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Abstract: Increasing the autonomy of multi-agent systems or swarms for exploration missions
requires tools for efficient information gathering. This work studies this problem from theoretical
and experimental perspectives and evaluates an exploration system for multiple ground robots
that cooperatively explore a stationary spatial process. For the distributed model, two conceptually
different distribution paradigms are considered. The exploration is based on fusing distributively
gathered information using Sparse Bayesian Learning (SBL), which permits representing the spatial
process in a compressed manner and thus reduces the model complexity and communication load
required for the exploration. An entropy-based exploration criterion is formulated to guide the
agents. This criterion uses an estimation of a covariance matrix of the model parameters, which is
then quantitatively characterized using a D-optimality criterion. The new sampling locations for
the agents are then selected to minimize this criterion. To this end, a distributed optimization of
the D-optimality criterion is derived. The proposed entropy-driven exploration is then presented
from a system perspective and validated in laboratory experiments with two ground robots. The
experiments show that SBL together with the distributed entropy-driven exploration is real-time
capable and leads to a better performance with respect to time and accuracy compared with similar
state-of-the-art algorithms.

Keywords: distributed estimation; Sparse Bayesian Learning; exploration; swarm; multi-agent
systems; consensus; D-optimal design

1. Introduction

For exploration tasks that rely on multi-agent systems, with complex, unstructured
terrains, autonomy plays a key role to lower potential threats or tedious work for human
operators, be it space exploration, disaster relief, or routine industrial facility inspections.
The main objective here is to give a human operator more detailed information about the
explored area, e.g., in terms of a map, and to support further decision making. While
multiple agents do provide an increased sensing aperture and can potentially collect
information more efficiently than a single-agent system, they have to rely more heavily on
autonomy to compensate, e.g., possible large (or unreliable) communication delays [1] or
the complexity of teleoperating multiple agents.

One of the approaches to increase the autonomy of multi-agent systems consists of
using in situ analysis of the collected data with the agents’ own computing resources to de-
cide on future actions. In the context of mapping, such an approach is also known as active
information gathering [2,3] or exploration. Note that mapping is generally not restricted to
sensing with imaging sensors, such as cameras. The exploration of gas sources [4] or of the
magnetic field [5] also falls in this category.

An approach for active information gathering lies in the focus of the presented work.
In the following, we provide an overview of work related to the approach discussed in this
paper, the arising challenges, and a proposed solution.
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1.1. Related Work

The objective of active information gathering is to utilize the collected data, represented
in terms of a parameterized model, to compute information content as a function of space.
This can be done using heuristic approaches, as in [6,7], where the authors modify the
random walk strategy by adjusting the movement steps of each robot such as to collect
more information. Alternatively, information–theoretic approaches can be used. In [8],
the authors use a probabilistic description of the model to steer cameras mounted on
multiple unmanned aerial vehicles (UAVs). In this case, the information metric can be
computed directly based on statistics of the pixels. The resulting quantity is then used to
autonomously coordinate UAVs in an optimal configuration. In [9], the authors propose an
exploration driven by uncertainty by minimizing the determinant of the covariance matrix for
an optimal camera placement for a 3D image. This approach essentially implements an
optimal experiment design [10], which in turn relates the determinant of the covariance
matrixof the model parameters to the Shannon entropy of Gaussian random variables.
This connection has been further explored in [11], where the authors compare criteria for
optimal experiment design with mutual information for Gaussian processes regression
and sensor placement. This leads to a greedy algorithm that uses mutual information
for finding optimal sensor placements. An extension of [11] for multiple agents and a
decentralized estimation of the mutual information is presented in [2,12]. In the latter, the
authors also considered robotic aspects, such as optimal trajectory planning along with
information gathering: an approach that has been further investigated in [13].

One of the key elements in experiment design-based information gathering is the
ability to compute the covariance structure of the model parameters as a function of space
and evaluate it in a distributed fashion. In [14], the authors studied the information-
gathering approach for sparsity constrained models, i.e., under assumption that the model
parameters are sparse. This required implementing non-smooth `1 constraints in the opti-
mization problem, which in turn made the exact computation of the parameter covariance
impossible. Instead, the covariance structure was approximated by locally smoothing the
curvature of the objective function. In [14], the method was applied to generalized linear
models with sparsity constraints for a distributed computation with two versions of data
splitting over agents: homogeneous splitting, also called splitting-over-examples (SOE),
and heterogeneous splitting, also called splitting-over-features (SOF). However, despite
the method yielding in simulations a better performance as compared to systematic or
random exploration approaches, the used approximation has been derived with purely
empirical arguments.

1.2. Paper Contribution

To address this, the exploration problem with sparsity constraints has been cast into a
probabilistic framework, where the parameter covariance can be computed exactly. In [15],
we formulated a Bayesian approach toward cooperative sparse parameter estimation for
SOF, and in [16] for SOE data splitting. However, the distributed computation of the
covariance matrix and information-driven exploration has not been considered so far. With
this contribution, we close this gap and study an information-driven exploration strategy
that is based on a Bayesian approach toward distributed sparse regression. Specifically,

• We consider a distributed computation of the corresponding parameter covariance
matrices for information-seeking exploration using a Bayesian formulation of the
model, and

• Validate the algorithm’s performance both in simulations as well as in an experiment
with two robots exploring the magnetic field variations on a laboratory floor.

The rest of the paper is structured as follows. We begin with a model formulation
and model learning in Section 2. In Section 3, we discuss a distributed computation of
the exploration criterion for the considered regression problem. Afterwards, we outline
the experimental setting, the collection of ground truth data, and the sensor calibration in
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Section 4, as well as the overall system design in Section 5. The experimental results are
summarized in Section 6, and Section 7 concludes this work.

2. Distributed Sparse Bayesian Learning
2.1. Model Definition

We make use of a classical basis function regression [17] to express an unknown scalar
physical process p(x) ∈ R, with x ∈ Rd and d ∈ N. Typically, the process is d-dimensional,
with d ∈ {2, 3}. To represent the process p(x), a set of N ∈ N basis functions φn(x, πn) ∈ R,
n = 1, . . . , N are used, where πn ∈ Rs is dependent on the used basis function and s is a
number of parameters per basis function.

Each basis function is parameterized with πn, n = 1, . . . , N, which can represent
centers of corresponding basis functions, their width, etc. More formally, we assume that

p(x) =
N

∑
n=1

φn(x, πn)wn, (1)

where wn ∈ R are generally unknown weights in the representation.
To estimate wn, n = 1, . . . , N, we make M observations of the process p(x) at locations

X = [x1, . . . , xM]T ∈ RM×d. The corresponding m-th measurement is then represented as

y(xm) = p(xm) + η(xm) =
N

∑
n=1

φn(xm, πn)wn + η(xm), (2)

where η(xm) ∝ N (0, λ−1) is an additive sample of white Gaussian noise with a known
precision λ ∈ R+. By collecting M measurements in a vector y(X) = [y(x1), . . . , y(xM)]T

∈ RM, we can reformulate (2) in a vector-matrix notation. To this end, we define

Π , [π1, . . . , πN ]
T ∈ RN×s, (3)

φn(X, πn) , [φn(x1, πn), . . . , φn(xM, πn)]
T ∈ RM, (4)

Φ(X, Π) , [φ1(X, π1), . . . , φN(X, πN)] ∈ RM×N , (5)

and w , [w1, . . . , wN ]
T ∈ RN , (6)

which allows us to formulate the measurement model in a vectorized form

y(X) = Φ(X, Π)w + η(X), (7)

with η(X) , [η(x1), . . . , η(xM)]T ∈ RM.
Based on (7), we define the likelihood of the parameters w as follows

p(y(X)|w) ∝ exp
{
−λ

2
‖y(X)−Φ(X, Π)w‖2

}
. (8)

Often, the representation (1) is selected such that N � M, i.e., it is underdetermined.
This implies that there is an infinite number of possible solutions for w. A popular approach
to restrict a set of solutions consists of introducing sparsity constraints on parameters.
Within the Bayesian framework, this can be achieved by defining a prior over the parameter
weights w. This leads to a class of probabilistic approaches referred to as Sparse Bayesian
Learning (SBL).

The basic idea of SBL is to assign an appropriate prior to the N-dimensional vector
w such that the resulting maximum a posteriori (MAP) estimate ŵ is sparse, i.e., many of
its entries are zero. Typically, SBL specifies a hierarchical factorable prior p(w|γ)p(γ) =
∏N

n=1 p(wn|γn)p(γn), where p(wn|γn) = N (wn|0, γn), n ∈ {1, . . . , N} [18–20]. For each
n ∈ {1, . . . , N}, the hyperparameter γn, also called sparsity parameter, regulates the width
of p(wn|γn); the product p(wn|γn)p(γn) defines a Gaussian scale mixture (the authors in
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work [21] extend this framework by generalizing p(wn|γn) to be the probability density
function (PDF) of a power exponential distribution, which makes the hierarchical prior
a power exponential scale mixture distribution). Bayesian inference on a linear model
with such a hierarchical prior is commonly realized via two types of techniques: MAP
estimation of w (Type I estimation; note that many traditional “non-Bayesian” methods
for learning sparse representations such as basis pursuit de-noising or re-weighted `p-
norm regressions [22–24] can be interpreted as Type I estimation within the above Bayesian
framework [21]) or MAP estimation of γ (Type II estimation, also called maximum evidence
estimation, or empirical Bayes method). Type II estimation has proven (both theoretically
and empirically) to perform consistently better than Type I estimation in the present
application context. One reason is that the objective function of a Type II estimator typically
exhibits significantly fewer local minima than that of the corresponding Type I estimator
and promotes greater sparsity [25]. The hyperprior p(γn), n ∈ {1, . . . , N}, is usually
selected to be non-informative, i.e., p(γn) ∝ γ−1

n [26–28]. The motivation for this choice is
twofold. First, the resulting inference schemes typically demonstrate superior (or similar)
performance as compared to schemes derived based on other hyperprior selections [21].
Second, very efficient inference algorithms can be constructed and studied [26–30].

In the following, we consider only SBL Type II optimization as it leads to usually
sparser parameter vectors w [21], and we drop explicit dependencies on measurements X
and basis function parameters Π to simplify notation. The marginalized likelihood for SBL
Type II optimization is therefore

p(y|γ) =
∫ ∞

−∞
p(y|w)p(w|γ)dw ∝ |Σ|−

1
2 exp

{
−1

2
yTΣ−1y

}
, (9)

where Σ = λ−1 I + ΦΓΦT , Γ = diag{γ}, and I being the identity. Taking the negative
logarithm of (9), we obtain the objective function for SBL Type II optimization in the
following form

L(γ) = − log p(y|γ) = log(|Σ|) + yTΣ−1y. (10)

An estimate of hyperparameters γ is then found as

γ̂ = arg min
γ

L(γ). (11)

Once the estimate γ̂ is obtained, the posterior probability density function (PDF)
of the the parameter weights w can be easily computed: it is known to be Gaussian
p(w|y, γ̂) = N (ŵ, Σw) with the moments given as

ŵ = λΣwΦTy, Σw =
(

λΦTΦ + Γ̂−1
)−1

, (12)

where Γ̂ = diag{γ̂} (see also [18]).

2.2. Sparse Bayesian Learning with the Automatic Relevance Determination

The key to a sparse estimate of w is a solution to (11). There are a number of efficient
schemes [26–28] to solve this problem. The method that we use in this paper is based
on [26]. In the following, we shortly outline this algorithm.

In [26], the authors introduced the reformulated automatic relevance determination
(R-ARD) by using an auxiliary function that upper bounds the objective function L(γ)
in (10). Specifically, using the concavity of the log-determinant in (10) with respect to γ, the
former can be represented using a Fenchel conjugate as

log|Σ| = min
z

zTγ− h∗(z), (13)
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where z ∈ RN is a dual variable and h∗(z) is the dual (or conjugate) function (see
also [31] (Chapter 5) or [32]).

Using (13), we can now upper-bound (10) as follows

L(γ, z) , zTγ− h∗(z) + yTΣ−1y ≥ L(γ). (14)

Note that for any γ, the bound becomes tight when minimized over z. This fact is
utilized for the numerical estimation of γ, which is the essence of the R-ARD algorithm.

R-ARD alternates between estimating z, which can be found in closed form as [26,31]

ẑ = arg min
z

L(γ̂, z) =
∂

∂γ
log |Σ|

∣∣∣∣
γ=γ̂

= diag{ΦTΣ−1Φ}, (15)

and estimating γ̂ as a solution to a convex optimization problem

γ̂ = arg min
γ

L(γ, ẑ) = arg min
γ

ẑTγ + yTΣ−1y. (16)

In order to solve (16), the authors in [26] proposed to use yet another upper bound on
L(γ, z). Specifically, by noting that

yTΣ−1y = min
w

λ‖y−Φw‖2 +
N

∑
l=1

w2
l

γl
(17)

the cost function in (16) can be bounded with

L(w, γ, ẑ) , λ‖y−Φw‖2 +
N

∑
l=1

(
ẑlγl +

w2
l

γl

)
≥ L(γ, ẑ). (18)

The right-hand side of (18) is convex both in w and γ. As such, for any fixed w, the

optimal solution for γ can be easily found as γl = ẑ−
1
2

l |wl |, l = 1, . . . , N. By inserting the
latter in (18), we find the solution for w that minimizes the upper-bound L(w, γ, ẑ) as

ŵ = arg min
w

L(w, γ̂, ẑ) = arg min
w

λ‖y−Φw‖2 + 2
N

∑
l=1

ẑ
1
2
l |wl |, (19)

which can be recognized as a weighted least absolute shrinkage and selection operator
(LASSO) cost function. Expression (19) builds a basis for a distributed estimation learning of
SBL parameters, since there exist techniques to optimize a LASSO function over a network,
which are presented in the following section.

2.3. The Distributed Automated Relevance Determination Algorithm for SOF Data Splitting

The derivation of the distributed R-ARD (D-R-ARD) for SOF is shown in [14]. Here,
we would like to show the main aspects of the distribution paradigm and the resulting
algorithm. The main aspect of heterogeneous data splitting is that each agent has its
own model. Therefore, the parameter weights w are distributed among K ∈ N agents as
w = [wT

1 , . . . , wT
K]

T and each agent has its part wk ∈ RNk , where N = ∑K
k=1 Nk. Likewise,

the matrix Φ is partitioned among K agents as Φ = [Φ1, . . . , ΦK] where Φk ∈ RM×Nk . The
SOF model is then formulated as

y =
[
Φ1 . . . ΦK

]w1
...

wK

+ η =
K

∑
k=1

Φkwk + η. (20)

Similarly, the hyper-parameters γ are also partitioned as γ = [γT
1 , . . . , γT

K ]
T .
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The solution to cooperative SOF inference then amounts to computing z from (15) and
optimizing the upper bound (18) over a network of K agents.

Unfortunately, in the case of the SOF model, the dual variable z = [zT
1 , . . . , zT

K]
T in (15)

cannot be computed exactly. Instead it is upper-bounded [14] as zk ≤ z̃k, where z̃k is
computed for each agent:

z̃k = diag
{

ΦT
k ΛΦk −ΦT

k ΛΦkΣw,kΦT
k ΛΦk

}
, (21)

with Σw,k = (ΦT
k ΛΦk + Γ−1

k )−1 and Λ = λI. This approximation preserves the upper
bound in (18). Consequently, (19) can be reformulated to fit for SOF as

ŵk = arg min
wk

L(w, z̃) = arg min
wk

λ

∥∥∥∥∥ K

∑
k=1

y−Φkwk

∥∥∥∥∥
2

+ 2
Nk

∑
l=1

z̃
1
2
k,l |wk,l |, (22)

which can be solved distributively via the alternating direction method of multipliers
(ADMM) algorithm [33] (Section 8.3). The D-R-ARD algorithm for SOF is summarized in
Algorithm 1. When using ADMM to solve for ŵk, the only communication between the
agents takes place inside of the ADMM algorithm. The communication load of the ADMM
algorithm for SOF is discussed in [33] (Chapter 8).

Algorithm 1 D-R-ARD for SOF

1: z̃k ← diag{ΦT
k ΛΦk}

2: while not converged do
3: ŵ← arg min

w
L(w, z̃) . See (22); is solved distributively using

ADMM [33] (Section 8.3)
4: γ̂k ←

|ŵk,n |√
z̃k,n

, ∀n = 1, . . . , Nk

5: z̃k ← (21)
6: ŵ = [ŵT

1 , . . . , ŵT
K]

T , γ̂ = [γ̂T
1 , . . . , γ̂T

K ]
T

2.4. The Distributed Automated Relevance Determination Algorithm for SOE Data Splitting

For SOE, we will assume that measurements y at locations X are partitioned into
K disjoint subsets {yk(Xk), Xk}K

k=1, each associated with the corresponding agent in the
network. Hence, each agent k makes Mk observations yk(Xk) = [yk,1(xk,1), . . . , yk,Mk

(xk,Mk
)]

at locations Xk = [xk,1, . . . , xk,Mk
]T , such that M = ∑K

k=1 Mk, y = [yT
1 , . . . , yT

K]
T , X =

[XT
1 , . . . , XT

K ]
T , Φ = [ΦT

1 , . . . , ΦT
K]

T , and η = [ηT
1 , . . . , ηT

K]
T . This allows us to rewrite (7) in

an equivalent form as

y =

y1
...

yK

 =

Φ1
...

ΦK

w +

η1
...

ηK

, (23)

where we assumed that perturbations ηk, k = 1, . . . , K, are independent between agents, i.e.,

E{ηkηT
m} =

{
0I k 6= m

λ−1
k I k = m.
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To cast R-ARD in a distributed setting, we need to be able to solve (19) and compute ẑ
in (15) over a network of agents. To this end, let us define

D , ΦTΛΦ =
K

∑
k=1

ΦT
k λkΦk = K× 1

K

K

∑
k=1

ΦT
k λkΦk︸ ︷︷ ︸

averaged consensus

. (24)

where Λ = diag [λ1 I1, . . . , λK IK], and Ik is an identity matrix of size Mk ×Mk, k = 1, . . . , K.
We point out that D, or rather the last factor in (24), can be computed over a network of
agents using an averaged consensus algorithm [34,35].

Next, we apply the Woodbury identity to Σ−1 to obtain

Σ−1 =
(

Λ−1 + ΦΓΦT
)−1

= Λ−ΛΦΣwΦTΛ, (25)

where Σw = (ΦTΛΦ + Γ−1)−1. Inserting (25) and (24) into (15), we get

ẑ = diag{ΦTΛΦ−ΦTΛΦΣwΦTΛΦ} = diag{D− DΣwD}, (26)

where Σw = (D + Γ−1)−1. Thus, once D becomes available, ẑ can be found distributively
using expression (26).

To solve (19) distributively, we first note that for the model (23) the likelihood (8) can
be equivalently rewritten as

p(y|w) ∝ exp

{
−1

2

K

∑
k=1

λk‖yk −Φkw‖2

}
. (27)

It is then straightforward to show that the upper bound (18) will take the form

L(w, γ, ẑ) ,
1
2

K

∑
k=1

λk‖yk −Φkw‖2 +
M

∑
l=1

(
ẑlγl +

w2
l

γl

)
≥ L(γ, ẑ). (28)

Similarly to (18), for any wl , l = 1, . . . , M, the bound is minimized with respect to γl
at γl = |wl |/

√
ẑl , l = 1, . . . , M. Inserting the latter in (28), we obtain an objective function

for estimating wl

ŵ = arg min
w

1
2

K

∑
k=1

λk‖Φkw− yk‖2
2 + 2

M

∑
l=1

√
ẑl |wl |. (29)

Expression (29) can be readily solved distributively using an ADMM algorithm (see
e.g., [33] (Chapter 8) and [36]). Once ŵ is found, optimal parameter values γ̂ are found as

γ̂l = ẑ−
1
2

l |ŵl |, l = 1, . . . , N.
In Algorithm 2, we now summarize the key steps of the resulting D-R-ARD algorithm

for SOE. As we can see from Algorithm 2, D-R-ARD includes two optimizing loops. The
inner optimization loop is an ADMM algorithm, which is guaranteed to converge to a
solution [33]. The convergence of the outer loop is basically the convergence of the R-ARD
algorithm presented in [26].
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Algorithm 2 D-R-ARD for SOE

1: ẑn ← 1, ∀n = 1, . . . , N
2: Compute D using averaged consensus over ΦT

k ΛΦk as in (24)
3: while not converged do
4: ŵ← arg min

w
L(w, γ, ẑ) . See (29); is solved distributively using ADMM [33,36]

5: γ̂← |ŵn |√
ẑn

, ∀n = 1, . . . , N

6: Σw ← (D + Γ−1)−1

7: ẑ← (26)

Communication Load of D-R-ARD

In the D-R-ARD algorithm, two communication steps are required. The first commu-
nication step involves the computation of the matrix D, where we leverage an average
consensus algorithm. There, each of the A ∈ N consensus steps requires the transmission
of N(N + 1)/2 floats due to the symmetry of D. Note that the number A of averaged
consensus iterations can vary depending on the connectivity of the network.

The second communication step involves the iterative estimation of the model pa-
rameters. Assuming that the update loop of D-R-ARD requires I ∈ N iterations, the
distributed estimation of parameters ŵ with R ∈ N ADMM iterations then scales up as
O(I × ARN). Thus, the total communication load of D-R-ARD algorithm behaves as
AN(N + 1)/2 +O(I × ARN). Please note also that for this estimation of the communica-
tion load, the network structure remains unchanged.

3. Distributed Entropy-Driven Exploration for Sparse Bayesian Learning

The learning algorithm described in the previous section estimates the parameters of
the model w and γ given the measurements y and X. In the following, we focus on the
question of how a new measurement is acquired in an optimal fashion. As we will show,
the main criterion for this purpose is the information or, more specifically, the entropy
change as a function of a possible sampling location.

3.1. D-Optimality

One possible strategy to optimally select a new measurement location x̃ is provided by
the theory of optimal experiment design. Optimal experiment design aims at optimizing
the variance of an estimator through a number of optimality criteria. One of these criteria
is a so-called D-optimality: it measures the “size” of an estimator covariance matrix by
computing the volume of the corresponding uncertainty ellipsoid. More specifically, a
determinant (or rather the logarithm of a determinant) of the covariance matrix is computed.
The latter can then be optimized with respect to the experiment parameter. In our case, the
covariance matrix Σw of the model parameters w is readily given in (12) as a second central
moment of p(w|y). Thus, the D-optimality criterion can be formulated as

min log|Σw(X, Π)|, (30)

where the dependency of Σw on measurement locations X has been made explicit. Note that
due to the normality of the posterior pdf p(w|y), the term log|Σw(X, Π)| is proportional
to the entropy of w; thus, minimization of the criterion (30) would imply a reduction of
the entropy of the parameter estimates. Note that in contrast to [14], the covariance matrix
is not approximated here, but it is computed exactly based on the resulting probabilistic
inference model. Our intention is now to evaluate and optimize (30) as a function of the
new possible sampling location x̃.

Let us consider a modification of the model (7) as a function of the location x̃. The
incorporation of x̃ into (7) would imply that the design matrix Φ would be extended as
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Φ̃([XT , x̃]T , [ΠT , π̃]T) =

[
Φ(X, Π) φ(X, π̃)
φT(x̃, Π) φ(x̃, π̃)

]
, (31)

where π̃ is a new parameterization of a function φ based on the new location x̃—a new
regression feature. Let us stress that in general, the potential measurement at x̃ does not
have to lead to a new column in (31)—columns, i.e., basis functions in Φ can be fixed from
the initial design of the problem. In the latter case, Φ would be extended only by a row
vector φT(x̃, Π) = [φ(x̃, π1), . . . , φ(x̃, πN)]. However, a basis function with a currently
zero parameter weight estimate might be useful for explaining the new measurement value
at x̃ and, thus, might be activated. Our next step is to consider how

1. The D-optimality criterion can be evaluated efficiently for the “grown” design matrix
Φ̃ in (31),

2. And how the criterion can be evaluated in a distributed fashion.

3.1.1. Measurement Only-Update of the D-Optimality Criterion

We will begin with considering the update of the D-optimality criterion with respect
to a new measurement location x̃ assuming that only the number of rows in Φ grows, while
the number of features stays constant. In this case, (31) can be represented as

Φ̃([XT , x̃]T , Π) =

[
Φ(X, Π)
φT(x̃, Π)

]
. (32)

Based on (32), the new covariance matrix Σ̃w that accounts for the new measurement
location x̃ can be computed as

Σ̃w(X, Π, x̃) =
(

Φ̃([XT , x̃]T , Π)Λ̃Φ̃([XT , x̃]T , Π) + Γ̂−1
)−1

, (33)

where Λ̃ = diag{Λ, λ̃} ∈ RM+1×M+1 and λ̃ is the assumed noise precision at the poten-
tial measurement location. It is worth noting that we assume every measurement to be
independent white Gaussian noise.

By combining terms that depend on x̃, we can represent (33) as

Σ̃w(X, Π, x̃)−1 =
[
ΦTΛΦ + Γ̂−1

]
+ λ̃φ(x̃, Π)φ(x̃, Π)T

=Σ−1
w + λ̃φ(x̃, Π)φ(x̃, Π)T . (34)

As we see from (34), an addition of a new measurement row causes a rank-1 per-
turbation of the information matrix Σ−1

w . Using matrix determinant lemma [37], we can
thus compute

log |Σ̃w(X, Π, x̃)| =− log |Σ−1
w + λ̃φ(x̃, Π)φ(x̃, Π)T | (35)

= log |Σw| − log
∣∣∣1 + λ̃φ(x̃, Π)TΣwφ(x̃, Π)

∣∣∣ (36)

Note that Σw is independent of x̃, and thus, only the second term on the right-hand
side of (36) is relevant for the estimation.

Finally, the D-optimality criterion with respect to a location x̃ can be formulated as

arg min
x̃

log |Σ̃w| ≡ arg max
x̃

log
∣∣∣1 + λ̃φ(x̃, Π)TΣwφ(x̃, Π)

∣∣∣ = arg max
x̃

log
∣∣∣ f (x̃, λ̃)

∣∣∣, (37)

where we have exchanged minimization with a maximization by changing the sign of the
cost function.
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3.1.2. Computation of the D-Optimality Criterion with Addition of a New Feature

The computation of the D-optimality criterion becomes more involved when a mea-
surement at a location x̃ is associated with a new feature π̃. This can happen if, e.g., π̃ is a
center or location of a new basis function.

Then, based on (31), the new covariance matrix Σ̃w that accounts for x̃ and π̃ is
formulated as

Σ̃w(X, Π, x̃, π̃) =

(
Φ̃T([XT , x̃]T , [ΠT , π̃]T)Λ̃Φ̃([XT , x̃]T , [ΠT , π̃]T) +

[
Γ̂−1 0

0 γ̃−1

])−1

, (38)

where γ̃ is a sparsity parameter associated with a new column [φT(X, π̃), φ(x̃, π̃)]T . By
combining terms that depend on x̃, we can represent (38) as

Σ̃w(X, Π, x̃, π̃)−1 =

[
ΦTΛΦ + Γ̂−1 ΦTΛφ(X, π̃)
φT(X, π̃)ΛΦ φT(X, π̃)Λφ(X, π̃) + γ̃−1

]
+ λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

][
φ(x̃, Π)
φ(x̃, π̃)

]T

. (39)

To simplify the notation, let us define

c(π̃) , ΦTΛφ(X, π̃), b(π̃) , φT(X, π̃)Λφ(X, π̃) + γ̃−1, (40)

which can be inserted into (39), leading to

Σ̃w(X, Π, x̃, π̃)−1 =

[
Σ−1

w c(π̃)
cT(π̃) b(π̃)

]
+ λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

][
φT(x̃, Π) φ(x̃, π̃)

]
. (41)

The first term in (41) describes how much the new feature column contributes to the
covariance matrix, while the second term represents the contribution of a measurement at
location x̃. Let us now insert (41) into the D-optimality criterion in (30). By applying the
matrix determinant lemma [37] to the resulting expression, we compute

log |Σ̃w(X, ΠN , x̃, π̃)| =− log
∣∣∣∣ Σ−1

w c(π̃)
c(π̃)T b(π̃)

∣∣∣∣
− log

∣∣∣∣∣1 + λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

]T[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1[
φ(x̃, Π)
φ(x̃, π̃)

]∣∣∣∣∣. (42)

Now, consider separately the contribution of the two terms in the right-hand side
of (42) to the D-optimality criterion. For the first term, we can use the Schur comple-
ment [38] q(π̃) = b(π̃)− cT(π̃)Σwc(π̃) such that the first logarithmic term can be refor-
mulated as

log
∣∣∣∣ Σ−1

w c(π̃)
c(π̃)T b(π̃)

∣∣∣∣ = − log |Σw|+ log q(π̃). (43)

Note that Σw is independent of x̃ and of π̃, which is a fact that will become useful later.
To simplify the second term in the right-hand side of (42), we first apply inversion

rules for structured matrices [39], which allows us to write[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1

=

[
Σw − Σwc(π̃)q(π̃)−1c(π̃)TΣw −Σwc(π̃)/q(π̃)

−c(π̃)TΣw/q(π̃) 1/q(π̃),

]
(44)

and thus
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log

∣∣∣∣∣1 +
[

φ(x̃, Π)
φ(x̃, π̃)

]T[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1[
φ(x̃, Π)
φ(x̃, π̃)

]∣∣∣∣∣
= log

(
1 + λ̃φT(x̃, Π)Σwφ(x̃, Π) + λ̃

(
φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)

)2
/q(π̃)

)
= log

(
f (x̃, λ̃) + λ̃

(
φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)

)2
/q(π̃)

)
. (45)

Finally, after inserting (43) and (45) into (42), the D-optimality criterion with respect to
a location x̃ can be formulated as

arg min
x̃

log |Σ̃w(X, Π, x̃, π̃)| ≡ (46)

arg max
x̃

log
[

q(π̃) f (x̃, λ̃) + λ̃
(

φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)
)2
]

,

where we have exchanged minimization with a maximization by changing the sign of the
cost function, and we dropped log |Σw| as it is independent of x̃ and π̃.

3.1.3. Distributed Computation of the D-Optimality Criterion for SOE

Let us begin first with evaluating the D-optimality criterion for the SOE case.
Evaluating (37) for this data splitting is easier as compared with SOF.

Since Π is known to each agent, the vector φ(x̃, Π) can be evaluated without any
cooperation between the agents. The covariance Σw can then be evaluated distributively
using averaged consensus as Σw = (D + Γ̂−1)−1, where D is computed using network-
wide averaging. To compute (46), a few more steps are needed. Specifically, in addition to
Σw, we also need to compute the quantities c(π̃) and b(π̃) in (40) to evaluate the criterion.
These can already be computed using averaged consensus as

c(π̃) = ΦTΛφ(X, π̃) = K× 1
K

K

∑
k=1

ΦT
k Λφ(Xk, π̃), (47)

b(π̃) = φ(X, π̃)TΛφ(X, π̃) + γ̃−1 = K× 1
K

K

∑
k=1

φ(Xk, π̃)TΛφ(Xk, π̃) + γ̃−1. (48)

Then, using (47) and (48) as well as Σw computed distributively, the criterion (46) can
be easily evaluated by each agent.

It is worth noting that the choice of γ̃−1 in (48) is the only parameter that can be set
manually in this exploration criterion. Basically, it controls how much we know about the
potential measurement location. If γ̃−1 is large, the criterion would yield that the potential
measurement location is not informative. On the other side, if γ̃−1 → 0, the criterion
yields that the considered measurement location is potentially informative. We set γ̃−1 = 0
for all considered measurement locations, such that the current information in the model
determines how informative a measurement location could be.

3.1.4. Distributed Computation of the D-Optimality Criterion for SOF

For SOF, (37) is unsuited for a distributed computation such that some changes have
to be made. First, we define the following terms to facilitate the distributed formulation
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H , ΦΓ̂ΦT = K× 1
K

K

∑
k=1

ΦkΓ̂kΦT
k , (49)

d , ΦΓ̂φ(x̃, Π) = K× 1
K

K

∑
k=1

ΦkΓ̂kφ(x̃, Πk), (50)

v , φT(x̃, Π)Γ̂φ(x̃, Π) = K× 1
K

K

∑
k=1

φT
k (x̃, Πk)Γ̂kφ(x̃, Πk), (51)

where Πk = [π1, . . . , πNk ]
T ∈ RNk×s and Γ̂k = [γ̂1, . . . , γ̂Nk ]

T . All terms in (49)–(51) can
then be computed by means of an averaged consensus [40,41]. Next, we reformulate Σw
with the help of the matrix-inversion-lemma as

Σw = Γ̂− Γ̂ΦT(Λ−1 + ΦΓ̂ΦT)−1ΦΓ̂ = Γ̂− Γ̂ΦT(Λ−1 + H)−1ΦΓ̂. (52)

Now, (37) can be reformulated in a distributed setting for SOF as

f (x̃, λ̃) = 1 + λ̃φT(x̃, Π)Σwφ(x̃, Π)

= 1 + λ̃φT(x̃, Π)
(

Γ̂− Γ̂ΦT(Λ−1 + H)−1ΦΓ̂
)

φ(x̃, Π)

= 1 + λ̃φT(x̃, Π)Γ̂φ(x̃, Π)− λ̃φT(x̃, Π)Γ̂ΦT(Λ−1 + H)−1ΦΓ̂φ(x̃, Π)

= 1 + λ̃v− λ̃dT(Λ−1 + H)−1d. (53)

For the case when the criterion (46) is used for evaluaton of the D-optimality, the
variable q(π̃) in (46) and the second additive term there have to be reformulated in a
form suitable for SOF data splitting. For the former, we utilize the definitions in (49)–(51),
together with (52) such that

q(π̃) = γ−1 + φT(X, π̃)Λφ(X, π̃)−φT(X, π̃)ΛΦΣwΦTΛφ(X, π̃)

= γ−1 + φT(X, π̃)Λφ(X, π̃)−φT(X, π̃)Λ(H − H(Λ−1 + H)−1H)Λφ(X, π̃)

= γ−1 + φT(X, π̃)Λφ(X, π̃)−φT(X, π̃)Λ(Λ + H−1)−1Λφ(X, π̃)

= γ−1 + φT(X, π̃)(Λ−Λ(Λ + H−1)−1Λ)Λφ(X, π̃)φ(X, π̃)

= γ−1 + φT(X, π̃)(Λ−1 + H)−1φ(X, π̃). (54)

The other term in (46) is then reformulated similarly using the results (49)–(52) as

cT(π̃)Σwφ(x̃, Π) = φT(X, π̃)ΛΦ(Γ̂− Γ̂ΦT(Λ−1 + H)−1ΦΓ̂)φ(x̃, Π)

= φT(X, π̃)Λ(ΦΓ̂φ(x̃, Π)−ΦΓ̂ΦT(Λ−1 + H)−1ΦΓ̂φ(x̃, Π))

= φT(X, π̃)Λ(d− H(Λ−1 + H)−1)d)

= φT(X, π̃)Λ(I − H(Λ−1 + H)−1)d. (55)

As a result, the exploration criterion can be re-formulated for SOF in the following form

arg min
x̃

log |Σ̃w(X, Π, x̃, π̃)| ≡ (56)

arg max
x̃

log
[

q(π̃) f (x̃, λ̃) + λ̃
(

φ(x̃, π̃)−φT(X, π̃)Λ(I − H(Λ−1 + H)−1)d
)2
]

,

with q(π̃) defined in (54) and f (x̃, λ̃) given in (53).

4. Experimental Setup

This section describes definition of the experimental setup, calibration of the sensors,
and collection of ground-truth data for performance evaluation.
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4.1. Map Construction

The following describes our experimental setup. We conducted the experiments indoor
in our laboratory with two paper boxes as obstacles displayed in Figure 1a. Red lines in the
figure represent the borders of the experimental area. We use two Commonplace Robotics
(https://cpr-robots.com, accessed on 19 March 2022) ground-based robots with mecanum
wheels; further in the text, we will refer to the robots as sliders due to their ability to move
holonomically. To position the slider within the environment, the laboratory is equipped
with 16 VICON (https://www.vicon.com/, accessed on 19 March 2022) Bonita cameras.
For the experiment itself, we assume that the map is a priori known to the system. Thus, we
need to record the map before the experiment. So, a single slider is equipped with a light
detection and ranging (LIDAR) sensor. We use a Velodyne (https://velodynelidar.com/,
accessed on 19 March 2022) VLP-16 LIDAR and the corresponding robot operating system
(ROS) package, which can be downloaded from the ROS repository. We construct the map
while sending waypoints to the slider manually. The steering of the slider is done with the
help of ROS’ navigation stack [42] together with the Teb Local Planner [43]. The sensor output
of the LIDAR and the slider position estimated by the VICON system are then used to
generate a map with the Octomap [44] ROS package. Because we use the VICON position of
the slider, which is accurate, this mapping procedure is simpler compared to simultaneous
localization and mapping (SLAM) algorithms [45,46]. Figure 1b shows the constructed
map, which is afterwards used in the experiment.

(a) (b)

Figure 1. (a) The experimental setting with obstacles. The red line indicates the experimental area,
where the slider can navigate. (b) The constructed map.

4.2. Sensor Calibration

Each slider is equipped with a XSens MTw inertial measurement unit (IMU). The
sensor comprises a three-axis magneto-resistive magnetometer, an accelerometer, gyro-
scopes, and a barometer. For the following experiment, we only use the magnetometer.
The sensor is attached to a wooden stick to reduce the influence of the metal wheels on
the measurement. Although the sliders are equipped with sensors from the same product
line of the same manufacturer, their absolute perception differs. Additionally, the sensors
can still perceive the metal in the wheels of the robots. Therefore, we need to calibrate the
sensors relatively to each other to perceive the environment equally using the approach
proposed in [47].

The authors in [47] assume that the sensor readings of one sensor can be expressed as
another sensor’s reading through an affine transformation. To estimate the rotation and
translation, multiple sensor readings of all sensors have to be acquired. These readings
are then exploited to estimate the rotation and translation relative to one specific sensor

https://cpr-robots.com
https://www.vicon.com/
https://velodynelidar.com/
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by means of a least squares method. In this experiment, each magnetic field sensor reads
at a position xm one measurement of the magnetic field per Euclidean axis. During the
estimation, absolute values of these measurements are used. Figure 2a shows the absolute
values of the sensor readings for multiple measurement locations of two sensors. The error
of the sensor readings before and after calibration are presented in Figure 2b. The correction
thus reduces the bias and the standard deviation of the error between both sensors.

(a) (b)

Figure 2. (a) Absolute values of the magnetic field samples of two sensors. It is assumed that each
sensor measured at the same locations. (b) Error of the absolute values of the magnetic field samples
before and after the corrections. The calibrated sensor has now the same mean as the reference sensor,
and the standard deviation of the error is reduced.

However, this calibration is only useful if the orientation of both sensors is constant
during the experiment. As the sensors always measure in the same orientation, this
assumption is fulfilled for our experiments. For further information on intrinsic calibration
of inertial and magnetic sensors, the reader is referred to [48].

4.3. Collecting Ground Truth Data

In order to evaluate the performance of the distributed exploration, we also need
to know the actual magnetic field in the laboratory—a ground truth data. For collecting
the ground truth data, one slider measures the area of the Holodeck in a systematic
fashion, where the distance between each measurement was set to be 5 cm such that in total,
8699 measurement points were collected. On each measurement position, multiple sensor
readings are taken and averaged. The resulting ground truth is displayed in Figure 3.

Figure 3. Magnetic field intensity of the Holodeck collected for the experiment with real sensors. The
measurements were made in 5 cm steps.

5. Experimental System Design

Our setup relies on ROS (https://www.ros.org/, accessed on 19 March 2022), which
manages the communication between all software modules called nodes. On each slider, sev-
eral ROS nodes are running such as the motor controller, which translates the measurement
locations into velocity commands for each wheel, the path-planner, and the sensor.

https://www.ros.org/
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As a path-planner, we use the popular A* [49,50]. We implemented the A* algo-
rithm as a global and as a local planner, which is utilized for collision avoidance. There-
fore, each slider does not only consider the global map but also a local map around its
current position.

After receiving a new waypoint, the global path planner estimates a path in the global
map from the current position to the goal avoiding the obstacles. If there is no other robotic
system in its path, the goal is reached. However, if another slider enters the local frame
while the robot is on its way toward the goal, the robot stops, and the path within the local
frame is re-planned to avoid collisions. If the planner is not able to find a solution in the
local frame within a given time, the global path planning is re-initiated, taking the current
slider as an obstacle into account.

The whole system design for this experiment is shown in Figure 4. The distributed
exploration criterion uses the computed map excluding the locations of the obstacles. In
addition, the map information is used by the path-planner to find an obstacle-free path
to the estimated measurement location x̂. Figure 4 also describes the process-flow of the
whole system.

For comparison, we will use non-Bayesian SOF and SOE formulations as discussed
in [14]. As in these formulations, the ADMM algorithm [33] was used for estimation, we
will refer to them as ADMM for SOF and ADMM for SOE, respectively. For the Bayesian
learning and algorithms discussed in this paper, we will refer to them as D-R-ARD for SOF
and the D-R-ARD for SOE (see also Table 1).

Table 1. The algorithms that are used in this experiment and where they are introduced.

Algorithm Introduced in Exploration Introduced in

ADMM for SOE [33] [14]
ADMM for SOF [33] [14]

D-R-ARD for SOE Section 2.4 Section 3.1.3
D-R-ARD for SOF [15] Section 3.1.4

In the experiments, we will set the number of basis functions to N = 560, which also
determines the size of the vector w. The basis functions are distributed in a regular grid.
We consider Gaussian basis functions with a width set to σn = 0.25 such that

φn(x, πn) = exp
{
−‖x−πn‖2

2σ2
n

}
, (57)

where πn ∈ Rs and s = d.
After initialization of the system, every agent takes a first measurement and incorpo-

rates it in its local measurement model to calculate the first estimate of the regression. Then,
each algorithm requires that the intermediate estimated parameter weights are distributed
to the neighbors (following Figure 4) to do an average consensus [40,41]. Consequently,
each agent can proceed to estimate with the regression using the averaged intermediate
parameter weights. When the distributed regression converged, the agents use the es-
timated covariance matrix in the distributed exploration step. In this step, the agents
propose candidate positions to their neighbors and receive information to compute the
D-optimality criterion locally. When the best next measurement locations are chosen, they
are passed to the coordination part [51] to verify that all agents go to different positions.
If the measurement location is considered as valid, an agent locally plans its path on the
global frame to reach the goal. While approaching the goal, the agent checks if other agents
entered into the local frame to avoid collisions. When all agents reached their goal, the
agents take measurements and the process flow continues.
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D-R-ARD

Path Planing and
Collision Avoidance

Distributed Exploration

Solve (29) with ADMM
Locally estimate wk

Distribute wk
to all neighbors

Introduce measurement locally
Φk([XM, xM+1]

T) =
[ΦT

k (XM), φT(xm+1, Π)]T ]
yk = [yT

k (XM), yk(xM+1)]
T)

Compute the
D-Optimality
as in (46).

Distribute local data
to neighbors by
(47) and (48)

Make measurement at
x = x̂

Move towards
measurement locations

γ̂, Σw
x̂k∀k = 1, . . . , K

Φk, yk

Check local frame for
collisions

Initialization

Coordination

Select measurement
location according
to agent’s positions

Reached?

All agents
reached?

no

yes

yesno

XSens mTw

Replan path in
local frame

Plan path on global frame
A*

A*

A*

Found
solution?

no

yes

Compute γ̂ and ẑ
with (26)

yes

noconverged?

Figure 4. System design with additional path planner and map constraints. Each gray box represents
interaction between other agents. In some boxes, the lower right indicates where this process belongs.
This software setup is representative for the SOE distribution paradigm.

As evaluation metric, we chose the normalized mean square error (NMSE), which can
be defined as

e ,
‖ytrue(XT)−Φ(XT , Π)ŵ‖

‖ytrue(XT)‖
, (58)

where ytrue(XT) ∈ RT is the ground truth measured at T ∈ N positions XT ∈ RT×d. Here,
we set T = 560, and these locations are equal to the center positions of the Gaussian
basis functions.

6. Experimental Validation

Figure 5 shows the NMSE of all conducted experiments with respect to time (top plot)
and to the number of measurements (bottom plot). Each experimental run has a different
duration, and the ROS system uses asynchronous interprocess communication resulting
in asynchronous time-steps. Thus, all runs of one particular algorithm are visualized as
a scatter plot. The number of measurements varies because the computation time for
each measurement could be different. As a consequence, an averaging along multiple
experimental runs along the time axis is not reasonable. For both ADMM algorithms, we
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conducted four experiments, whereas for each D-R-ARD algorithm, we conducted two
experiments. The corresponding results are summarized in Figure 5.

Figure 5. The NMSE of the conducted experiments with respect to time and with respect to the
number of measurements.

When looking at the top plot in Figure 5, the D-R-ARD for SOE has the best perfor-
mance because the NMSE is reduced faster compared to the other methods.

Regarding the ADMM algorithms, the SOE paradigm has a brief benefit until the
1200 s until SOF paradigm outperforms the SOE paradigm. The weak performance of
D-R-ARD for SOF might result from the distributed structure of the algorithm, which
requires the algorithm to compute a matrix inversion in each iteration together with the
computational complex estimation of parameter weights and variances. In contrast to that,
the corresponding algorithm with the SOE distribution paradigm is able to cache the matrix
inversion, which drastically increases the performance. Yet, the D-R-ARD algorithms have
generally a higher computational complexity compared to the ADMM algorithms. This is
due to the fact that the Bayesian methods require the covariance to be computed in each
iteration. The ADMM algorithm, in contrast, does not require this.

The plot at the bottom of Figure 5 displays the NMSE with respect to the number of
obtained measurements. There, the D-R-ARD for SOF and ADMM for SOF have almost
the same performance. However, the ADMM for SOF is able to achieve substantially more
measurements because it is computationally less complex. Consequently, the ADMM for
SOF achieves not only more measurements but is on a par with the D-R-ARD for SOF when
it comes to efficiency per measurement.

For the SOE distribution paradigm, on the contrary, it is beneficial to use the Bayesian
methodology. In the experiments we present here, the D-R-ARD for SOE achieves a lower
NMSE with fewer measurements compared to ADMM for SOE algorithm. This could be
due to the fact that D-R-ARD for SOE computes the entropy of the parameter weights and
does not approximate it. The computed entropy seems then to be better for the D-optimality
criterion than the approximated version for the ADMM for SOE.

To support the claim that the Bayesian framework estimates a better covariance
of the parameter weights when the SOE paradigm is applied, Figure 6a,b present the
estimated magnetic field and the estimated covariance at different timesteps. In both
figures, the left most plots display the beginning of the experiment and the most right
plots show the end result of the experiment. At the beginning of the experiments, both
algorithms—ADMM and D-R-ARD for SOE—estimate a sparse covariance with not much
difference. As the measurements increase, the approximated covariance becomes smoother,
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and the covariance estimated in the Bayesian framework stays sparse. This effect might
result from the approximation of a covariance as introdcued in [14], where a penalty
parameter needs to be chosen as a compromise between sparsity and a reasonably well
approximated covariance.

(a)

(b)

Figure 6. (a) SOE with a classic framework. (b) SOE with a Bayesian framework. In both figures, the
upper row displays the estimates at different time steps and the lower row shows the entropy at the
same time steps.

As a second remark, the ADMM algorithms involve a thresholding operator, which
sets all not used basis functions to zero such that these basis functions can not be considered
by the exploration step. This is controlled by a manually set penalty parameter and might
be sub-optimal. The D-R-ARD for SOE, on the other side, estimates a hyper-parameter
for each basis function based on the current data. Therefore, the influence of each basis
function is addressed more individually and, hence, leads to a better covariance estimate.
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The way basis functions and parameter weights are introduced in the SOF paradigm makes
this effect eventually not observable between the Bayesian and the Frequentist framework.

7. Conclusions

The presented paper proposes and validates a method for spatial regression using
Sparse Bayesian Learning (SBL) and exploration, which are both implemented over a
network of interconnected mobile agents. The spatial process of interest is described as
a linear combination of parameterized basis functions; by constraining the weights of
these functions in the final representation using a sparsifying prior, we find a model with
only a few, relevant functions contributing to the model. The learning is implemented
in a distributed fashion, such that no centralized processing unit is necessary. We also
considered two conceptually different distribution paradigms splitting-over-features (SOF)
and splitting-over-examples (SOE). To this end, a numerical algorithm based on alternating
direction method of multipliers is used.

The learned representation is used to devise an information-driven optimal data
collection approach. Specifically, the perturbation of the parameter covariance matrix with
respect to a new measurement location is derived. This perturbation allows us to choose
new measurement locations for agents such that the size of the resulting joint parameter
uncertainty, as measured by the log-determinant of the covariance, is minimized. We
show also how this criterion can be evaluated in a distributed fashion for both distribution
paradigms in an SBL framework.

The resulting scheme thus includes two key steps: (i) cooperative sparse models
that fit data collected by agents, and (ii) the cooperative identification of new measure-
ment locations that optimizes the D-optimality criterion. To validate the performance of
the scheme, we set up an experiment involving two mobile robots that navigated in an
environment with obstacles. The robots were tasked with reconstructing the magnetic
field which was measured on the floor of the laboratory by a magnetometer sensor. We
tested the proposed scheme against a non-Bayesian sparse regression method and a similar
exploration criterion.

The experimental results show that the Bayesian methods explore more efficiently
than the benchmark algorithms. Efficiency is measured as the reduction of error over the
number of measurements or the reduction of error over time. The reason is that the used
Bayesian method directly computes the covariance matrix from the data and has fewer
parameters that have to be manually adjusted. The exploration with these methods is
therefore simpler to set up as compared with non-Bayesian inference approaches studied
before. Yet, for the SOF distribution paradigm, the Bayesian method is computationally
too demanding such that significantly fewer measurements can be collected in the same
amount of time as compared with the non-Bayesian learning method.
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Abbreviations
The following abbreviations are used in this manuscript:

ADMM alternating direction method of multipliers
ROS robot operating system
SBL Sparse Bayesian Learning
PDF probability density function
SOF splitting-over-features
SOE splitting-over-examples
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NMSE normalized mean square error
D-R-ARD distributed R-ARD
R-ARD reformulated automatic relevance determination
IMU inertial measurement unit
LIDAR light detection and ranging
SLAM simultaneous localization and mapping
UAV unmanned aerial vehicle
LASSO least absolute shrinkage and selection operator
MAP maximum a posteriori
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