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Abstract – Two deep-sea shark species were obtained as by-catch of the local fishery of the Patagonian toothfish,
Dissostichus eleginoides, at depths ranging from 1000 to 2200 m off central and northern Chile. A total of 19 parasite
taxa were found in 133 specimens of the southern lanternshark, Etmopterus granulosus, (n = 120) and largenose
catshark, Apristurus nasutus, (n = 13). Fourteen taxa (four Monogenea, one Digenea, four Cestoda, one Nematoda,
two Copepoda, one Annelida and one Thecostraca) were found in E. granulosus, whereas five taxa (one Monogenea,
two Cestoda and two Nematoda) were found in A. nasutus. Representatives of Cestoda showed higher values of preva-
lence and a greater intensity of infection; this pattern is consistent with reports for elasmobranchs, but the monoge-
nean richness was higher than that previously reported for related deep-sea sharks. Regarding E. granulosus, a
positive and significant correlation between host length and abundance was found for six (four ectoparasites, one
mesoparasite, and one endoparasite) of the 14 taxa recorded, but prevalence was significantly correlated with host
length only for the monogenean Asthenocotyle sp. Although the sample size for A. nasutus was limited, we compared
richness, abundance, diversity and evenness at the infracommunity and component community levels. All of these
variables were higher for E. granulosus, but at the infracommunity level, abundance was higher for A. nasutus.
All the parasite taxa (except two) represent new host and geographical records.
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Résumé – Communautés des parasites métazoaires de deux élasmobranches de mer profonde, Etmopterus
granulosus et Apristurus nasutus, dans le sud-est de l’océan Pacifique. Deux espèces de requins des grands
fonds ont été obtenues comme prises accessoires de la pêcherie locale de Légine australe, Dissostichus eleginoides,
à des profondeurs allant de 1000 à 2200 m, au large du centre et du nord du Chili. Au total, 19 taxons de parasites
ont été trouvés dans 133 spécimens du Sagre long nez Etmopterus granulosus (n = 120) et du Holbiche cyrano
Apristurus nasutus (n = 13). Quatorze taxons (quatre Monogenea, un Digenea, quatre Cestoda, un Nematoda, deux
Copepoda, un Annelida et un Thecostraca) ont été trouvés chez E. granulosus, tandis que cinq taxons (un
Monogenea, deux Cestoda et deux Nematoda) ont été trouvés chez A. nasutus. Les représentants des Cestoda ont
montré des valeurs de prévalence plus élevées et une plus grande intensité d’infection; ce schéma concorde bien
avec ce qui a été rapporté pour les élasmobranches, mais la richesse des Monogenea était supérieure à celle
précédemment rapportée pour les requins de profondeur apparentés. En ce qui concerne E. granulosus, une
corrélation positive et significative entre la longueur de l’hôte et l’abondance a été constatée pour six des 14 taxons
répertoriés (quatre ectoparasites, un mésoparasite et un endoparasite), mais la prévalence était significativement
corrélée à la longueur de l’hôte uniquement pour le Monogène Asthenocotyle sp. Bien que la taille de l’échantillon
d’A. nasutus soit limitée, nous avons comparé la richesse, l’abondance, la diversité et la régularité aux niveaux
infracommunautaire et communautaire. Toutes ces variables étaient plus élevées pour E. granulosus, mais au niveau
infracommunautaire, l’abondance était supérieure pour A. nasutus. Tous les taxons parasites, à l’exception de deux,
représentent de nouvelles mentions géographiques et de nouveaux hôtes.
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Introduction

The deep-sea (>200 m depth) is the habitat for 10–15% of
the global ichthyofauna [29, 30]. Despite its limited primary
production, important marine resources inhabit this environ-
ment [3]; consequently, as coastal fisheries have collapsed, the
deep-sea region may offer new resources [41]. Accordingly,
we need not only clear and adequate knowledge of these poten-
tial new resources but also a sound understanding of the biodi-
versity of these ecosystems [3, 29]. Parasites are an important
component of any ecosystem, not only because of the number
of species (which is higher than the number of free-living spe-
cies) but also because of the role they play in the trophic web
[16, 31]. Deep-sea fish parasites have often been neglected,
although they are an essential part of marine biodiversity
[29]. Moreover, through the study of parasites, it is possible
to obtain information about their hosts, such as their diet, migra-
tory movements and population structures, and the biodiversity
and human impacts in the ecosystems where they coexist [34,
56, 59]. Consequently, parasites can provide crucial clues about
the features of the ecosystems inhabited by their hosts.

Knowledge of the parasite fauna harboured by deep-sea
fishes is available for less than 10% of the ichthyofauna that
inhabit these ecosystems [29, 30]. This is due to the economic
and logistical difficulties in accessing the hosts that inhabit
these ecosystems in comparison with fishes of commercial
importance or those that inhabit coastal areas [30]; an alterna-
tive is to study hosts from the by-catch of deep-sea commercial
species. Knowledge regarding the parasites of sharks is scarce
[9], and it is even scarcer for the species that inhabit the deep-
sea. Of the 509 species of sharks known to date, no fewer than
250 are considered deep-sea species [58]. Parasitological stud-
ies of species that inhabit these ecosystems focus on the taxo-
nomic description of some species or new host records, but few
include the analysis of the parasite community [14, 15, 25, 28].
For the Southeastern Pacific Ocean (SEPO herein and after),
the same scenario is evident. Of the 68 shark species that have
been reported, at least 33 are considered deep-sea sharks [17].
Only five studies have been carried out on the parasites of
deep-sea sharks for the SEPO [11, 23, 32, 53, 54]. These
papers focus on the taxonomic description of some parasite
species or the presence of a parasite in a host; so far, no study
has been conducted to address the metazoan parasite commu-
nities of deep-sea sharks for the SEPO.

Etmopterus granulosus (Günther, 1880), the southern
lanternshark, and Apristurus nasutus De Buen, 1959, the long-
nose catshark, are two species inhabiting the deep-sea in the
SEPO; E. granulosus shows a wide distribution in the Southern
Ocean, including the southern Indian, southern Pacific and
southwestern Atlantic Oceans, whereas A. nasutus is found
from the Gulf of Panama to central Chile [17]. Both species
are caught as by-catch in the local fishery of the Patagonian
toothfish, Dissostichus eleginoides Smitt, 1898, in central and
northern Chile as well as by-catch of the orange roughy,
Hoplostethus atlanticus Collett 1889, in the Juan Fernandez
Archipelago. Our goal is to report, for the first time, the com-
position of the metazoan parasite communities of two deep-sea
sharks from the SEPO, as well as to quantitatively describe the
characteristics of their parasite community.

Materials and methods

A total of 133 specimens (E. granulosus = 120,
A. nasutus = 13) of deep-sea sharks were obtained during
2015–2017 (see Supplementary material) from the by-catch
of the local fishery of the Patagonian toothfish (D. eleginoides)
along the northern (22�160S 70�380W–23�260S 70�430W) and
central (35�50S–72�530W) Chilean coasts at depths ranging
from 1000 to 2200 m (Fig. 1) using a deep-sea longline. The
sharks were captured, stored in bags and immediately frozen
(�18 �C) on board and transported to the laboratory for para-
sitological analyses.

After thawing, the sharks were measured (total length to the
nearest 1.0 cm), dissected and examined for metazoan parasites
(both ectoparasites and endoparasites). Parasites were recorded
by species and abundance for each shark, fixed in AFA (alcohol:
formalin: acetic acid), and then preserved in 70% alcohol.
Nematoda were cleared with Amann lactophenol. Digenea,
Monogenea and Cestoda were stained (acetic carmine) and
cleared with clove oil (Sigma-Aldrich) and then mounted in
Eukitt medium (O. Kindler GmbH, Germany) [42]. Copepoda
and Thecostraca were stored in ethanol (70%) and dissected
for taxonomic purposes. Parasites were identified to the lowest
taxonomic level possible. The prevalence and mean intensity of
infection were calculated [8].

The quantitative analysis was carried out at the infracom-
munity and community component levels. For the infracommu-
nity level, we calculated the richness (number of parasite
species per examined host), abundance (number of parasite
individuals per examined host) and diversity (Brillouin index)
using PRIMER v6, parasite species accumulation curves were
constructed using the ‘‘vegan’’ package in R freeware [44].
The Berger-Parker dominance index was calculated as the num-
ber of individuals of the most abundant parasite species divided
by the total number of parasites in a given fish host as indicated
by Dallarés et al. [14]. The descriptors Shannon, Simpson and
Inverse Simpson diversity index were calculated at the commu-
nity component level using the ‘‘vegan’’ package in R freeware.
Because the sample size for A. nasutus was small, the charac-
teristics were described but not compared, as 38% of the spec-
imens of A. nasutus were not parasitized.

Potential relationships between host body length and rich-
ness (number of species), abundance (total number of individ-
uals) and prevalence (previous angular transformation of
prevalence data) were explored using the Spearman correlation
coefficient only for E. granulosus. The potential relationship
between length and abundance was explored in the same man-
ner. Because of the small sample size of A. nasutus, the quan-
titative analysis of its parasite fauna was not performed. The
statistical analyses were performed with the Minitab 17 statis-
tical software program and Primer v6 [1].

Results

A total of 120 specimens of E. granulosus and 13 speci-
mens of A. nasutus were obtained from nine fishing
events, two from the central and seven from the northern fish-
ing zone. Because the sample size was small for some periods,
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seasonality was not analysed (Supplementary material). The
sharks were obtained with the same fishing gear.

The total length for E. granulosus ranged from 24 to 96 cm
(M = 46.1 ± 8.6), whereas the length range for A. nasutus was
52.5–84 cm (M = 65.1 ± 8.4). ANOVA showed that the mean
length of the hosts differed between localities, but marginally
(F1, 118 = 3.98, p = 0.048). Because the correlations between
host length and total richness and total abundance were signif-
icant for both localities, the samples from northern and central
sites were pooled.

A total of 277 parasite specimens belonging to 19 parasite
taxa were obtained for the two hosts. Higher richness was
found in E. granulosus, with 14 taxa: six endoparasites (one
Digenea, four Cestoda and one Nematoda), seven ectoparasites
(four Monogenea, two Copepoda, and one Annelida) and one
mesoparasite (Thecostraca). Five taxa were found from
A. nasutus; four were endoparasites (two Cestoda and two
Nematoda) and one ectoparasite (Monogenea).

Four taxa of Monogenea were found in E. granulosus but
with low values of prevalence and mean intensity. The mono-
genean Microbothrium sp. was found in A. nasutus, showing
the highest mean intensity observed in this study (Table 1).

Two members of Copepoda were found: Lernaeopodidae
gen sp. and Neoalbionella sp. The latter taxon showed the
highest prevalence in E. granulosus. One annelid was found
parasitizing E. granulosus; this leech was the least common
taxon, with a single individual in the whole sample.

In both host species, Cestoda was well represented in terms
of the number of taxa and individuals. In E. granulosus, three of
four Cestoda were found in the adult stage, including
Plesiorhynchus sp., which had the highest prevalence and mean
intensity (Table 1), and one at the larval stage (Hepatoxylon
sp.). The larval Hepatoxylon sp. was common for both sharks,
showing the highest prevalence in A. nasutus. Of the three taxa
of Nematoda, E. granulosus harboured one unidentified species

of Anisakis, while A. nasutus harboured Anisakis sp. and
Mooleptus rabuka. The digenean Otodistomum sp. was found
only in E. granulosus, with low prevalence and abundance.

Individuals of the cosmopolitan mesoparasite Anelasma
squalicola (Thecostraca) were found in both the dorsal and
caudal fins, eyes and mouth of E. granulosus.

The sample size of E. granulosus allowed us to evaluate
certain quantitative characteristics of the infection at the infra-
community and component levels (Table 2). Parasite species
accumulative curves are shows in Figure 2, for both host spe-
cies. The expected number of species ranged from 14.8 (Boot-
strap) to 17.9 (Jackknife2) for E. granulosus and 5.9
(Bootstrap) and 6.9 (Jackknife2) for A. nasutus (Table 2).

The richness, abundance and diversity were positively and
significantly correlated with host length (r = 0.408,
p < 0.001, df = 118; r = 0.436, p < 0.001, df = 118; r =
0.41, p < 0.001, df = 65, respectively). The abundance of some
taxa (Asthenocotyle sp. (r = 0.322, p < 0.001, df = 118),
Monocotylidae gen. sp. (r = 0.228, p = 0.012, df = 118),
Plesiorhynchus sp. (r = 0.286, p = 0.002, df = 118),
Lernaeopodidae gen. sp. (r = 0.184, p = 0.044, df = 118),
Neoalbionella sp. (r = 0.237, p = 0.009, df = 118), and A.
squalicola (r = 0.293, p = 0.001, df = 118)) was positively
and significantly correlated with host length. The prevalence
of infection was significantly correlated with host length only
for Asthenocotyle sp. (r = 0.94, p < 0.001, df = 3).

Discussion

Hosts were obtained using the same fishing gear (deep-sea
longline), on the same date and with the same fishing effort.
Accordingly, the differences in the number of hosts obtained
suggest differences in the relative abundance of each species.
A similar result (higher abundance of E. granulosus than

Figure 1. Approximate position of localities where samples of deep sea sharks were caught. Arrows indicate the approximate position of
localities where samples of deep sea sharks were caught.
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A. nasutus) was reported for the by-catch of the orange roughy,
Hoplostethus atlanticus, in the SEPO [39].

This is the first study reporting the composition of the
metazoan parasite community in the deep-sea sharks
E. granulosus and A. nasutus. Most parasitological studies on
deep-sea sharks have focused on the taxonomic description

of a given parasite species or recorded the presence of parasite
species in a given host, with few studies describing the species
composition at the community level [13–15, 25, 28]. Previous
studies regarding the parasites of E. granulosus and A. nasutus
consist of taxonomic records.

For E. granulosus, there are six taxonomic records:
O. plunketi from New Zealand [7, 22], G. squali from Chile,
A. tasmaniensis and P. etmopteri from Australia [5, 11],
Neoalbionella sp. from Juan Fernandez Archipelago, Chile
[53], and A. squalicola from New Zealand [27, 60]. Accord-
ingly, Squalonchocotyle aff. spinacis, Asthenocotyle sp.,
Calicotyle sp., Monocotylidae gen. sp., Otodistomum sp.,
Aporhynchus sp., Plesiorhynchus sp., Hepatoxylon sp., Anisakis
sp., Lernaeopodidae gen sp. and Piscicolidae gen. sp. represent
new records for E. granulosus. The Neoalbionella sp. now
found could be the same taxon reported by Rodríguez et al.
[53]. Unfortunately, males were not found, and they are neces-
sary for the correct identification of the species; therefore,
Neoalbionella sp. and A. squalicola represent new locality
records. For A. nasutus, the only previous record is the
nematode M. rabuka [54]; thus, the four remaining taxa
(Microbothrium sp. Hepatoxylon sp., Trypanorhyncha gen. sp.
and Anisakis sp.) represent new records for A. nasutus.

The most common taxon of parasites in elasmobranchs is
Platyhelminthes, followed by Arthropoda, Nematoda, Annelida
and Acanthocephala [9]. Our data align well with this pattern
for both host species analysed. These authors also suggest that

Table 1. Prevalence (P) and mean intensity ± standard deviation (MI ± SD) of infection of metazoan parasites found in two species of
deep-sea sharks from the SEPO.

E. granulosus A. nasutus

Parasite species Stage Habitat P MI ± SD P MI ± SD

Monogenea
Squalonchocotyle aff. spinacis A G 5.1 1.2 ± 0.4 – –
Asthenocotyle sp. A S 9.3 1.5 ± 0.5 – –
Microbothrium sp. A S – – 15.3 24.0 ± 3.0
Calicotyle sp. A S 1 2 ± 0 – –
Monocotylidae gen. sp. A S 3.4 1.5 ± 0.6 – –
Digenea
Otodistomum sp. A I 5.1 1.2 ± 0.4 – –
Cestoda
Aporhynchus sp. A SV 5.9 1.2 ± 0.4 – –
Plesiorhynchus sp. A SV 17.8 5.6 ± 4.9 – –
Hepatoxylon sp. L Me 5.1 1.3 ± 0.5 53.8 1.7 ± 1.4
Trypanorhyncha gen. sp. L Me – – 7.7 1.0 ± 0
Cestoda unidentified SV 12.7 2.2 ± 2.1 – –
Nematoda
Anisakis sp. L I, M 13.3 1.0 ± 0 15.4 1.5 ± 0.5
Mooleptus rabuka A I – – 7.7 1.0 ± 0
Copepoda
Lernaeopodidae gen sp. A B 2.5 1.0 ± 0 – –
Neoalbionella sp. A F 12.7 1.1 ± 0.5 – –
Thecostraca
Anelasma squalicola A S, E, F, Mo 13.6 2.4 ± 0 – –
Annelida
Piscicolidae gen sp. A S 0.8 1.0 ± 0 – –

A = adult, E = eyes, F = fins, G = Gills, I = intestine, L = Larval stage, Me = mesenteries, Mo = Mouth, SV = Spiral valve, S = Skin.

Table 2. Quantitative characteristics of the metazoan parasites in
two deep-sea sharks at component and infracommunity level.

E. granulosus A. nasutus

Component community
Observed richness 14 5
Expected richness

Chao 14.9 (SE = 2.3) 5.9 (SE = 1.7)
Jackknife 1 15.9 (SE = 1.4) 6.8 (SE = 1.3)
Jackknife 2 17.9 6.9
Bootstrap 14.8 (SE = 0.7) 5.9 (0.7)
Abundance 282 65
Diversity 1.9603 (SD = 0.064) 0.806 (SD = 0.121)
Evenness 0.738 0.501

Infracommunity
Richness 1.06 (±1.27) 0.92 (±0.86)
Abundance 2.35 (SD = 3.71) 5 (SD = 9.30)
Diversity 0.26 (SD = 0.32) 0.13 (SD = 0.15)
Evenness 0.42 (SD = 0.46) 0.32 (SD = 0.43)

SE = standard error, SD = standard deviation.
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the richest group in the Platyhelminthes is Cestoda, followed
by Monogenea and Digenea.

Parasitological studies are available for seven species of
Etmopterus; of these studies, only three include quantitative
data, but only for E. spinax [14, 25, 28]. Our data suggest that
E. granulosus shows the highest richness among members of
this genus (14 taxa) based on the published quantitative data
(Supplementary material), but the integration of published
taxonomic information (14 articles from seven localities) indi-
cates the presence of 23 species, with Cestoda being the best
represented group (14 taxa) (Supplementary material). With
regard to Monogenea, E. granulosus showed the highest
richness, with four taxa. Monogeneans have been reported only
for two members of the Etmopterus genus. In regard to
A. nasutus, the highest richness corresponds to Cestoda (two
taxa) and Nematoda (two taxa). Among ectoparasites of
elasmobranchs, Copepoda is the most diverse group, followed
by Monogenea [9]. Our data show the opposite pattern:
Monogenea was the richest group in E. granulosus. Copepoda
was represented by two taxa, but specimens of Neoalbionella
sp. seem in fact to be members of two species (Castro pers.
comm.).

A different picture is evident for members of Apristurus.
Taxonomic studies are available for seven species. The integra-
tion of taxonomic papers indicates richness ranging from one
to two species rather than the five taxa found here. Any conclu-
sion about richness in A. nasutus must be drawn with caution
due to our small sample size and the absence of quantitative
data for other members of the genus. However, the sample
effort for both species captures the expected richness (Table 2).

Many factors have been proposed as drivers of the structure
of parasitic communities, among others the diet of the host
(generalist versus specialist predators), ontogenetic changes
in the diet, prey availability (intermediate hosts) [50], as well
as habitat, host behaviour (migratory versus sedentary, school-
ing versus non-schooling) and host density. Environmental fac-
tors, such as depth and water temperature, also influence
community structure [19, 48, 50]. Recently [36], determinants
of parasite species richness were evaluated, but no clear con-
clusions were obtained. Based on a meta-analysis, Kamiya
et al. [26] suggest four potential universal predictors of

richness, and three of them (host body length, geographical
range size and population density) were adequate predictors,
while latitude was not. Our results for E. granulosus are in
partial accordance with those postulated, showing that a greater
geographical range was related to higher parasitic richness.
With respect to density, no data on host density are available,
but because both species were obtained with the same fishing
gear and sampling effort, this suggests that E. granulosus has a
higher density than A. nasutus. However, when host length was
evaluated, our results showed the opposite pattern to that
expected according to the predictions of Kamiya et al. [26],
as the mean length of A. nasutus was higher than that of
E. granulosus. The positive and significant correlation found
between host length and richness for E. granulosus suggests
that for a given species, length is a suitable predictor of
richness.

Six of the 14 taxa found in E. granulosus (Asthenocotyle
sp., Monocotylidae gen. sp., Lernaeopodidae gen sp., Neoal-
bionella sp., A. squalicola and Plesiorhynchus sp.) showed a
positive and significant correlation between abundance and host
length (as a proxy for host age), suggesting cumulative infection
with age or a colonisation rate that is higher than the mortality
rate [47]. The prevalence of infection was significantly corre-
lated with host length only for Asthenocotyle sp.

Despite the high diversity at the community component
level for E. granulosus, at the infracommunity level, the rich-
ness and diversity showed low values that were similar to those
reported for members of Etmopterus in other localities
(Supplementary material).

The four taxa of monogenean recorded from E. granulosus
represent unusually high richness for this group in deep-sea
sharks. Just two species were recorded in 37 specimens of
E. spinax [28], and Isber et al. [25] found only one species
in a sample of 59 specimens. Moreover, Klimpel et al. [30]
listed the parasite fauna of 30 shark species; of those, just
three (Hexanchus griseus, Etmopterus spinax and Dipturus
oxyrinchus) harbour two species of Monogenea, and the
remaining 27 species harbour one or no species. A similar pat-
tern was suggested [42, 43] in deep-sea teleosts in the SEPO.
Although a small proportion of deep-sea teleosts and sharks
have been studied, our results and those of Ñacari et al. [42]

Figure 2. Species accumulation curves for both host species studied.
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could be evidence that higher Monogenea richness in the
SEPO is driven by environmental conditions.

Monogeneans found in E. granulosus belong to Hexaboth-
riidae, Microbothriidae and Monocotylidae. Members of the
Hexabothriidae and Monocotylidae are parasites of elasmo-
branchs and holocephalans [6, 12], whereas Microbothriidae
are parasites of elasmobranchs only [57].

Two copepods were found in E. granulosus. Unfortunately,
all the individuals found were females, and it was thus not
possible to identify them to lower taxonomic levels. Both taxa
belong to the Lernaeopodidae family. Members of the
Neoalbionella genus are parasites of sharks of the Etmopteri-
dae and Pentanchidae families [4, 24, 35, 53, 55].

The monotypic genus Anelasma is the only barnacle para-
site of vertebrates [51]. This crustacean has been considered to
be an ectoparasite [32], but it can be considered to be a
mesoparasite, since it is partially embedded and partially
exposed to the environment [9, 60]. A. squalicola (and also
Anelasma sp.) has been reported only in sharks belonging to
Etmopteridae [30], suggesting high host specificity.

Both presence of the adult and larval stages of endopara-
sites indicates that the studied sharks may function as final
as well as intermediate hosts. Although the predators of
E. granulosus and A. nasutus are unknown, small sharks are
an important component of the diet of larger sharks; for exam-
ple, small sharks such as Galeus melastomus and Etmopterus
spinax are preyed upon by Dalatias licha [38].

Larval cestodes (Hepatoxylon sp. and Trypanorhyncha gen.
sp.) can reach the adult stage in shark predators. Members of
the Hepatoxylon genus (found in both hosts) are common
parasites in teleosts (larval forms) and elasmobranchs (larval
and adults) and have been reported from more than 40 species
of sharks (see [49]). They have not been reported in sharks of
the Etmopterus and Apristurus genera. The low prevalence and
mean intensity in E. granulosus suggest accidental infection,
but the high prevalence and mean intensity in A. nasutus
suggests that this species is an intermediate host for this
cestode. The lack of dietary data for these sharks prevents
any conclusion about the life cycle of this worm. Merluccids
and macrourids are part of the diet of E. granulosus in New
Zealand [17]. In the SEPO, the south Pacific hake (Merluccius
gayi), the Patagonian grenadier (Macruronus magellanicus
(Merlucciidae)) and the bigeye grenadier Macrourus holotra-
chys (Macrouridae) are parasitized by larval Hepatoxylon
trichiuri with high prevalence (>60% in M. magellanicus)
[42, 45, 46], suggesting that E. granulosus may be infected
with this larval cestode by preying on these fish species.

Although the life cycles of adult cestodes found in E. gran-
ulosus (Aporhynchus sp. and Plesiorhynchus sp) are not
known, the feeding habits of E. spinax, suggest that the cala-
noid Calanus finmarchicus may be the first intermediate host
for Aporhynchus norvegicus, while Meganyctiphanes norve-
gica is the second intermediate host [28].

Aporhynchus sp. and Plesiorhynchus sp. present some
degree of host specificity. Currently, the trypanorhynch genus
Aporhynchus comprises four species that infect three etmopter-
ids: A. norvegicus and A. menezesi in E. spinax, A. tasmaniensis
in E. granulosus (= baxteri) and A. pickeringae in E. pusillus;
[40], but Aporhynchus sp. was detected in Deania profundorum,

a member of Centrophoridae [10]. Plesiorhynchus includes
three species; all of them have been found in deep-sea sharks,
P. campbelli was found in Apristurus sp. [5] and in the etmop-
terids: E. princeps was infected with P. brayi and E. lucifer, and
E. granulosus with P. etmopteri [5, 10].

Of the four nematodes found, two belong to the Anisakis
genus. Adult Anisakis parasitize marine mammals, and larval
anisakids are rare in sharks [28]. As stated by Henderson
et al. [20], they must be considered accidental parasites;
however, their presence has been reported in Prionace glauca
[20], Squalus acanthias [21], Centrophorus squamosus [13],
and E. spinax [28], as well as in the blackmouth catshark
(Galeus melastomus (Pentanchidae)) [14, 15].

In A. nasutus, two nematodes were found: Anisakis sp. and
Mooleptus rabuka. The latter species has been found in
Apristurus fedorovi and Apristurus japonicus [2, 37]. Larval
forms, presumed members of this nematode genus, have
been found in the brain of the deep-water teleost Cyclothone
atraria [33].

Despite its low prevalence and abundance, the presence of
the digenean Otodistomum sp. cannot be the result of acciden-
tal infections; members of this genus have elasmobranchs as
main hosts [9], and they have been reported in E. granulosus
(and E. baxteri) [7, 22] and other members of Etmopterus, such
as E. princeps [18] and E. spinax [25]. Their low abundance
could be related to the low availability of intermediate hosts,
such as some teleost fishes, the second intermediate host for
this digenean [52].

Conclusions

The present study analysed for the first time the composi-
tion of the metazoan parasite communities in two deep-sea
sharks from the SEPO. The richness found in E. granulosus
is the highest among members of the Etmopterus genus. Twelve
of the 14 parasite taxa found represent new records for this spe-
cies, whereas for A. nasutus, four of five parasites represent new
host records. The species composition for both host species
analysed showed a pattern similar to that reported for other elas-
mobranchs, i.e., higher richness of Platyhelminthes, mainly
Cestoda and also Monogenea. The diversity of Monogenea par-
asitizing E. granulosus is higher than that found in previous
reports for elasmobranchs, and a pattern similar to that
described for deep-sea teleosts in the SEPO is evident.

The presence of the cosmopolitan A. squalicola in
E. granulosus suggests high connectivity in the deep sea, at
least in the Southern Hemisphere.

Supplementary Material

Supplementary material is available at https://www.
parasite-journal.org/10.1051/parasite/2018054/olm
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