. The objective of the skip-gram neural net-
work is to maximize the log-likelihood of observing the contexts of
k-mers in a window of N around it:

XjCj
t¼1

X
c2½t�N;tþN�

log pðwc jwtÞ; (5)

where wt is the current k-mer and c indicates the indices around
index t in the window size of N. C contains all existing k-mer con-
texts in the training data (e.g. all k-mer contexts that exist in Swiss-
Prot for all possible 3-mers). This likelihood is parameterized by k-
mer representations (vt) and k-mer context representation (vc) in the
skip-gram neural network:

pðwc jwt; hÞ ¼
evc �vtP

c02C evc0 �vt
: (6)

Since including all existing contexts in the above-mentioned soft-
max function is computationally expensive, negative sampling is
used during training. After training the k-mer representations, to
represent a given protein sequence, we used summation embedding
of the existing k-mers in the sequence. Such representations have
proven helpful in protein function annotation tasks (Asgari and
Mofrad, 2015; Zhou et al., 2019).

2.3 ML methods
After encoding the peptides as feature vectors, we used ML algo-
rithms to classify the peptides as epitopes versus non-epitopes. For
this binary classification, we used SVMs with the RBF kernel. All
the algorithms were implemented by the Sklearn package in Python.
SVMs have been used extensively in linear epitope prediction
(BCPreds, LBTope, AAP, etc.) (Chen et al., 2007; El-Manzalawy
et al., 2008; Singh et al., 2013) and they have also been applied for
sequence-based prediction tasks (Leslie et al., 2002; Wu and Zhang,
2008; Zou et al., 2013). We used a grid search to optimize the
parameters C and c over the range [1000–0.0001], with steps of a
power of two.

2.4 Performance evaluation
We used 5-fold cross-validation on the training dataset for optimiz-
ing the hyper-parameters of our model and reported the perform-
ance averaged over the held-out folds using common metrics for
evaluating binary classification algorithms. Specifically, we calcu-
lated the prediction accuracy (ACC), precision (Precision), recall/
sensitivity (Sn), F1 score (F1), Matthews correlation coefficient
(MCC), and area under the receiver operating characteristic (ROC)
curve (ROCAUC). If the dataset was unbalanced, we used balanced
accuracy as the accuracy metric.

3 Results

Our first task was to identify features that will be included in our
ML model. To this end, we selected the best performing features for
our ML model using 5-fold cross-validation on the BCPreds dataset
(Supplementary Section 2) and then trained the classifier with the
selected features on three datasets: (i) EpitopeVec(BCPreds) trained
on the BCPreds dataset; (ii) EpitopeVec(LBTope) trained on the
LBTope dataset; and (iii) EpitopeVec(iBCE-EL) trained on the
iBCE-EL training dataset. We then compared the performance of
our method with previously published methods. In addition, we
benchmarked the methods that were not tested on the selected
benchmarking datasets used previously (e.g. BepiPred, BepiPred2.0,
iBCE-EL, EpiDope and DLBEpitope). As there were many peptides
in our test datasets that were exact matches (100% homologous)
with peptides in DLBEpitope’s training set, we retested DLBEpitope
on the homology-reduced test sets as well (Supplementary Section
3). For the methods reporting per-residue scores (e.g. BepiPred,
BepiPred2.0 and EpiDope), we averaged the scores for all constitu-
ent residues to obtain a single score for the peptide (Supplementary
Section 3).
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Table 2. Comprehensive benchmark of linear BCE predictors on different datasets, comparing EpitopeVec with previously published meth-

ods for linear BCE prediction

Method ROC_AUC Accuracy Precisionþ Precision� Recallþ Recall� F1 MCC

BCPreds set

BepiPreda 0.665 61.19 0.65 0.59 0.49 0.74 0.61 0.232

ABCPredb 0.643 — — — — — — —

AAPc 0.7 64.05 — — — — — —

BCPredsd 0.758 67.9 — — 0.73 0.63 — 0.360

Cobe� Proe 0.768 71.4 — — — — — —

LBTopef — 51.57 — — — — — —

iBCE� ELg 0.576 48.71 0.49 0.15 0.97 0.01 0.33 �0.009

BepiPred2:0h 0.432 49.78 0.49 0.5 0.11 0.89 0.41 �0.006

DLBEpitopei 0.647 59.62 0.72 0.56 0.32 0.88 0.56 0.232

DLBEpitopem 0.515 50.78 0.4 0.63 0.14 0.88 0.47 0.023

EpiDopej 0.575 50.71 0.81 0.5 0.02 1 0.35 0.067

EpitopeVecðBCPredsÞl 0.889 81.31 0.816 0.811 0.807 0.819 0.811 0.627

EpitopeVec(LBTope) 0.645 57.13 0.56 0.59 0.69 0.45 0.57 0.147

EpitopeVecðiBCE� ELÞ 0.596 57.48 0.57 0.57 0.57 0.57 0.57 0.15

Chen set

BepiPred 0.665 60.44 0.64 0.58 0.47 0.74 0.6 0.217

AAPl 0.7 71.09 — — 0.61 0.75 — 0.366

AAP þ scalesc — 72.54 — — 0.64 0.76 — 0.404

APCPredk 0.809 72.94 — — 0.70 0.76 — 0.460

Cobe—Pro 0.829 78 — — — — — —

LBTope — 53.33 — — — — — —

iBCE—EL 0.528 49.4 0.5 0.4 0.96 0.02 0.35 �0.036

BepiPred2:0 0.424 49.31 0.47 0.5 0.11 0.88 0.4 �0.021

DLBEpitope 0.654 61.45 0.75 0.57 0.35 0.88 0.58 0.272

DLBEpitopem 0.535 51.81 0.38 0.69 0.15 0.88 0.50 0.050

EpiDope 0.559 50.68 0.77 0.5 0.02 0.99 0.35 0.061

EpitopeVec(BCPreds) 0.958 88.30 0.85 0.92 0.93 0.83 0.88 0.770

EpitopeVec(LBTope) 0.658 57.91 0.56 0.61 0.71 0.44 0.57 0.164

EpitopeVecðiBCE� ELÞ 0.589 56.70 0.57 0.57 0.57 0.57 0.57 0.134

ABCPred set

BepiPred 0.624 57.71 0.6 0.56 0.46 0.69 0.57 0.158

AAP 0.782 73.14 — — 0.50 0.96 — 0.518

APCPred 0.794 73.00 — — 0.65 0.81 — 0.466

ABCPredl — 65.93 — — 0.67 0.65 — 0.319

BCPreds 0.801 74.57 — — 0.70 0.79 — 0.493

LBTope — 57.90 — — — — — —

iBCE—EL 0.588 52.7 0.51 0.72 0.96 0.09 0.42 0.112

BepiPred2:0 0.399 49.28 0.39 0.5 0.02 0.96 0.35 �0.04

DLBEpitope 0.7 63.86 0.78 0.59 0.39 0.89 0.61 0.319

DLBEpitopem 0.567 52.79 0.43 0.68 0.17 0.89 0.51 0.078

EpiDope 0.599 50.64 0.76 0.5 0.02 0.99 0.35 0.059

EpitopeVec(BCPreds) 0.929 85.64 0.84 0.88 0.89 0.83 0.86 0.714

EpitopeVec(LBTope) 0.723 64.79 0.62 0.69 0.75 0.54 0.64 0.303

EpitopeVecðiBCE� ELÞ 0.616 59.28 0.68 0.56 0.35 0.83 0.57 0.212

Blind387 set

BepiPred 0.627 56.59 0.55 0.58 0.53 0.6 0.57 0.132

AAP 0.689 64.60 — — 0.64 0.65 — 0.292

ABCPred — 66.41 — — 0.72 0.62 — —

BCPreds 0.699 65.89 0.66 0.66 0.318

iBCE—EL 0.501 43.4 0.44 0.17 0.84 0.03 0.32 �0.227

BepiPred2:0 0.62 55.53 0.75 0.55 0.16 0.95 0.48 0.181

DLBEpitope 0.649 59.72 0.66 0.70 0.27 0.92 0.59 0.264

DLBEpitopem 0.555 52.67 0.29 0.82 0.13 0.92 0.52 0.075

EpiDope 0.541 50.80 1 0.52 0.02 1 0.36 0.091

EpitopeVec(BCPreds) 0.778 71.83 0.75 0.7 0.63 0.81 0.72 0.445

EpitopeVec(LBTope) 0.756 65.55 0.60 0.75 0.82 0.49 0.64 0.329

EpitopeVecðiBCE� ELÞ 0.724 68.65 0.73 0.67 0.57 0.80 0.68 0.384

LBtope set

BepiPred 0.566 54.57 0.55 0.54 0.49 0.61 0.55 0.092

LBTopel 0.69 64.86 — — — — — —

BCPreds — 52.56 — — — — — —

(continued)
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3.1 Discriminative power of the protein features
We used several feature sets in our ML models and investigated
which feature set had the best discriminative power when used inde-
pendently. We tested the SVM model on the BCPreds dataset with
5-fold cross-validation including individual feature sets. All of the
ML models were trained on the BCPreds dataset with 5-fold cross-
validation, C, and c parameters for the RBF kernel were optimized
via a grid search through cross-validation, and performance was
averaged over the held-out folds. Use of the chain-transition-distri-
bution features (Dubchak et al., 1995) resulted in an accuracy of
61%, whereas the AAC scales performed quite similarly, with their
accuracy ranging from 63% (AAC) to 65% (DPC). With k-mer rep-
resentations, higher values of k resulted in a better accuracy (the
highest being 69.9% with k ¼ 4) and the use of ProtVec features

resulted in an accuracy of 70%. Use of the AAP antigenicity scale
resulted in an accuracy of 68.55% and use of the AAT antigenicity
scale produced the highest accuracy of 78.67%. When taking com-
binations of different feature sets, we achieved the highest accuracy
of 81.31% by combining the composition-based features (AAP,
AAT and AAC) with the sequence representation-based features
(Protvec). This feature set was selected for use with our new method
called EpitopeVec (Supplementary Section 2).

3.2 Evaluation on the BCPreds dataset
In the 5-fold cross-validation, our method [EpitopeVec(BCPreds)]
performed the best with an average accuracy of 81.31% (13.41%
higher than the original BCPreds method) (Table 2) and a ROC-

Table 2. (continued)

Method ROC_AUC Accuracy Precisionþ Precision� Recallþ Recall� F1 MCC

iBCE—EL 0.619 52.2 0.51 0.9 0.99 0.05 0.39 0.135

BepiPred2:0 0.476 49.95 0.5 0.5 0.13 0.87 0.42 �0.001

DLBEpitope 0.769 67.27 0.82 0.62 0.44 0.9 0.65 0.389

DLBEpitopem 0.504 50.89 0.60 0.43 0.15 0.87 0.41 0.025

EpiDope 0.559 50.34 0.68 0.5 0.01 0.99 0.35 0.036

EpitopeVec(BCPreds) 0.548 52.98 0.55 0.52 0.32 0.74 0.51 0.065

EpitopeVecðLBTopeÞl 0.838 75.62 0.75 0.75 0.76 0.75 0.76 0.512

EpitopeVecðiBCE� ELÞ 0.602 57.12 0.56 0.58 0.62 0.53 0.57 0.143

iBCE-EL training set

BepiPred 0.556 53.76 0.49 0.59 0.47 0.61 0.54 0.076

iBCE� ELl 0.782 72.9 — — 0.716 0.739 — 0.454

BepiPred2:0 0.51 50.99 0.55 0.56 0.06 0.96 0.41 0.045

EpiDope 0.582 50.57 0.8 0.56 0.01 1 0.37 0.064

EpitopeVec(BCPreds) 0.555 53.78 0.52 0.58 0.31 0.76 0.52 0.085

EpitopeVec(LBTope) 0.718 63.41 0.56 0.71 0.73 0.54 0.62 0.270

EpitopeVecðiBCE� ELÞl 0.789 71.4 0.7 0.73 0.64 0.77 0.71 0.419

iBCE-EL ind. set

BepiPred 0.568 55.17 0.5 0.6 0.47 0.63 0.55 0.104

iBCE—EL 0.786 73.40 0.66 0.8 0.79 0.68 0.73 0.454

BepiPred2:0 0.486 51.62 0.56 0.57 0.08 0.95 0.43 0.065

EpiDope 0.595 50.47 0.7 0.56 0.01 1 0.37 0.049

EpitopeVec(BCPreds) 0.571 54.20 0.52 0.59 0.31 0.78 0.53 0.095

EpitopeVec(LBTope) 0.745 65.43 0.57 0.74 0.76 0.55 0.64 0.311

EpitopeVecðiBCE� ELÞ 0.782 70.69 0.68 0.73 0.63 0.76 0.7 0.402

Viral method

EpitopeVec—viral (on viral training)l 0.875 79.73 0.718 0.843 0.698 0.67 0.850 0.554

EpitopeVec—viral on BCPreds viral 0.756 72.02 0.968 0.190 0.648 0.793 0.541 0.264

EpitopeVec—viral on BCPreds bacterial 0.569 54.07 0.301 0.770 0.378 0.704 0.535 0.076

EpitopeVec—viral on BCPreds eukaryotic 0.512 52.26 0.384 0.663 0.357 0.689 0.52 0.046

iBCE—EL on BCPreds viral 0.509 50.16 0.93 0.08 0.97 0.03 0.5 0.005

iBCE—EL on BCPreds bacterial 0.574 50.14 0.25 1 1 0.003 0.2 0.027

iBCE—EL on BCPreds eukaryotic 0.571 47.48 0.348 0.18 0.94 0.006 0.26 �0.155

Note: The training dataset for EpitopeVec is indicated in parentheses. Rows with gray cells indicate cases where the results for the corresponding methods

could not be recreated, and for which we could include only the scores for metrics reported in the original publication. The highest values per metric and test set

are indicated in bold. ‘þ’ indicates epitope predictions and ‘�’ indicates non-epitope predictions.
aLarsen et al. (2006).
bSaha and Raghava (2006).
cChen et al. (2007).
dEl-Manzalawy et al. (2008).
eSweredoski and Baldi (2009).
fSingh et al. (2013).
gManavalan et al. (2018).
hJespersen et al. (2017).
iLiu et al. (2020).
jCollatz et al. (2021).
kShen et al. (2015).
lAveraged over the held-out folds of the 5-fold cross-validation.
mTested after removing homologous sequences (peptides that were more than 80% homologous in comparison to the peptides in the training set) from the test

set.
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AUC of 0.889 (Fig. 1). The EpitopeVec(LBtope) and
EpitopeVec(iBCE-EL) models had an accuracy of 57.13% and
57.48% on the BCPreds dataset, respectively. In previously pub-
lished work, the accuracy of the method trained on the IEDB-
derived datasets (LBtope) was reported to be 51.57% (Singh et al.,
2013), while the accuracy of other methods trained on the Bcipep-
derived datasets (AAP, ABCPred and Cobe-Pro) was reported to be
between 64% and 71% (Chen et al., 2007; Saha and Raghava,
2006; Sweredoski and Baldi, 2009). Among the methods that we
benchmarked, iBCE-EL, BepiPred2.0 and EpiDope had the lowest
performance on this dataset, with accuracies ranging from 49% to
51% (Table 2). BepiPred and DLBEpitope had slightly better accu-
racies (61.2% and 59.6%), but the accuracy of DLBEpitope
dropped to 51% after retesting on the homology-reduced BCPreds
set (removing peptides that were >80% homologous to
DLBEpitope’s training set).

3.3 Evaluation on the Chen dataset
The Chen method (AAP method) uses a scale specifically designed
based on the assumption that certain AAPs are favored in the epi-
tope regions. It was the first method to incorporate differences be-
tween epitopes and non-epitopes by making use of the AAP
antigenicity scale as a discriminative feature. We achieved an accur-
acy of 88.30% (Table 2) with the EpitopeVec(BCPreds) model on
this dataset, which is 10% higher than the next best method, Cobe-
Pro (78%) (Sweredoski and Baldi, 2009), and 16% higher than the
original AAP method (71.09%) (Chen et al., 2007). This dataset
was derived from the Bcipep database and was not reduced for hom-
ology, which explains why we observed a higher accuracy than that
for the BCPreds dataset. The accuracy of EpitopeVec(LBTope) was
57.91% and EpitopeVec(iBCE-EL) was 56.70% on this dataset. The
accuracy of the LBTope method (trained on IEDB-derived dataset)
was reported to be 53.33% (Singh et al., 2013). The accuracies of
the methods that we benchmarked (BepiPred2.0, iBCE-EL,
BepiPred, EpiDope and DLBEpitope) ranged from 49.3% to 61.5%,
with DLBEpitope having the highest accuracy of 61.5%, however,
its accuracy dropped to 51.81% after retesting on the homology-
reduced Chen set. Notably, we observed that the performance of
most methods trained on the IEDB-derived sets was lower on this
dataset.

3.4 Evaluation on the ABCPred dataset
The original ABCPred method is based on a recurrent neural net-
work with an input vector of 16 residues and a sparse binary encod-
ing, and it was one of the first methods to use machine learning for

linear BCE prediction. The accuracy of EpitopeVec(BCPreds) on this
dataset was 85.64%, which is 20% higher than the original
ABCPred method (65.93%) (Saha and Raghava, 2006), and 11%
higher than BCPreds (74.57%) (El-Manzalawy et al., 2008). As this
dataset is also derived from the Bcipep database and was not specif-
ically homology-reduced, we observed a higher accuracy compared
to the BCPreds dataset. The accuracy of EpitopeVec(LBTope) was
64.79% and EpitopeVec(iBCE-EL) was 59.28% on the ABCPred
dataset. The accuracy of methods, such as AAP and APCPred, was
reported to be around 73% (Chen et al., 2007; Shen et al., 2015),
while that of LBTope was reported to be 57.90% (Singh et al.,
2013).

We also tested EpitopeVec on the Blind387 set that was pub-
lished along with ABCPred. This is an independent test set with only
some of the peptides (59 out of 187) from the Bcipep database.
EpitopeVec(BCPreds) obtained an accuracy of 71.83%, outperform-
ing the accuracies previously reported for AAP (64.60%), ABCPred
(66.41%) and BCPreds (65.89%) (Chen et al., 2007; El-Manzalawy
et al., 2008; Saha and Raghava, 2006). The accuracies obtained by
our benchmarked methods (BepiPred, iBCE-EL, EpiDope,
DLBEpitope and BepiPred2.0) ranged between 43% and 60%
(Table 2). The accuracies of Epitope(LBTope) and Epitope(iBCE-
EL) on the Blind387 set were 65.55% and 68.65%, respectively.

3.5 Evaluation on the LBTope dataset
LBtope is one of the first methods that made use of datasets com-
piled from the IEDB database. In 5-fold cross-validation on this
dataset, our EpitopeVec(LBTope) model had an accuracy of
75.62% (Table 2), which was 11% higher than for the original
LBTope method (64.86%) (Singh, 2013). The performance of meth-
ods trained on Bciped-derived datasets [BCPreds, Epitope
Vec(BCPreds)] dropped substantially on this dataset, with the accur-
acy of BCPreds being 52.56% (El-Manzalawy et al., 2008) and the
accuracy of the EpitopeVec(BCPreds) model being 52.98%. The ac-
curacy of the EpitopeVec(iBCE-EL) model was 57.12%. All other
methods that we benchmarked (iBCE-EL, EpiDope, BepiPred and
BepiPred2.0), except for DLBEpitope, had low performances on this
dataset, with their accuracies ranging from 50% to 55%.
DLBEpitope had an accuracy of 67.2%, but it dropped to 50.89%
after retesting on the homology-reduced LBTope set.

3.6 Evaluation on the iBCE-EL dataset
The iBCE-EL method is an ensemble method that uses Gradient
Boosting and an Extra tree classifier. In 5-fold cross-validation on
the iBCE-EL training dataset, our EpitopeVec(iBCE-EL) model had
an average accuracy of 71.4% (Table 2), which is slightly lower
than that of the original iBCE-EL method (73.40%). However, the
average ROC_AUC of EpitopeVec(iBCE-EL) was 0.789, which is
marginally higher than that of the iBCE-EL method (0.782). On the
iBCE-EL independent test set, the performance of EpitopeVec(iBCE-
EL) was slightly lower (accuracy: 70.69% and ROC_AUC: 0.782)
than that of the iBCE-EL method (accuracy: 73.40% and
ROC_AUC: 0.786). The accuracy for the methods that we bench-
marked (BepiPred, BepiPred2.0 and EpiDope) ranged from 50% to
53% on the iBCE-EL training set and from 50% to 55% on the
iBCE-EL independent set. The accuracies of EpitopeVec(BCPreds)
and EpitopeVec(LBtope) were 53.78% and 63.41% on the iBCE-EL
training set, while 54.20% and 65.43% on the iBCE-EL independ-
ent set.

3.7 Cross-testing results
In cross-testing on datasets different than their training sets, all of
our three models had better performance than their respective ori-
ginal methods (Fig. 2) as well as other methods that we bench-
marked (Table 2). However, we observed that when a method was
trained on a dataset compiled from the Bcipep database, and then
tested on a dataset compiled from the IEDB and vice versa, the per-
formance dropped substantially. Our EpitopeVec(BCPreds) model
had good performance (>80% accuracy) on other Bcipep-derived
datasets (ABCPred, Chen), but the performance dropped

Fig. 1. ROC curve of epitope prediction in 5-fold cross-validation on the BCPreds

dataset, where the mean is shown as a bold dashed line and the random perform-

ance (ROCAUC¼0.5) is shown as a gray dashed line. The five different colored lines

represent the performance of each of the 5-folds

4522 A.Bahai et al.



substantially when testing on the IEDB-derived datasets (LBTope,
iBCE-EL). The same was true for BCPred, LBTope and the other
methods as well. Therefore, to test the overall performance of the
methods, we created three pooled datasets [one each for
EpitopeVec(BCPreds), EpitopeVec(LBTope) and EpitopeVec(iBCE-
EL) models], where we combined all the testing sets except the re-
spective training set of that model. We also created pooled-reduced
sets, where we removed peptides in the pooled set that were homolo-
gous to the respective training set (inter-homology reduction) and
similar sequences within the pooled sets (intra-homology reduction)
using CD-HIT with a threshold of 80%. The performance of the
EpitopeVec(iBCE-EL) model (58.37% accuracy, 0.615 AUC) was
the best (5% higher accuracy than iBCE-EL) on its pooled-reduced
set and overall it had better generalizability. The differences in the
performance of the EpitopeVec method when trained on different
datasets show that the performance is dependent on the source of
the training data (Fig. 2). The substantial performance difference,
we observed between cross-testing and 5-fold cross-validation on
datasets derived from the Bcipep database and the IEDB indicates
that most classifiers lack generalization, potentially caused by the
fundamental differences in the nature of the underlying data
(Odorico and Pellequer, 2003). When we computed the Pearson cor-
relation of the AAT scale (the most discriminative feature in our
method) derived from the Bcipep sets and the IEDB sets, it was rela-
tively weak (0.41), indicating large differences in the composition of
the epitopic peptides from both the databases.

3.8 Improving epitope prediction accuracy with domain-

specific datasets
In light of the observed lack of generalization of most methods and
only slightly better generalizability of our method, we created a lin-
ear BCE predictor specific to viral peptides. When analyzing the
composition of the Bcipep and IEDB databases, we found that
Bcipep had a strong bias toward viruses, with 80% of the peptides
originating from viral antigens. To investigate this further, we cre-
ated a dataset of viral epitopes with experimentally verified positive
and negative epitopes from the IEDB dataset and trained our model
on this dataset with EpitopeVec. We cross-tested this new viral pre-
dictor (EpitopeVec-viral) on the homology-reduced BCPreds dataset
(peptides in the BCPreds set that were more than 80% homologous
to peptides in our training viral set were removed). The BCPreds
dataset is composed of antigens from different species (i.e. viral, bac-
terial and eukaryotic), therefore, we were interested in the specific
performance on antigens originating from different species. The per-
formance of EpitopeVec-viral on viral peptides (72.02% accuracy,
0.756 ROC_AUC) was substantially higher than that on bacterial
(54.07% accuracy, 0.569 ROC_AUC) and eukaryotic (52.26% ac-
curacy, 0.512 ROC_AUC) peptides (Table 2 and Fig. 3a). The

performance of iBCE-EL on domain-specific peptides was substan-
tially below that of EpitopeVec-viral (Table 2 and Fig. 3b).

3.9 Predicting epitopes for SARS-CoV-1 and SARS-CoV-

2 viruses
We tested our viral predictor on a set of 10 linear epitope peptides
compiled in Grifoni et al. (2020) for SARS-CoV-1 from experimen-
tally verified epitopes in the IEDB. We successfully predicted 7 out
of 10 peptides as epitopes for SARS-CoV-1 with our EpitopeVec-
viral model. We also compiled a set of experimentally verified epito-
pes and non-epitopes for SARS-CoV-2 from the IEDB and tested our
viral predictor on these peptides. We predicted 7 out of 9 epitopes
and 10 out of 10 non-epitopes correctly (Supplementary Section 4).
Our viral predictor has very high precision in predicting both experi-
mentally validated epitopes and non-epitopes derived from inde-
pendent datasets.

4 Discussion and conclusions

In this work, we describe a ML framework for predicting linear
BCEs from a combination of amino acid features, modified antige-
nicity scales (AAT) and context-independent protein embeddings
(ProtVec).

Fig. 2. Heatmap showing the cross-testing performance of EpitopeVec when trained

and tested on different datasets and comparison with other methods (x-axis, testing

method; y-axis testing data; for training and testing on the same dataset, the accur-

acy averaged over 5-fold cross-validation is shown).

Fig. 3. Area under the ROC curve for each antigen type in the BCPreds set, where

the (a) EpitopeVec-viral predictor and (b) iBCE-EL were used as the predictive

models

EpitopeVec 4523

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab467#supplementary-data


4.1 Comprehensive benchmarking
We performed a comprehensive benchmarking of different linear
BCE prediction methods over the existing BCE datasets.

This benchmarking introduces a meaningful comparison of exist-
ing methods in the literature by following the standard ML practi-
ces. In our benchmarking, we attempted to include all the accessible
published methods, including methods that had not been previously
tested across all our test datasets. The performance of most IEDB-
trained methods dropped substantially when testing on Bcipep-
derived datasets and vice versa. Of the per-residue methods, the per-
formance of EpiDope and BepiPred2.0 was close to random. Of
these methods, though the overall performance was still low,
BepiPred performed the best, which may explain why it is still exten-
sively used (Raoufi et al., 2020).

4.2 EpitopeVec performance
We trained our method on three different datasets (BCPreds,
LBTOPE and iBCE-EL). The EpitopeVec(BCPreds) and
EpitopeVec(LBTope) models showed improved performance in 5-
fold cross-validation on their training sets in comparison to their re-
spective original methods (BCPreds and LBTOPE). The
EpitopeVec(iBCE-EL) model had a slightly lower performance com-
pared to the iBCE-EL method in the 5-fold cross-validation on the
iBCE-EL training set and independent testing on the iBCE-EL inde-
pendent set. We believe that this is because the original iBCE-EL
method is an ensemble method using multiple ML algorithms.
Overall, our EpitopeVec model showed better performance in cross-
validation, demonstrating that our method is superior to the state-
of-the-art approaches in predicting linear BCEs.

4.3 Generalizability and cross-testing
In cross-testing on datasets, different than the training sets, the per-
formance of our three models [EpitopeVec(BCPreds),
EpitopeVec(LBTope) and EpitopeVec(iBCE-EL)] were not only bet-
ter than the performances of the original methods (BCPreds,
LBTope and iBCE-EL) but also than those of the recent methods
(DLBEpitope, BepiPred2.0 and EpiDope) that we benchmarked.
When testing on the pooled/pooled-reduced test sets, the perform-
ance of our method was also better than that of other methods,
which shows a better generalization ability. However, we observed
that in cross-testing, the performance of most methods dropped sub-
stantially, a known problem to ML approaches (Ng, 1997). In the
case of BCE prediction, the relatively reduced performance in cross-
testing was caused by the different compositions of residues in the
positive and negative sets selected from these datasets. This indicates
that properties distinguishing epitopic and non-epitopic peptides
could be specific to the source of the antigen species (e.g. viral, bac-
terial or fungal antigens), as discussed previously (Gupta et al.,
2013; Kozlova et al., 2018; Lu�strek et al., 2013) and that creating a
general-purpose classifier is difficult. To partially overcome the diffi-
culties in creating a general-purpose linear BCE predictor, we and
others (Gupta et al., 2013; Kozlova et al., 2018; Soria-Guerra et al.,
2015) recommend creating an accurate, specialized predictor for
specific antigenic types. We trained a linear viral BCE predictor on a
viral dataset separately in favor of this conclusion. Upon cross-
testing on the BCPreds dataset, the viral predictor performed sub-
stantially better on viral peptides than on bacterial and eukaryotic
peptides.

4.4 Applications and purposes
Although almost 90% of BCEs are conformational in nature
(Barlow et al., 1986), linear BCEs are widely used for profiling anti-
body signatures (Noya et al., 2005), epitope mapping (peptide
microarray-based experiments) (Dudek et al., 2010; Potocnakova
et al., 2016) and other fields in immunology (Hancock and O’Reilly,
2005). Additionally, previously published methods for predicting
linear BCEs have been used for designing peptide-based vaccines
(Chen et al., 2020; Marı́a et al., 2017; Nezafat et al., 2016; Soria-
Guerra et al., 2015). To overcome limitations in applications as

such, we proposed and proved that dedicated predictors, such as
EpitopeVec-viral, are able to successfully identify experimentally
validated SARS-CoV-1 and SARS-CoV-2 epitopes. Thus, our pre-
dictive model can be used on viral proteins and aid in designing new
peptide-based vaccines (Grifoni et al., 2020; Malonis et al., 2020).
We believe that improving linear BCE predictions will be of value to
the research community, especially with generalized and pre-trained
viral classifiers.

4.5 Future direction
For future development, large, non-redundant and experimentally
well-characterized datasets could be compiled and standardized for
the training and the evaluation of linear BCE predictive models.
Lastly, we see linear epitope prediction as a stepping stone to the
conformational problem and it will ease the process of developing
conformational predictions because of its comparatively less com-
plex nature.
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