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Abstract

The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants
of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is
considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and
complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82
markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining
linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background
depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic
boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer
risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is
likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort’s
ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency
in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the
strength of association with cancer risk and therefore confound interpretation of the implied physiologic association
tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent
across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to
confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications
for how cancer risk stratifiers should be studied and employed.
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Introduction

The incidence, prevalence and mortality of many cancers

among different ethnic populations are often very distinct [1–4].

For example, African-American men have among the highest

incidence of prostate cancer, while Japanese men living in Japan

have the lowest incidence [5]. Strong ethnic differences have also

been observed in breast cancer risk; Hispanic and Native

American women have a markedly lower incidence of breast

cancer compared with non-Hispanic women of European descent

[6]. The causes of these disparities are manifold, including intrinsic

differences, i.e., genetic variation, and extrinsic differences, which

include dissimilarities in social, economic, and geographical

environments. Understanding these differences in cancer risk

and the underlying causes of these differences is crucial for

creating research and health care practices that can span ethnic

boundaries.

Genetic variation is an important contributor of cancer risk; and

recently genome-wide association studies (GWAS) in several

cancers have elucidated the roles of many common risk alleles in

affecting disease susceptibility. BRCA1 and BRCA2 are the most

well-known genes whose mutations are linked to breast cancer risk,

and the list of known risk alleles is rapidly expanding [7–10]. It is

becoming increasingly apparent that ethnic background can play

an important role in determining how different alleles are

associated with risk of cancer [11,12]. Furthermore, several

studies examining factors contributing towards cancer susceptibil-

ity across multiple ethnic groups, such as the Multi-Ethnic Cohort

(MEC) Study, have shown that the tested non-genetic factors did

not account for all differences in cancer susceptibility among

ethnic groups [13]. In a large prospective study of colon cancer,

one MEC study found that ethnic variation in the incidence of

colon cancer was not fully explained by differences in the

prevalence of the tested extrinsic risk factors: Japanese Americans

of both sexes and African American women remained at increased

risk of cancer relative to those of European descent after

accounting for differences in tested extrinsic risk factors [14].

Similarly, another MEC study found significant differences in the

association between cigarette smoking and the risk of lung cancer

among five ethnic groups. The findings could not be explained by

differences between populations in the tested risk factors, including

diet, occupation, and socioeconomic status [15]. These studies

suggest that unexplained genetic factors may be important for

understanding differences in cancer risk between ethnic groups.
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Genetic variation among ethnic groups impacts cancer risk in

multiple manners: there may be different frequencies for a risk

allele between populations, an allele may have dissimilar

associations with risk in different populations, and an allele may

interact with other genetic or environmental factors that vary

among populations. The HapMap project has made great

advances in elucidating the varying prevalence of alleles among

ethnic groups [16]. However, information about the other ways in

which differences among ethnic groups can affect cancer

susceptibility is less well systematically studied. While the

Multiethnic Cohort Study is an example of how this research

can occur, and individual studies highlight the importance of an

understanding of ethnic variation, there is a pressing need for

more thorough surveys of the interplay of genetics and ethnicity in

determining cancer susceptibility.

As the potential clinical utility of risk alleles for patient

stratification are increasingly considered [17–19], the need to

understand how these variations may differentially affect members

of diverse ethnic groups is growing. Concomitantly, the accurate

translation of clinical studies from one ethnic group to another

becomes more important as economic factors drive an increasing

number of clinical studies to be performed as multiregional trials,

with global results used in support of applications in the sponsoring

country [20,21]. To date, well-populated studies for the identifi-

cation of associations between gene variants, and the validation of

these associations, has been conducted primarily in populations of

European ancestry; however the utilization of these findings in

other populations may not be straightforward. A study by

Ioannidis et al., which examined published meta-analyses of gene

association studies involving several complex diseases (including

four cancer types) wherein the polymorphism was seen to be

significant in at least one ethnic group, found low heterogeneity

among ethnic groups in the majority of the studied loci [22]. This

study, which focused on validation studies of candidate markers,

possibly contained many causative genetic variants, and suggests

that basic biology is conserved across ethnic boundaries. However,

many apparent differences between ethnic populations in how

alleles are associated with cancer risk have been identified (for

examples, Table S2–S7). A related study to the 2004 study of

Ioannidis et al. showed that when loci identified from genome

wide association studies of several complex diseases were assessed

the majority of studied loci did not show consistency of disease

association across ethnic backgrounds [23]. This second study,

focusing on GWAS nominated variants, likely includes many

markers only in linkage disequilibrium with the causative variant.

Similarly, a study of several GWAS identified prostate cancer risk

loci showed that most of the assessed loci did not replicate in a

Japanese population [24]. The results of these study suggest that

GWAS identified loci, as compared to those identified from family

studies (such as BRCA1) or candidate gene approaches, are less

likely to be tightly linked to the true functional loci, leading to

relatively weaker strengths of association. Further clarification of

the role of ethnic background in affecting the association of

variants with cancer risk is needed. As cancer risk profiling

becomes increasingly common, and as an increasing number of

treatment decisions are linked to genotyping results, e.g., erlotinib

used for the treatment of lung cancer patients with EGFR

mutations [25], or cetuximab therapy for colon patients lacking

KRAS mutations [26] elucidating the roles ethnic differences have

in the clinical management of cancer will entail a better

understanding the relationship between ethnicity and predictive

markers.

Here we present a survey and systematic analysis of association

studies conducted in multiple ethnic groups for the primary known

risk alleles in lung, stomach, liver, colon, breast and prostate

cancer. These cancers were chosen based on incidence rates; lung,

stomach, liver, colon and breast cancer are the cause of most

cancer-related deaths each year in both sexes, and in men the

second most frequent cause of cancer-related mortality is prostate

cancer [27]. We find that most of the associations between gene

variants and cancer risk that we surveyed did not validate in new

ethnic populations, consistent with other studies that have

examined the reproducibility of complex disease risk variants. As

low prevalence of the risk alleles in some populations may lead to

studies being inadequately populated to validate associations found

to be significant in another population, some of the disparate

associations among ethnic groups may be attributable simply to

low powered studies. However we found that, though many

studies were inadequately powered, low allele frequency did not

explain the inability to reproduce significant findings between

ethnic groups. Instead, we show that differences in linkage

disequilibrium appear to be associated with differences in the

odds ratio (OR) between ethnic groups. Despite the infrequent

validation of significant associations, we find that variability in the

odds ratios for the studied variants among ethnic groups are

usually not significant. This suggest that the basic biological role,

or at least their association, of genetic variants are broadly

consistent across ethnic boundaries, but that most well-studied risk

loci may be poorly linked to the probable true functional loci in

many populations. Therefore great attention needs to be paid

when attempting to translate cancer risk associations between

ethnic groups. Identification of more tightly linked risk markers is

important, as well as validation within the ethnic group in

question, for understanding the potential role of ethnic back-

ground in affecting cancer susceptibility and to allow proper

utilization of potentially clinically relevant findings between ethnic

groups.

Materials and Methods

Search Strategy
We systematically searched PubMed (http://www.ncbi.nlm.nih.

gov/pubmed/) and Web of Science electronic databases (http://

apps.webofknowledge.com) for meta-analyses published prior to

December 2013 that reported the association between alleles and

cancer risks within ethnic groups in six cancer types: lung,

stomach, liver, colon, breast and prostate. We also searched for

SNPs currently used by major popular genome profiling services

for the risk stratification of the six cancers, including 23&Me

(https://www.23andme.com/), Navigenics (http://www.

navigenics.com/), and United Gene (http://www.ugi.hk/), for

these alleles we broadened the search to any study (not limited to

meta-analysis) that provided information on ethnic background.

This was to ensure that variations already used in commercial

assays were in this study; however the records found in these

specific searches were all identified by the searches open to all

variants. When multiple reports were available for a single study,

only the most recent report was included.

Inclusion Criteria
For inclusion, the studies must have met all the following

criteria: (1) included information for at least two ethnic groups; (2)

were meta-analyses of case-control or cohort studies that had

original data of a quantitative assessment of the relationship of one

gene or SNP and risk of one of the six specified cancer; (3) results

were expressed as an odds ratio; and (4) with a 95% confidence

interval (CI) for the OR. In addition, variants included in

commercial personal genomics assays offered by 23&Me, Navi-
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Figure 1. Search strategy and study design A) Literature search strategy. B) Associations between markers and cancer risk were compared
between ethnic groups. Among the 86 SNPs assessed in this study, 123 pairwise comparisons of association results between ethnic groups were
made. The association results were assessed to determine if each ethnic group was sufficiently populated to find significant results found in other
groups. Where differences were found between groups, linkage disequilibrium analysis was performed. The Breslow-Day test for heterogeneity with
Tarone’s adjustment was used on all studies with sufficient data. *Both groups had significant results, but with opposite signs.
doi:10.1371/journal.pone.0097522.g001
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genics, and United Gene to estimate the risk of the six cancers

were used as search criteria, the requirement of the study being a

meta-analysis was not used for these variants.

Exclusion Criteria
The following exclusion criteria were used: (1) case-only studies,

case reports, editorials and abstracts; (2) studies that were missing

case and control numbers or an OR; and (3) studies reporting only

results in only one ethnic group. No language or publication date

restrictions were imposed.

Statistical Analysis
Data from all included papers was tabulated (Tables S1–S7).

When data for multiple genetic models are presented, the model

with the largest population that had a significant association

between allele and risk was selected for further analysis. If no

significant association existed then the model with the largest total

population was selected. In tabulating all pairwise comparisons

between ethnic groups for each SNP, the ethnic group with the

largest population giving a significant result was selected as a

reference population. When significance was not found for any

ethic group the largest population was used as the reference. For

alleles where one ethnic group exhibited a significant association

with cancer occurrence and another group did not, a power

analysis was performed for the non-significant studies using the

Genetic Power Calculator [28], based on the cancer’s prevalence

in the relevant ethnic groups, the number of cases and controls,

and an estimated relative risk. Prevalence was derived from World

Health Organization statistics (http://globocan.iarc.fr/)[29]. Rel-

ative risk was estimated using the power calculator using the

known prevalence and the given odds ratio as an initial

approximation of the relative risk. For this study, ‘‘well powered’’

is a power greater than or equal to 80%. To assess heterogeneity

among ethnic groups for the associations with risk a Breslow-Day

test with Tarone’s adjustment [30] was employed, as implemented

in the R metafor package [31]. Loci were excluded if incomplete

case and control numbers for each ethnic group were not reported.

Pairwise linkage disequilibrium was measured using Haploview

4.2 software [32]. All r2 values for SNP pairs with the assessed

variant within a region 50 kilobase on each side of the locus of

interest were evaluated with a one-way permutation test based on

Monte-Carlo resampling (replications = 10,000) to compare LD

patterns between ethnic groups, as implemented in the R coin

package [33]. Only SNPs which had at least 20 SNP pairs

available for the LD analysis within this region were assessed.

Agreement between odds ratios was compared with a z test on the

difference of the odds ratios z~dOR=SE(dOR),SE(dOR)

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

1zSE2
2

q
, only the odds ratios for which the association

study was significant or were at least 80% powered to validate the

significant finding in the reference population were evaluated. A

mixed model with the SNP as a grouping variable and cancer type

as a random effect were used to evaluate significance of the

association of agreement in LD between ethnic groups with

significance of the difference in OR. Potential publishing bias was

assessed using funnel plots and Egger’s regression test [34]. Results

were considered significant for p-values (two tailed) less than 0.05.

Results

Genetic Variant Selection
We searched for studies comparing association of cancer risk

with allelic variations in breast, colon, lung, liver, gastric and

prostate cancer in different ethnic groups. This analysis was open
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any genetic variant affecting the six cancer types but we also

specifically included SNPs currently used by major popular

genome profiling services for the risk stratification of the six

cancers. Based on this strategy, 68 publications met our inclusion

criteria for further analysis (Figure 1A). We obtained data for 96

assessed associations between cancer risk and genetic variants

across the six cancers (82 unique variants) (Tables S1) from these

papers. In total, 50 loci were associated with breast cancer, the

Figure 2. Forest plot of odds ratios. The results within liver, gastric, lung and prostate cancer are shown. OR’s from European populations are
shown in black, Asian in red, African in green, and other groups in blue. Though considerably heterogeneity is apparent, the association with risk for a
marker in one ethnic group appears to predict the direction of the association in the other ethnic groups, as supported by the test for heterogeneity.
Similar plots for breast and colon cancer are given in Figure S1 and S2, respectively.
doi:10.1371/journal.pone.0097522.g002

Table 2. Heterogeneity of OR among ethnic groups.

total SNPs x2 P value ,0.05 fraction total

breast 32 9 0.28

colon 13 1 0.08

gastric 4 2 0.50

lung 6 1 0.17

prostate 5 2 0.40

Total 60 15 0.25

Tarone’s Test for was used to assess heterogeneity of the odds ratios between ethnic groups. The fraction of SNP’s showing significant variability is tabulated.
doi:10.1371/journal.pone.0097522.t002
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other SNPs were distributed as: colon: 23 SNPs, liver: 8 SNPs,

gastric: 4 SNPs, lung: 6 SNPs and prostate 5 SNPs. The ancestral

allele and frequency of ancestral allele are summarized (see

Methods, Table S1). Study process is shown in Figure 1B. An

assessment of potential publication bias for the included studies

(using funnel plots and Egger’s regression test) showed no

significant bias for all cancers except breast (Figure S3). When

assessed within each ethnic group, no bias was observed in the

included breast cancer studies either.

Association with Cancer Risk among Ethnic Groups
To estimate the importance of genetic contributions among

ethnic groups in the evaluation of cancer risk, we surveyed the

OR’s primarily in populations of European, Asian and African

descent. To reduce the amount of heterogeneity within North

Table 3. Relationship between linkage disequilibrium and cancer susceptibility.

Cancer SNP ethnicity comparison LD Agreement OR agreement

breast rs1137101 African-Asian 0.66 0.23

breast rs1137101 African-European 0.01 0.01

breast rs1137101 Asian-European 0.03 0.00

breast rs13181 African-European 0.00 0.07

breast rs1799793 Asian-European 0.00 0.13

breast rs1801133 Asian-European 0.00 0.03

breast rs2273535 Asian-European 0.49 0.39

liver rs1800629 Asian-European 0.01 0.37

lung rs1056836 African-Asian 0.01 0.07

lung rs1056836 African-European 0.00 0.13

lung rs1056836 Asian-European 0.13 0.13

lung rs13181 Asian-European 0.05 0.35

lung rs5275 Asian-European 0.56 0.17

Agreement between odds ratios was compared with a z test of the difference; z = dOR/SE (dOR). LD agreement was assessed with a one-way permutation test based on
Monte-Carlo resampling on the r2 values between the relevant SNP and all available SNPs within 50 kb on either side of the loci. Two sided P values are shown.
doi:10.1371/journal.pone.0097522.t003

Figure 3. Using ethnic variation to nominate better candidate markers. Black triangles represent a SNP which exhibited significant
association with risk in one population and non-significant association in a different ethnic group. Gray triangles are SNPs that are tightly linked to
this marker in the population with a significant association but more loosely linked in the non-significant population. White triangles are SNPs very
close to this new candidate region with a measured association with outcome. The OR’s shown below the black marker are from this study, those
under the gray and white markers from the referenced studies. Significant results are marked with asterisks. A) rs1137101 failed to validate in a
European breast cancer population, however the nearby rs3828034 has a higher OR that nears significance [46]. B) rs6983267 failed to replicate in
studies of European (US) populations, however the nearby rs7837328 has a more consistent association [47–49]. The odds ratio for rs6983267 as
reported in this study (Table S2) is based on the ancestral allele, which is also the rare allele in European populations, the odds ratio for the nearby
SNPs were reported in relation to the most common allele, therefore for consistency we have also given the OR for rs6983267 in this figure in relation
to the common allele.
doi:10.1371/journal.pone.0097522.g003
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American studies (where populations may have diverse ancestry), if

the ethnic background was not stated then participants were not

assumed to have European heritage. The odds ratio values and

numbers of studies, number of cases and controls for each model,

and the type of genetic models tested were collected (Tables S2–

S7). To clarify the possible causes of the dissimilarities in OR

observed between ethnic groups, we calculated the power of all

studies within each ethnic group that gave non-significant results

where another ethnic group had a significant association for the

same allele in the same study. Results are tabulated in table 1 for

all pairwise comparisons between ethnic groups within each SNP;

the available data for the 82 unique variants assessed in this

analysis allowed 123 pairwise comparisons. Disagreement between

populations on the presence of a significant association is

potentially due to the non-significant study being underpowered.

Indeed, within the 80 comparisons between ethnic groups where a

significant association was found in at least one population, 39

comparisons (49%) were underpowered to validate the significant

result. However, in the 41 comparisons between ethnic groups that

were adequately powered to validate the significant result, only

12% (5/41) of allele associations replicated, 85% of comparisons in

well-powered studies (35/41) showed no significance for the

association in the validation population. The results were similar

across all studied cancers and between ethnic groups. In general,

the association of genetic loci with cancer risk usually do not

replicate in different ethnic groups

Heterogeneity of Association with Cancer Occurrence
among Ethnic Groups

Though the most of the associations between genetic variants

and cancer risk that were assessed in this study do not replicate

between ethnic groups, this does not establish that there is no

consistency of association for these variants across ethnic groups.

Indeed, a survey of the odds ratios and confidence intervals in the

studied loci suggests that the effect on cancer risk associated with

the studied alleles may often be consistent across ethnic boundaries

(Fig. 2, lung, gastric, liver, and prostate cancer; Fig. S1, breast

cancer; Fig. S2, colorectal carcinoma). Though considerable

variation is apparent among the ethnic groups, the direction of

the association is often conserved. To more rigorously evaluate

this, the differences of the odds ratio between ethnic groups was

assessed using the Breslow-Day test with Tarone’s adjustment [30]

to determine whether there was significant heterogeneity among

ethnic groups. The Breslow-Day test assesses the homogeneity of

the odds ratio across contingency tables and has an approximate

chi-squared distribution. Loci were excluded if incomplete case

and control numbers for each ethnic group were not reported.

Only a minority of loci showed significant heterogeneity among

ethnic groups (25%, 15/60 SNPs, Table 2). There were some

differences between the cancer types, with two out of the four

tested loci in gastric cancer showing significant heterogeneity, but

the number of loci is too small to statistically determine if there is a

meaningful difference in heterogeneity between the different

cancers. Excluding gastric cancer, loci exhibiting significant

heterogeneity were in the minority, ranging from 8% (colon

cancer) to 40% (prostate cancer). If the analysis is restricted to only

include data from populations where a significant result was found

or the study was well powered, similar results are found, with 67%

(28/42) of loci showing non-significant heterogeneity among

ethnic groups (data not shown). As discoveries of significant risk

associations in small populations could skew the results, the

analysis was also performed excluding discovery populations

whose number of total participants were less than the 10th

percentile of this entire study (N,548). The results were not

appreciably changed, five SNPs were affected and the number of

loci showing significant heterogeneity was 26%. Therefore, by this

measure, association with cancer risk is broadly consistent across

ethnic boundaries; a finding of an association with risk in one

population predicts the direction of that risk association in another

ethnic group. However, as our results in table 1 demonstrate, this

does not mean that one should expect a significant association in

one ethnic group to lead to a significant result in another ethnic

group.

Linkage Disequilibrium Analysis
For sites of variation with disagreement between ethnic groups

(as defined by significant results predicting increased or decreased

risk for the same allele, or significant results in one group but non-

significant yet powered analysis in another group), linkage

disequilibrium (LD) analysis was performed. LD patterns between

ethnic groups within a region 50 kilobase on each side of the locus

of interest were compared. Looking at cases which had at least 20

SNP pairs available for LD analysis within this region, 62% of loci

showed significant differences in the r2 of SNPs compared with the

tested variant between ethnic groups and 23% of loci showed

significant disagreement between ethnic groups in odds ratio, as

assessed by a z test on the difference in the odds ratios (Table 3). A

linear mixed model for the agreement of these tests showed

significant association (p = 0.013). This result suggests that the

agreement in OR between different ethnic groups is associated

with the comparative variation in the surrounding genome

structure. This likely reflects that in conserved regions the link

between the tested marker and actual risk allele remain tight.

Discussion

Our results demonstrate that ethnic background usually plays

an important role in affecting the association between a putative

risk marker and cancer risk. In a survey of studies encompassing

96 risk:variant associations (82 unique alleles) in six cancers

assessing the association between cancer susceptibility and allelic

variations, we found that a significant result in one ethnic group

was usually not reproducible on other ethnicities in well-powered

studies. This is consistent with other studies [23,24,35], though this

is the first large review to focus on cancer risk associations.

Whether clinical studies are to be expected to validate has been a

subject of interest of late [36], and there are many reasons why a

result may fail to replicate. One hypothesis we initially entertained

was that insufficient case numbers for rare alleles would account

for the majority of disparate results. However this hypothesis was

not supported, limiting analysis to well-powered studies still saw

that most associations between variants and cancer risk did not

replicate in different ethnic groups. However, we also saw that

most loci exhibited consistency in their association with risk, most

loci did not have statistically significant heterogeneity in the OR’s

among the studied ethnic groups. These results are not contra-

dictory, but the distinction is important in understanding the

complicated manners that ethnic variation can affect clinical

studies. The test for heterogeneity suggests that the basic biologic

effect of a site of genetic variation may often be shared across

ethnic boundaries. On the other hand, the power analyses suggests

that, despite this putatively shared biology, reproducing a result

found in one ethnic group may be difficult to achieve in another

group. Therefore, although a basic biological effect may be

conserved, the tested alleles’ contributions to cancer risk appear to

include factors intrinsically distinct between ethnic groups. These

factors are likely to confound efforts to translate utility of a marker
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from one ethnic group to another unless adequately accommo-

dated.

The cause of the different association for a marker among

ethnic groups could be due to either the risk alleles being linked to

the real causative allele with differing strengths between the

groups, the allele acting in different manners across ethnic

boundaries in how it affects cancer risk, or differing interactions

between the risk allele with environmental or other genetic

elements that vary among populations. We present evidence that

genetic linkage appears to be a strong factor in explaining the

differing association between marker and risk for many of the

tested alleles, consistent with findings in other studies [23]. This

does not mean that environmental and higher level genetic

interactions do not contribute to inter-ethnic diversity. These

results do suggest that, when trying to translate genetic association

results from one ethnic group to another, validation within all

ethnic groups of interest is vitally important and efforts to identify

causal genetic loci and or closely linked loci will improve

conservation across ethnic boundaries.

The results reported here suggest that the linkage between

commonly utilized or studied cancer risks markers at defined risk

loci are often poorly linked to the actual risk alleles. Using this

genetic diversity among populations may therefore allow better

mapping of these true risk alleles. As LD structure has been

demonstrated to vary among ethnic groups, studies assessing

multiple ethnic groups can greatly aid these types of efforts [37].

Allelic variation in high LD with a marker linked to risk in a

studied population serves as candidates of possible risk alleles to be

assessed in the index ethnic group and yet untested populations.

For example, fine-mapping in Asian, European, and African-

Americans in a FGFR2 associated allele in breast cancer led to

better definition of the risk region [38]. In this regard, the linkage

differences among ethnic populations may be useful for the

nomination of SNPs that are more closely linked to the true

functional SNP. Therefore, SNPs in high LD to the tested risk

marker in the ethnic group with the significant association, but

more loosely linked in the group with a non-significant association

may indicate regions where the true functional SNP resides. As an

example, in figure 3 we show examples from breast (Fig. 3A) and

colon (Fig. 3B) cancers. In each case, SNPs with a more consistent

association with cancer across ethnic boundaries were found in

regions nearby the initial tested markers. Continued fine mapping

of variants, and increased reporting of all results from GWAS (not

just the markers that meet the corrected significance levels

required in the identification of novel markers) will greatly speed

up the ability to use such information to identify risk markers that

translate across ethnic boundaries.

As understanding of the genetic variation among disparate

population groups is of clear importance in assessing cancer risk,

the risks of using self-reported ethnic designations as surrogates for

complete genetic information must be considered as a limitation of

this study, and of any study that uses self-reported ethnicity.

Potential problems in the use of ancestry identifiers (such as race

and ethnicity) in medical studies have been addressed in several

reports [39–43]. These ethnic labels are surrogates, with

significant short-comings, for the shared genetic variation and

shared genetic history that explain the differences in allele

frequencies observed between population groups [44,45]. How-

ever the factors that comprise self-reported ethnicity may

encompass elements common to genetically distinct groups, such

as shared cultural and historical experiences, beliefs and rituals,

and other customs. While these elements may also be important in

creating a complete risk model for an individual, distinguishing

these different types of factors is important, and the use of self-

reported ethnic labels may not contribute to their differentiation.

Nonetheless, until fine scale mapping or sequencing of individuals

becomes the norm in medical diagnostic and therapeutic decision

making, the use of ethnic group labels appears necessary.
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