
����������
�������

Citation: Zhang, X.; Han, J.; Xu, Y.;

Cai, M.; Gao, F.; Han, J.; Wang, D.; Fu,

Y.; Chen, H.; He, W.; et al. TSPO

Deficiency Exacerbates GSDMD-

Mediated Macrophage Pyroptosis in

Inflammatory Bowel Disease. Cells

2022, 11, 856. https://doi.org/

10.3390/cells11050856

Academic Editor: Javier

Conde Aranda

Received: 15 November 2021

Accepted: 24 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

TSPO Deficiency Exacerbates GSDMD-Mediated Macrophage
Pyroptosis in Inflammatory Bowel Disease
Xue Zhang 1,†, Jingyi Han 1,2,†, Yi Xu 1,3, Menghua Cai 1, Fei Gao 1, Jiajia Han 1, Dongdong Wang 1, Yi Fu 1,
Hui Chen 1,3, Wei He 1,3,* and Jianmin Zhang 1,3,*

1 Department of Immunology, Research Center on Pediatric Development and Diseases, Chinese Academy of
Medical Sciences, Key Laboratory of T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State
Key Laboratory of Medical Molecular Biology, Beijing 100005, China; zhangxue921125@163.com (X.Z.);
13173056037@163.com (J.H.); xuyi2207@163.com (Y.X.); menghuacai@ibms.pumc.edu.cn (M.C.);
gaofeipumc2015@163.com (F.G.); hanjiajia_1@163.com (J.H.); wddo1991@163.com (D.W.);
fuyiabc@126.com (Y.F.); chenhui_1980@126.com (H.C.)

2 Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University,
Jinan 250012, China

3 Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
* Correspondence: heweingd@126.com (W.H.); jzhang@ibms.pumc.edu.cn (J.Z.)
† These authors contributed equally to this work.

Abstract: Background: the 18-kDa translocator protein (TSPO) is a mitochondrial outer membrane
protein, and its expression tends to increase in response to inflammatory stimulation, rapidly. How-
ever, the role of TSPO in inflammation and pyroptosis is not yet clear. Here, we identified TSPO as
a novel key regulator of pyroptosis. (2) Methods: TSPO knockout and DSS induced mouse inflam-
matory bowel disease (IBD) models were employed to assess the roles of TSPO in the pathogenesis
of IBD. Primary peritoneal macrophages from TSPO knockout mice were applied to evaluate the
mechanism of TSPO in cell pyroptosis. Conclusions: in response to inflammatory injury, TSPO
expression is rapidly upregulated and provides a protective function against GSDMD-mediated
pyroptosis, which helps us better understand the biological role of TSPO and a novel regulatory
mechanism of the pyroptosis process.

Keywords: TSPO; inflammatory bowel disease; GSDMD; pyroptosis

1. Introduction

Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease of the in-
testine that is characterized by continuous inflammation of the mucosal and submucosal
layers of the colon and includes Crohn’s disease (CD) and ulcerative colitis (UC). Chronic
intestinal inflammation usually involves the rectum first and gradually spreads to the
entire colon, while it is accompanied by the activation of inflammasomes [1–4] and the
release of cytokines, such as IL-1β, due to pyroptosis [5,6]. Pyroptosis is a form of pro-
grammed cell death associated with various inflammatory diseases through an excessive
inflammatory response [7]. When cells are stimulated by inflammatory signals, such as
LPS, the downstream inflammasome complex NLRP3 is activated through the classic or
nonclassic inflammatory activation pathway and started caspase-1 shears GSDMD to form
the N-terminal GSDMD fragment (p30). GSDMD (p30) has pore-forming toxicity and is the
final effector protein of GSDMD-mediated pyroptosis [8,9]. Free GSDMD (p30) targets and
inserts into the plasma membrane, forming pore-like structures with inner diameters of
10–20 nm [10,11]. Cellular inflammatory factors can leak through these pores to the extra-
cellular space. If the pore-like structures continue to increase, there can be an imbalance in
intracellular osmotic pressure, resulting in dramatic swelling of the cell, the eventual loss
of membrane integrity, and even cell death [12,13].
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In recent years, several studies have shown that pyroptosis effector proteins target not
only the plasma membrane, but also the outer mitochondrial membrane [14]. Alterations
in outer mitochondrial membrane permeability are usually essential initiating steps in
cells in response to cell stress. Still, recent studies have shown that mitochondrial outer
membrane permeabilization (MOMP) also promotes the development of pyroptosis [15,16].
The changes in MOMP cause substantial spillover of the reactive oxygen species (ROS)
from the mitochondria into the cytoplasm, and intracellular NLRP3 and caspase-1 are
activated. In this context, activated caspase-1 will further shear gasdermins, creating the
activated pore-forming form, thus intensifying the formation of pores in the cell membrane
and further expanding pyroptosis development [17]. From this perspective, mitochondrial
stress plays an important role in developing pyroptosis. However, the exact position of
mitochondria in pyroptosis needs to be further investigated.

The mitochondrion is the energy center of the cell. The 18-kDa translocator protein
(TSPO) is one of the outer mitochondrial membrane proteins [18]. Recent studies revealed
that TSPO could activate endoplasmic reticulum-associated protein degradation, inhibit
autophagy, and increase the production of pro-inflammatory cytokines [19,20]. TSPO is
closely associated with mitochondrial function, and our previous study showed that TSPO
deletion resulted in more fragmented mitochondria, reduced mitochondrial membrane
potential, and increased ROS levels in GL261 cells [21]. TSPO expression has also been
reported to be highly upregulated in many inflammatory diseases and multiple tumor
types, such as IBD and colon cancer. There is no abnormalities in the TSPO KO mice colon,
and the lifespan of these TSPO KO mice was not affected [18,22,23]. However, the molecular
mechanisms underlying TSPO-mediated inflammation and pyroptosis remain unknown.

In this study, we applied a DSS-induced IBD mouse model in TSPO knockout (KO)
mice to investigate the role of TSPO in the pathogenesis of IBD. Our results revealed that
TSPO played a crucial protective function in the development of IBD. TSPO deficiency
causes more severe inflammatory damage and GSDMD-mediated macrophage pyrolysis.

2. Materials and Methods
2.1. DSS Stimulation Assay

The wild type (WT) and TSPO knockout (KO) mice were obtained from same litter-
mates of het/het (TSPO+/−) breeding and co-housed throughout the whole experiment [18].
TSPO-KO and WT mice aged 6–8 weeks were selected as experimental mice. A murine
model of DSS-induced acute colitis was performed as described previously [24]. In brief,
the daily drinking water was replaced with 3% DSS solution every 4 days. The weight and
fecal characteristics of mice were recorded every day, and the disease activity index (DAI)
score was calculated. After 10 days of induction, the mice were euthanized for subsequent
experiments.

2.2. Isolation of Murine LP Cells

Colonic LP cells were isolated from TSPO-KO and WT mice as described previ-
ously [25]. Briefly, colon tissues were isolated from the mice, opened longitudinally, and
washed in cold PBS. The colon tissues were cut into 1 cm pieces and incubated in pre-
digestive solution (HBSS without Ca2+/Mg2+, 5% FBS, 2 mM EDTA, 1000 × 2-ME) for
15 min at 37 ◦C, 250 rpm. Then, the tissues were cut into 5 mm pieces and was incubated in
2 mL digestive solution (HBSS, 5% FBS, 1 mg/mL collagenase IV, 0.1 mg/mL DNase I) for
20 min at 37 ◦C, 250 rpm. The supernatant was collected by a centrifugation of 600× g and
the remaining tissues were added to 5 mL of digestive solution for 20 min at 37 ◦C, 250 rpm.
The supernatant was collected and combined with the previous one before centrifugation
at 300× g for 5 min [25]. After discarding the supernatant, the cell pellet was resuspended
with PBS and filtered with 40 um cell sieves on ice.
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2.3. Flow Cytometry

Isolated mouse colonic mononuclear cells or mesenteric lymph node cells were placed
into a 1.5 mL EP tube before washing once with 1 × PBS solution. Then, 1 mL of 1% BSA
blocking solution was added to each tube, and the cells were spun again at 300× g for 5 min
to remove the supernatant before the addition of 2 µL of each antibody and incubated for
30 min at 4 ◦C as describe previously [21].

2.4. Isolation and Culture of Murine Macrophages

Both WT and TSPO-KO mice were intraperitoneally injected with a 3% Brewer thiogly-
collate medium and euthanized by rapid cervical dislocation after 3 days of inflammatory
responses. Cold PBS was used to lavage the abdominal cavity, and the peritoneal irrigation
fluid was collected and centrifuged at 300× g and 4 ◦C for 10 min.

2.5. Pyroptosis Stimulation Assay

The complete medium was replaced with serum-free medium 4 h after cell isolation
from mice, and the cells were starved for 12 h. LPS at a final concentration of 1 µg/mL
was added for pre-stimulation for 3 h before the boost stimulation with ATP at a final
concentration of 5 mmol/L, as described previously [26]. The cells or culture supernatants
were collected and analyzed at different time points.

2.6. LDH Assay

A CytoTox 96® Non-Radioactive Cytotoxicity Assay kit (Madison, WI, USA) was
applied to assess LDH release by mouse macrophages after pyroptosis as previously
described [27]. In brief, mouse primary peritoneal macrophages were plated in 96-well
plates and incubated at 37 ◦C and 5% CO2 for 12 h. Ten microliters of total lysis solution
buffer were added to untreated cells 30 min before the end of pyroptosis stimulation as a
control for maximum LDH release. After pyroptosis stimulation, the plate was centrifuged
at 250× g for 4 min, and 50 µL of the supernatant was transferred into a new 96-well plate.
After 50 µL of reaction substrate buffer was added to each well, the plate was incubated
for another 30 min in the dark at room temperature (RT). Then, 50 µL of stop buffer was
added. The optical density (OD) value was measured immediately.

2.7. Western Blotting

After pyroptosis stimulation, the supernatant was removed from the cells, and the
cells were lysed in EDTA-free RIPA buffer containing a protease inhibitor (Thermo Sci-
entific, Waltham, MA, USA) on ice for 30 min. Cells were seeded in a 24-well plate
(5 × 105 cells/well) with 300 µL culture medium. A total of 25 µL of supernatant per sam-
ple was used for Western blotting. Both the supernatant and cell lysate were centrifuged
at 1000× g and 4 ◦C for 15 min. SDS-PAGE was used to resolve proteins by molecular
weight. Proteins in both the supernatant and cell lysates were incubated with primary
antibodies for 10 h at 4 ◦C followed by incubation with anti-mouse or anti-rabbit secondary
antibodies (Invitrogen, Waltham, MA, USA) for 2 h at room temperature. The signal was
developed with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific,
Waltham, MA, USA) and a CliNX ChemiScope 3400 (CliNX Science Instruments Co., Ltd.,
Shanghai, China).

2.8. Immunofluorescence Assay

Cells were seeded on microscope cover slides (Fisherbrand, Waltham, MA, USA) and
incubated overnight. After the treatments, the cells were washed three times with PBS and
fixed with 4% formaldehyde for 15 min. Then, the cells were permeabilized with 0.25%
Triton X-100 in PBS for 10 min and blocked with goat serum for blocking (Boster, Pleasanton,
CA, USA) for 1 h at room temperature. Cells were stained with primary antibodies for
10 h at 4 ◦C and then incubated with Alexa Fluor Plus 555 goat anti-rabbit IgG secondary
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antibodies (Invitrogen) at a dilution of 1:1000 for 2 h at RT. Images were taken on a Zeiss
LSM 710 confocal microscope.

2.9. Multiplex Immunohistochemistry Assay

Murine colon sections were prepared for multiplex immunohistochemistry staining
as described previously [28]. Briefly, the sections were deparaffinized through xylenes
and rehydrated through decreasing graded alcohol. Endogenous peroxidase was removed
by incubation in 3% H2O2 for 15 min. and 1X Tris-EDTA pH 8.0 was used for antigen
retrieval in a microwave oven. A hydrophobic pen was used to circle tissue sections before
blocking with goat serum for 10 min at RT. Then, the sections were incubated with primary
antibodies (anti-PBR or anti-GSDMD) at 37 ◦C for 2 h. Sections were then incubated with
Rb HRP-Polymer (ZSGB-BIO) for 10 min at RT. Incubation with Opal 7 color manual kit
(Akoya) for 2 min was followed by washing in 1X TBST. Images were taken on AKOYA
Vectra Polaris microscope.

2.10. Co-Immunoprecipitation (Co-IP) Assay

Mouse macrophages were isolated and seeded at 1 × 106 cells/mL in 10 cm dishes
and incubated at 37 ◦C and 5% CO2 overnight. After pyroptosis induction, the cells were
washed with PBS three times and lysed in 500 µL of NP-40 IP lysis buffer containing 1%
protein phosphatase inhibitor (Abcam) on ice. Cells were collected and centrifuged at
12,000× g rpm and 4 ◦C for 15 min. The supernatant was transferred into new tubes and
incubated with primary antibodies for 10 h at 4 ◦C. Dynabeads™ Protein G for immuno-
precipitation (Invitrogen) was added to each tube and incubated at RT for 15 min. After
incubation, the magnetic bead-Ab-Ag complex was gently washed 5 times, the supernatant
was removed, and the bead-Ab-Ag complex was lysed in SDS sample buffer, boiled for
5 min, and analyzed by SDS-PAGE.

2.11. Antibodies

Rabbit monoclonal Anti-ASC (AG-25B-006-C100, AdipoGen, San Diego, CA, USA),
mouse monoclonal anti-NLRP3 (AG-20B-0014-C100), rabbit monoclonal anti-caspase-1 (p20)
(AG-20B-0042-C100), Rabbit monoclonal anti-GSDMD (ab209845, ABCAM, Cambridge,
UK), rabbit monoclonal anti-PBR (ab109497, ABCAM), mouse Antiβ-actin (SJ190a9b68548,
Sigma-Aldrich, St. Louis, MO, USA), rabbit monoclonal anti-IL-1β (12242, CST, Danvers,
MA, USA), rabbit monoclonal anti-Iba1 (PA5-21274, Invitrogen), mouse monoclonal anti-
Iba1 (019-19741, WAKO, Osaka Japan), anti-cytochrome C antibody (ab90529, Abcam) FITC
anti-mouse CD45 antibody (103108, BioLegend, San Diego, CA, USA), APC anti-mouse
F4/80 antibody (123116, BioLegend), PE/Cyanine7 anti-mouse CD86 antibody (105014,
BioLegend), PE anti-mouse/human CD11b antibody (101208, BioLegend).

2.12. Statistical Analysis

Results are expressed as mean ± S.E.M. Statistical significance was determined by
Student’s t-test, two-sided. Differences of statistical analysis at * p < 0.05, ** p < 0.01,
*** p < 0.001.

3. Results
3.1. TSPO-KO Mice Developed More Severe Colitis in DSS-Induced IBD Mice

To characterize the possible links between intestinal immunity and TSPO, we applied
TSPO-KO and TSPO wild type (TSPO-WT) mice to create DSS-induced acute and chronic
colitis murine models. TSPO-WT and TSPO-KO mice were euthanized after receiving 2.5%
DSS in their drinking water for 10 days, and the disease activity index (DAI) scores of
all mice were evaluated each day. Compared with WT mice, TSPO-KO mice had more
significant body weight loss (Figure 1A). The increased DAI scores were more pronounced
in TSPO-KO mice than in TSPO-WT mice (Figure 1B), indicating that weight loss, blood
stool, and soft stools were more severe in KO mice than in WT mice. Both WT and KO
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mice were sacrificed on day 10, and we isolated the colons. The colon lengths of TSPO-
KO mice were reduced compared with those of WT mice, and TSPO-KO mouse colons
exhibited more severe mucosal congestion (Figure 1C,D), which indicated more severe
colonic injury in TSPO-KO mice than in WT mice. In addition, we collected mouse colon
tissue for pathological examinations. We found that the colons of TSPO-KO mice more
frequently contained colonic mucosal erosions and ulcers, goblet cell loss, inflammatory hy-
perproliferative primary mucosal cell clusters, and even transmural infiltration (Figure 1E).
Inflammation-associated histological scores were significantly higher in TSPO-KO mice
than in WT mice (Figure 1F). Taken together, these results suggest that TSPO deficiency
results in more severe colitis in a DSS-induced IBD mouse model.
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Figure 1. TSPO deletion results in more severe colitis in DSS-induced IBD mice. (A) Weight loss of
TSPO KO and WT mice after DSS treatment (WT, n = 7; KO, n = 5). (B) Disease activity index (DAI)
scores of TSPO and WT mice after DSS treatment (WT, n = 7; KO, n = 5). (C) HE staining of TSPO KO
and WT mouse colons showed ulceration (black arrow), areas of strong transmural inflammation
(white arrow), edematous submucosa (red arrow), and other inflammatory phenotypes in the colons
of TSPO KO mice; the scale bar represents 100 µm. (D) Inflammatory histological scores of TSPO
KO and WT mice (WT, n = 5; KO, n = 5). (E) Colon length of TSPO KO and WT mice. (F) Colon
length statistics of TSPO KO and WT mice (WT, n = 5; KO, n = 5). Data expressed as mean ± s.e.m.,
Student’s t-test, two-sided. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. TSPO Deficiency Results in More Pro-Inflammatory M1 Macrophages in the Colon

To decipher the mechanisms leading to severe DSS-induced colitis in TSPO-KO mice,
we analyzed local lymphocyte compositions in the colons of TSPO-KO and WT mice under
physiological and pathological conditions. Flow cytometry analysis showed no difference
between the proportion of CD11b+/CD86+ M1 macrophages among lamina propria (LP)
cells in either healthy TSPO-KO or WT mice (Figure 2A,B). However, after 10 days of DSS
administration, the proportion of CD11b+/CD86+ M1 macrophages in both KO and WT
mice was obviously increased, and the proportion of M1 type macrophage in KO mice was
slightly higher than that in WT mice (p = 0.057) (Figure 2A,B). These findings suggest that
TSPO deficiency causes more pro-inflammatory M1 macrophages in the colon, contributing
to severe DSS-induced colitis in TSPO-KO mice.

1 
 

 
  

Figure 2. Cont.



Cells 2022, 11, 856 7 of 15

1 
 

 
  Figure 2. TSPO KO mice exhibited more pro-inflammatory M1 macrophages in the colon. (A) Flow

cytometry analysis of the proportion of M1 type macrophages in mouse colon mononuclear cells
from WT (healthy n = 3. DSS n = 3) and KO mice (healthy n = 3. DSS n = 4). (B) The statistics of
the proportion of macrophages in mouse colon lymphocytes are shown in panel A. (C) Left, Iba1
immunofluorescence staining of frozen mouse colon sections from WT and KO mice was visualized
by laser confocal microscopy. Red: Iba1. Blue: DAPI. The scale bar: 50 µm. Right, quantification
of the expression levels of Iba1 as shown in left. (D) After DSS treatment, Iba1 expression levels in
lymphocyte lysates from TSPO KO and WT mice were analyzed by Western blots. (E) Quantification
of the expression levels of Iba1 as shown in Panel D. Data expressed as mean ± s.e.m., Student’s
t-test, two-tailed. * p < 0.05, ** p < 0.01. n.s. means not significant.

To further verify the flow cytometry results, immunofluorescence analyses were
performed to examine macrophage infiltration in the colonic intestinal villous tissues of
TSPO-KO and WT mice. The results showed that there were very few Iba1 + macrophages
in the colonic tissues under physiological conditions from either WT mice or TSPO-KO
mice (Figure 2C). Still, in mice with DSS-induced acute colitis, the infiltration of Iba1 +
macrophages was significantly increased in both TSPO-KO and WT mice. The number of
Iba1 + macrophages infiltrated in the colonic intestinal villi in TSPO-KO mice was much
higher than that in WT mice (Figure 2C). This result was also verified by Western blot
analysis, which showed a significant upregulation of Iba1 expression in colonic LP cells
from TSPO-KO mice compared to WT mice (Figure 2D,E). Taken together, these results
revealed that in DSS-induced mice, macrophages extensively infiltrated the colonic villi and
exerted their pro-inflammatory effects. In contrast, macrophage infiltration in TSPO-KO
mice was much higher than in WT mice. These excessively infiltrating macrophages in the
intestinal villi were probably the effector cells of the worsened symptoms of acute colitis in
TSPO-KO mice.

3.3. TSPO Deficiency Promotes Pyroptosis in Peritoneal Macrophages

The finding that macrophage infiltration was significantly increased in DSS-induced
TSPO-KO mice prompted us to determine whether TSPO deficiency affected the macrophage
response to inflammation. We then sorted colonic LP cells from DSS-induced WT and
TSPO-KO mice. We observed that the levels of inflammasome-related molecules such as
NLRP3, caspase-1, and cleaved caspase-1 were significantly higher in TSPO-KO mice than
in WT mice. In contrast, there was no significant difference in the expression of ASCs
(Figure 3A,B) and GSDMD (Supplementary Figure S1A) between WT and KO cells. These
data indicate that the absence of TSPO caused a more severe inflammasome-related inflam-
matory response. Notably, the expression of the inflammasome- and pyroptosis-associated
pro-inflammatory factor IL-1β was significantly enhanced in TSPO-KO mice (Figure 3A,B).
Overall, the upregulation of inflammasome-related proteins in KO cells suggests that TSPO
is involved in regulating inflammasome pathways and that TSPO deficiency leads to exces-
sive NLRP3 activation, which could be a key factor in inducing downstream pyroptosis.
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Figure 3. TSPO deficiency promotes pyroptosis in macrophages. (A) The expression of NLRP3,
caspase-1, caspase-1 (P20), and the pro-inflammatory cytokine IL-1β in TSPO KO and WT mouse
colon mononuclear cells was increased after DSS treatment; however, there was no significant
difference between the expression of ASC in TSPO KO and WT colon mononuclear cells. (B) Statistical
analysis of the expression of NLRP3, caspase-1, caspase-1 (P20), and the pro-inflammatory cytokine
IL-1β in TSPO KO and WT mouse colon mononuclear cells after DSS treatment. Three completely
independent experiments were conducted. Data are shown as mean ± s.e.m., Student’s t-test,
two-tailed. * p < 0.05, ** p < 0.01. n.s. means not significant.

3.4. TSPO Deficiency Promotes GSDMD-Induced Pyroptosis in Mouse Peritoneal Macrophages

Next, we sought to determine whether TSPO deficiency affected the levels of pyroptosis-
related proteins during the process of pyroptosis. We performed Western blotting to mea-
sure inflammasome- and pyroptosis-related proteins in these cells and found that the levels
of the pyroptosis-related proteins caspase-1 and ASC in the lysates of these cells were sig-
nificantly reduced in TSPO KO macrophages compared to WT macrophages (Figure 4A,B).
The level of caspase-1 (p20) was also increased in KO cells (Supplementary Figure S1B).
The massive reduction in caspase-1 and ASC indicates an increase in inflammasome for-
mation and a high level of GSDMD cleavage in KO cells. Correspondingly, the level of
GSDMD (P30), an essential protein responsible for pyroptosis, was also significantly in-
creased (Figure 4A,B). We also found that the levels of caspase-1 and GSDMD expression in
unstimulated macrophages from WT and TSPO-KO mice were at the same level (Figure 4A
and Supplementary Figure S1C).

We hypothesized that the reduction in inflammasome-related proteins might be due
to the loss of cell membrane integrity caused by pyroptosis, which leads to the release of a
large number of related proteins. We then measured protein levels in the cell supernatant.
We found that the levels of inflammasome- and pyroptosis-related proteins caspase-1, ASC,
and GSDMD in the TSPO KO cell supernatant were significantly higher than those in
the WT cell supernatant (Figure 4C,D), indicating that the absence of TSPO causes rapid
shearing and the release of inflammasome- and pyroptosis-related proteins.

To explore the effect of TSPO deletion on the inflammatory response of macrophages,
peritoneal macrophages were isolated from TSPO-KO mice and WT mice. After stimulation
with LPS and ATP to induce pyroptosis, the levels of lactate dehydrogenase (LDH) in
the culture supernatant were significantly increased in KO cells compared with those in
WT cells at different time points (Figure 4E). The numbers of viable KO cells were also
decreased significantly at the early time points after stimulation compared with those of WT
cells (Figure 4F). In the induction of pyroptosis with LPS and nigericin, we also observed
enhanced pyroptosis of KO cells (Supplementary Figure S1D). These results taken together
indicate that TSPO deficiency promotes peritoneal macrophages to undergo pyroptosis in
the early stage of inflammatory response.
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Figure 4. TSPO deficiency causes enhanced GSDMD-induced pyroptosis in macrophages. (A) The
expression levels of ASC, caspase-1, and GSDMD (P30) in mouse peritoneal macrophages after
inflammatory stimulation. (B) Statistical analysis of the expression levels of ASC, caspase-1, and
GSDMD (P30) in mouse peritoneal macrophages after inflammatory stimulation. (C) The expression
levels of ASC, caspase-1, and GSDMD (P30) in mouse peritoneal macrophage culture supernatant
after inflammatory stimulation. (D) Statistical analysis of the expression levels of ASC, caspase-1, and
GSDMD (P30) in mouse peritoneal macrophage culture supernatant after inflammatory stimulation.
Three completely independent experiments were conducted. (E) The level of LDH release were
measured to detect the proportion of macrophage injury and death after inflammatory stimulation
with LPS and ATP at different time points as indicated. Untreated, untreated control group. (F) CCK-
8 toxicity test was conducted to detect the activity of peritoneal macrophages after inflammatory
stimulation. Untreated: untreated control group. Data expressed as mean ± s.e.m., Student’s t-test,
two-tailed. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.5. TSPO Inhibits Pyroptosis by Interacting with Mitochondria-Targeted GSDMD

Next, we sought to determine whether TSPO interacts with GSDMD during pyroptosis.
We performed multiplex immunohistochemistry to examine the colocalization of TSPO
with GSDMD in mouse colon tissues. The result showed an obvious co-localization of
TSPO and GSDMD in colon tissue from DSS-treated mouse (Figure 5A). 
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Figure 5. TSPO interacts with GSDMD during pyroptosis. (A) Multiplex immunohistochemistry
assay of TSPO, GSDMD, and CD68 expression in colon tissue from WT and KO mice. Red: TSPO,
white: CD68, green: GSDMD; blue, DAPI. White arrows represent for colocalization of TSPO
and GSDMD. Scale bars, 20 µm. (B) Left, the subcellular localization of GSDMD in TSPO KO
and WT mouse peritoneal macrophages was observed by laser confocal microscopy under an oil
microscope. GSDMD was labeled with an anti-GSDMD antibody (red), the cytoskeleton was labeled
with phalloidin (green), and the nucleus was labeled with DAPI (blue). Scale bar, 5 µm; right,
quantification of GSDMD-p30 positive cells per vision of LPS + ATP activated macrophages. n = 5.
(C) The subcellular localization of GSDMD and TSPO in HEK-293T cells was observed by laser
confocal microscopy under an oil microscope. GSDMD was labeled with anti-GSDMD antibody
(red), TSPO was labeled with GFP (green), and the nucleus was labeled by DAPI (blue). (D) IP
verified the interaction between TSPO and GSDMD in pyroptotic macrophages. (E) Microplate assay
for detection of H2DCFDA to quantitatively assess reactive oxygen species (ROS) levels in TSPO
KO mouse peritoneal macrophages with Ex = 485 nm and Em = 535 nm. (F) Western blot assay to
examine the cytochrome C in both cell lysate and supernatant of WT and KO cells. Data expressed as
mean ± s.e.m., Student’s t-test, two-sided. * p < 0.05, ** p < 0.01, *** p < 0.001. Three independent
experiments were conducted.

To further explore the key role of TSPO in pyroptosis, we applied a fluorescence confo-
cal microscope to examine the dynamic changes in TSPO-deficient cells during pyroptosis.
Immunofluorescence staining of GSDMD showed that no visible GSDMD expression was
observed in either WT macrophages or TSPO KO cells under physiological conditions.
This may be in that in steady state the pore-forming GSDMD-p30 (GSDMD-N domain)
is “embosked” by its GSDMD-C domain [29], resulting in no antibody staining signal in
immunofluorescent assay. However, after LPS plus ATP treatment, there were more GS-
DMD puncta in TSPO KO macrophages than in WT macrophages (Figure 5B). To examine
whether TSPO interacted with GSDMD, TSPO-GFP expression plasmids were transfected
into 293T cells. The results showed that TSPO and GSDMD were specifically colocalized
after LPS plus ATP treatment, indicating that TSPO may interact with GSDMD during
pyroptosis (Figure 5C).

To verify this possibility, we performed a Co-IP experiment using peritoneal
macrophages. The results showed that although no detectable interaction between TSPO
and GSDMD was observed under steady state, after treatment with LPS plus ATP to in-
duce pyroptosis, we identified a GSDMD signal interacting with TSPO (Figure 5D and
Supplementary Figure S1E).

Previous studies have shown that the pore-forming fragment of GSDMD (p30) can
target not only the outer cell membrane but also the outer mitochondrial membrane,
thus changing the MOMP. TSPO serves as an outer mitochondrial membrane protein and
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maintains the structural integrity of mitochondria. Thus, we sought to determine whether
the interaction between TSPO and GSDMD played a role in MOMP stability and ROS
release in the context of pyroptosis. We used a DCFDA probe to measure intracellular
ROS levels and found that in resting physiological cells, intracellular ROS levels in TSPO-
KO peritoneal macrophages were slightly higher than those in WT cells, consistent with
our previously published observations. After treatment with LPS plus ATP to induce
pyroptosis in these cells, intracellular ROS levels in both TSPO-KO and WT cells increased
significantly. However, compared to WT cells, a significant increase in ROS levels was
observed in TSPO-KO cells, indicating a substantial impairment of mitochondrial MOMP
in TSPO-KO cells (Figure 5E). To assess mitochondrial damage, we measured the release
of cytochrome C from the mitochondria in both cell lysates and supernatant of WT and
KO cells. In steady state, no cytochrome C was detected in the supernatant of WT and KO
cells. However, after the induction of pyroptosis with LPS and ATP, the cytochrome C in
TSPO KO cells significantly released to the supernatant (Figure 5F), indicating a severe
mitochondrial damage in KO cells during pyroptosis.

4. Discussion

Pyroptosis represents a form of programmed cell death that is triggered by pro-
inflammatory signals and associated with inflammation. Organisms fight bacterial infec-
tions, local inflammation, and cancer through pyroptosis. A small degree of pyroptosis
helps the body to actively clear invading pathogens and maintain homeostasis, while
excessive pyroptosis releases large amounts of pro-inflammatory cytokines. Therefore,
maintaining the level of pyroptosis within a normal range and controlling the intensity
of pyroptosis is of great importance for treating inflammatory diseases. In response to
inflammatory signals, macrophages are activated through toll-like receptors (TLRs) on the
cell surface. Subsequently, the downstream inflammatory protein NLRP3 is activated to
recruit the inflammatory junction protein ASC and the activated effector enzyme caspase-1
to assemble into inflammasomes. Activated caspase-1 hydrolyzes intracellular GSDMD
into two parts: the N-terminal effector fragment (p30) with membrane pore-forming activity
and the C-terminal fragment (GSDMD CT) with inhibitory pore-forming activity. GSDMD
(p30) targets phospholipid structures with negatively charged head groups on the plasma
membrane and inserts into the plasma membrane to form a multimeric pore-like structure,
leading to an imbalance in osmotic pressure inside and outside the cell, vacuolization of
the plasma membrane, and eventually cell death [30,31]. Therefore, inhibiting GSDMD
hydrolysis and its pore-forming activity in the context of pyroptosis has become a novel
therapeutic strategy against inflammatory diseases, such as IBD.

Recent studies have shown that pyroptosis is often accompanied by impaired mi-
tochondrial function. The pore-forming active fragment GSDMD (p30) targets not only
the cell membrane but also the outer mitochondrial membrane, thereby disrupting the
continuity of the outer mitochondrial membrane and causing a substantial increase in
MOMP [32,33]. The mitochondrial damage that accompanies pyroptosis, if not rapidly
controlled, will lead to the release of large amounts of ROS from the mitochondria into the
cytosol, activating the inflammatory vesicle complex and further inducing a shift toward
inflammation. Therefore, normal mitochondrial function plays a critical role in maintaining
the stability of the intracellular environment, inhibiting inflammasome activation and
resisting pyroptosis.

TSPO, an outer mitochondrial membrane protein, is involved in a variety of biological
processes, such as endoplasmic reticulum-associated protein degradation, autophagy, pro-
inflammatory cytokine production, angiogenesis, and tumors [34]. TSPO deficiency causes
an imbalance in mitochondrial metabolic function, decreased oxidative phosphorylation
and ATP production, increased intracellular ROS levels, and a shift in cellular metabolism
from oxidative phosphorylation to the glycolytic pathway, resulting in increased angio-
genesis, glioma growth, and increased malignancy [21]. However, some independent
laboratories have constructed TSPO global and conditional knockout models and reported
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that there were no abnormalities in TSPO KO mice colon, and the lifespans of TSPO KO
mice were not affected [18,22,23].

In this study, we investigated the roles of TSPO in pyroptosis and inflammatory disease
by using a DSS-induced acute colitis mouse model. TSPO-KO mice exhibited more severe
colonic inflammatory injury than WT mice. The number of macrophages, especially pro-
inflammatory M1 macrophages, in the colons of TSPO-KO mice was increased. Previous
studies have demonstrated that in healthy mice, intestinal macrophages are mostly M2
type macrophages. However, in IBD patients, intestinal macrophages were mainly derived
from M1 type (CD86+) macrophages recruited from the abdominal cavity [35]. Thus, our
findings suggest that TSPO deficiency results in a phenotypic change in macrophages from
M2 to M1 and promotes the inflammatory response, which was also confirmed by the
results showing the expression of NLRP3, caspase-1, and IL-1β was significantly increased
in TSPO-KO colonic LP cells.

Next, we found that TSPO-KO mouse peritoneal macrophage death was significantly
higher than that of WT cells after pyroptosis signal induction, indicating that TSPO plays
a protective role against pyroptosis. Then, we conducted a series of in vitro experiments
using mouse peritoneal macrophages to investigate the relationship between TSPO and
pyroptosis. LDH release assay, CCK-8 cytotoxicity assay, and Western blotting verified that
TSPO deficiency resulted in enhanced pyroptosis. Interestingly, the expression of GSDMD
(p30), a key effector protein of pyroptosis, was significantly upregulated, and the levels
of caspase-1 and ASC were decreased in TSPO KO macrophages after pyroptosis signal
induction. In contrast, the expression levels of GSDMD (p30), caspase-1, and ASC were
increased in the cell culture supernatants, suggesting that the decrease in caspase-1 and
ASC was probably due to the leakage of these two proteins from the cell due to pyroptosis.
Moreover, immunofluorescence assays verified that TSPO-KO cells exhibited more GSDMD
puncta accumulation than WT cells. Thus, our findings demonstrate that TSPO protects
against pyroptosis by reducing the expression of GSDMD and its cleavage.

TSPO expression is rapidly upregulated in response to inflammatory stimulation.
We observed that there is a colocalization between TSPO and GSDMD in DSS treated
mice colon. Here, we performed cellular immunofluorescence and endogenous Co-IP
assays and observed that under resting conditions, TSPO hardly interacted with GSDMD
in macrophages. Still, two proteins exhibited a significant interaction when stimulated by
pyroptosis signals. This finding reveals that the rapid upregulation of TSPO in response
to inflammatory stimulation provides a protective function and inhibits cell death by
interacting with GSDMD. This conclusion was also confirmed by the findings that TSPO-
KO cells displayed a significant increase in ROS levels and a significant impairment of
mitochondrial MOMP in response to pyroptosis-inducing signals.

In summary, our major finding in this study is the identification of TSPO as a novel
key regulator of pyroptosis. In response to inflammatory injury, TSPO expression is rapidly
upregulated. It provides a protective function against GSDMD-mediated pyroptosis, which
can be an interpretation of the mechanism underlying the quick upregulation of TSPO
expression in response to the inflammatory response in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11050856/s1, Figure S1: TSPO deficiency does not affect the
expression of pyroptosis-related proteins in steady macrophages.
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