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    Memory is a defi ning feature of the adaptive 
immune system. Observations of long-term pro-
tection against specifi c pathogens have been 
noted for hundreds of years, but the cellular basis 
of immunological memory has only recently 
begun to be dissected ( 1 – 4 ). The study of CD4 
T cell memory in particular has been ham-
pered by two factors. First, by the relatively 
low frequencies of memory CD4 T cells of any 
given specifi city compared with antigen-specifi c 
memory CD8 T cells ( 5 – 7 ), and second, by the 
fi nding that, in several situations, the number 
of memory CD4 T cells continues to decline 
with time after antigen encounter ( 6 – 9 ). These 
characteristics often lead to a paucity of antigen-
specifi c memory CD4 T cells persisting long-
term in T cell – replete mice. Alternatively, 
memory CD4 T cells have been generated by 
transferring activated CD4 T cells into host 
mice in which competition for survival signals 
and niches is reduced, resulting in substantially 
larger memory cell populations surviving long-
term. Such models have been used to defi ne 
several distinguishing attributes of memory 
CD4 T cells ( 3 ). 

 After activation, naive CD4 T cells undergo 
rapid cell divisions after a lag period, and dif-

ferentiate in multiple steps to become eff ectors 
that carry out many eff ector functions, both 
through cognate interactions with other cells 
and by the secretion of cytokines and chemo-
kines. CD4 T cell eff ectors can be separated 
into several subsets based on the spectrum of 
cytokines they produce, including Th1, which 
is characterized by IFN �  production, and Th2, 
which is characterized by production of IL-4 
and -5 ( 10, 11 ). After antigen clearance, the 
majority of eff ectors die via apoptosis, and a 
small population reverts to a resting state to be-
come memory cells ( 9, 12, 13 ). Much debate 
surrounds the details of this process, and several 
models of memory T cell generation have been 
proposed ( 14 ). Many recent observations also 
suggest that antigen-specifi c memory CD4 T 
cell populations can display a surprising amount 
of heterogeneity, as assessed by phenotype, 
function, and anatomical location ( 15 – 18 ). This 
diversity of subpopulations can complicate anal-
ysis of memory cell properties, especially as some 
of the heterogeneity seen may refl ect cells in 
diff erent states of activation and subsets with 
diff erent longevity ( 16, 19 ). 

 Memory CD4 T cell responses diff er from 
naive responses not only quantitatively, because 
of increased precursor frequencies of antigen-
specifi c cells ( 20, 21 ), but on a per-cell basis by 
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 The majority of highly activated CD4 T cell effectors die after antigen clearance, but a 

small number revert to a resting state, becoming memory cells with unique functional 

attributes. It is currently unclear when after antigen clearance effectors return to rest 

and acquire important memory properties. We follow well-defi ned cohorts of CD4 T cells 

through the effector-to-memory transition by analyzing phenotype, important functional 

properties, and gene expression profi les. We fi nd that the transition from effector to 

memory is rapid in that effectors rested for only 3 d closely resemble canonical memory 

cells rested for 60 d or longer in the absence of antigen. This is true for both Th1 and Th2 

lineages, and occurs whether CD4 T cell effectors rest in vivo or in vitro, suggesting a 

default pathway. We fi nd that the effector – memory transition at the level of gene expres-

sion occurs in two stages: a rapid loss of expression of a myriad of effector-associated 

genes, and a more gradual gain of expression of a cohort of genes uniquely associated with 

memory cells rested for extended periods. 
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T cells also indicate that memory cells express higher levels of 
some activation-induced genes than do naive cells ( 30 ). 
Changes in gene expression provide insight into the molecular 
diff erences between T cell subsets; however, the kinetics of 
such changes during memory diff erentiation are not known. 

 We evaluate whether the transition from eff ector to mem-
ory CD4 T cell is rapid, or if the acquisition of memory phe-
notype and function is more gradual. We investigate the 
progression from eff ector to memory using well-defi ned 
populations of naive cells, highly activated eff ector cells, 
short-term 3 d rested eff ector cells, and eff ectors rested for at 
least 60 d in MHC II – defi cient (MHC II KO) hosts, resulting 
in a homogeneous population of quiescent memory CD4 T 
cells that is maintained long-term in the absence of antigen. 
We show that the phenotype, as well as several key func-
tional attributes of such memory cells, are already expressed 
by highly activated eff ectors after only 3 d of rest, indicating 
a rapid transition. This rapid transition from eff ector to mem-
ory is observed with both Th1 and Th2 lineage CD4 T cell 

several qualitative criteria. For example, memory CD4 T 
cells rapidly produce multiple Th1- and/or Th2-associated 
cytokines without a lag period, whereas naive cells produce 
primarily IL-2 with slower kinetics after TCR stimulation. In 
addition, memory CD4 T cells do not require interactions 
with MHC II molecules for survival signals, and their life 
spans far exceed those of their naive precursors ( 22, 23 ). Cri-
teria discriminating between eff ector and memory cells are 
not as well defi ned, although a critical diff erence is an in-
creased resistance to activation-induced cell death (AICD) in 
resting memory populations ( 24, 25 ). It is also unclear if key 
functional properties, such as susceptibility to AICD, change 
quickly as eff ectors come to rest, or more gradually. Because 
eff ector and memory CD4 T cells may have very diff erent 
capacities and mechanisms by which they can contribute to 
responses against pathogens, it is critical to understand when 
functional transitions occur. Analyses of gene expression have 
identifi ed genes that are highly expressed in memory CD8 T 
cells in human and mouse ( 26 – 29 ). Studies with human CD4 

 Figure 1.   Cell-surface phenotype of CD4 T cell subsets. (A) Naive AND.Thy1.1 CD4 T cells, 4 d in vitro – generated Th2 effectors, and effectors 

rested for 3 (Rested Effector) or 60 d (Memory) after transfer into MHC II KO hosts were stained for the indicated markers and analyzed by flow 

cytometry. All histograms were generated from CD4 � , Thy1.1 �  donor cells. Results are representative of three separate experiments following 

subsets originating from the same naive CD4 T cell preparation. Mean fluorescence intensity (MFI) � the SD of CD5 (B) and CD127 (C) signal of 

donor cells after 3- (Rested Effector) or 60-d (Memory) transfer into C57BL/6 (B6) or MHC II KO (KO) hosts. P values obtained by an unpaired, two-

tailed Student ’ s  t  test.   
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we transferred Th2-polarized eff ectors into intact B6 hosts. 
Absolute numbers of transferred cells recovered from B6 hosts 
were similar to recoveries from MHC II KO hosts 3 d after 
transfer, but fell dramatically after 60 d, whereas numbers in 
MHC II KO hosts were maintained (Fig. S1, available at http://
www.jem.org/cgi/content/full/jem.20070041/DC1). Recent 
studies support the maintenance of only very low frequencies 
of memory CD4 T cells of a given clone long-term in T 
cell – replete mice ( 33 ). This diff erence in the maintenance of 
memory cells in lymphopenic versus intact hosts is likely 
caused by competition for IL-7 and other survival factors and 
niches, or regulation of homeostasis by endogenous memory 
T cells ( 32, 34 – 36 ). Though rested eff ectors in intact B6 hosts 
did not exhibit the prolonged persistence observed in MHC 
II KO hosts, these cells did persist at signifi cantly higher levels 
for extended periods than naive cells of the same specifi city 
transferred into B6 hosts (Fig. S2). 

 Importantly, a rapid transition from eff ector to memory was 
also observed in intact, T cell – replete B6 hosts. The pheno-
type of transferred Th2 eff ector cells was nearly identical in 
both B6 and MHC II KO hosts after a 3-d rest, with the no-
table exceptions of CD5 and CD127; those in normal B6 
hosts expressed signifi cantly higher CD5 and lower CD127 
than cells rested in MHC II KO hosts ( Fig. 1, B and C ). The 
very low numbers of transferred cells routinely detectable in 
B6 hosts after 60 d of rest precluded extensive analysis of this 
population, but we did confi rm that important markers, such 
as CD44, CD54, and CD62L, were similarly expressed by 
memory cells rested for 60 d in either B6 or MHC II KO 
hosts (unpublished data). Furthermore, when compared with 
rested eff ectors generated in B6 hosts, memory cells gener-
ated in B6 hosts expressed similar CD5, but higher levels of 
CD127, which is equivalent to memory cells rested in MHC 
II KO hosts ( Fig. 1, B and C ). 

 We observed a similar rapid shift in phenotype when 
Th1 eff ectors were rested for 3 d in vivo (unpublished data). 
Though eff ectors of both lineages were similar as measured 
by the majority of markers analyzed, Th1 and Th2 cells were 
distinguishable by the diff erences listed in  Table I .  However, 
after 3 d rest, Th1 and Th2 cells appeared virtually identical, 
and after 60 d, no signifi cant diff erences were observed using 

eff ectors and occurs when eff ectors rest 3 d in vitro or in vivo, 
suggesting a default, cell-intrinsic program. The transition 
from eff ector to memory is also rapid in terms of the loss of 
expression of a large cohort of genes related to eff ector func-
tion and cell cycling. Finally, we show that the expression of 
a small cohort of genes increases only gradually after rest and 
is unique to memory CD4 T cells. 

  RESULTS  

 Rapid changes in phenotype during transition to memory 

 The major question we address is to what extent short-term 
3 d rested eff ectors resemble the eff ectors from which they 
originate versus the memory cells to which they give rise. 
Eff ector populations were generated in vitro from TCR trans-
genic CD4 T cells to ensure homogeneous populations of 
highly activated, antigen-experienced cells. Eff ector cells were 
washed thoroughly and rested in the absence of antigen, ei-
ther in vitro or in vivo, in Thy-disparate hosts for 3 d to gen-
erate short-term rested eff ectors. Memory CD4 T cells were 
generated by transferring eff ector cells into MHC II KO hosts 
for an extended period of rest (60 d). We used MHC II KO 
mice as hosts to generate memory cells because transferred 
 eff ectors cells receive no antigen-specifi c stimulation and 
 undergo very little if any homeostatic proliferation, and a 
sizeable portion of donor cells survive long-term ( 12, 22 ). 

 We fi rst characterized the phenotype of naive cells, Th2 
eff ector, and Th2 eff ectors rested for either 3 (rested eff ector) 
or 60 d or more (memory) in MHC II KO hosts. A broad 
panel of activation markers, adhesion, costimulatory, and cell 
death/survival molecules were diff erentially expressed by na-
ive and eff ector cells ( Fig. 1 A ).  In contrast, memory cells 
closely resembled naive cells, but were clearly distinguished 
based on increased expression of CD54 and CD44. Memory 
cells also up-regulated CD127 (IL-7r � ), the expression of 
which is critical for access to IL-7 and CD4 T cell survival 
( 31, 32 ). 3 d rested eff ectors closely resembled memory cells, 
having down-regulated expression of most eff ector-associated 
markers, retained CD44 and CD54 expression, and with up-
regulated CD127. 

 To rule out eff ects of the CD4 lymphopenic environment 
of MHC II KO hosts on the eff ector – memory transition, 

  Table I.  MFI values of selected markers on Th1 and Th2 subpopulations 

Effector Rested effector Memory

 Th1  Th2  Th1  Th2  Th1  Th2 

CD4 1,570  �  141  a  1,004  �  95  b  1,097  �  192 823  �  73

CD30 17  �  1 50  �  3  b  10  �  1 14  �  2

CD43 2,120  �  377 404  �  104  b  398  �  45 201  �  25  b  210  �  72 125  �  22

CD48 511  �  30 790  �  36  b  202  �  37 233  �  6

CD49f 126  �  16 32  �  2  b  22  �  3 14  �  4

CD54 704  �  90 233  �  11  b  139  �  21 99  �  18

CD69 55  �  8 21  �  7  b  33  �  11 25  �  3

CD95 273  �  16 90  �  16  b  113  �  9 45  �  3  b  63  �  16 35  �  15

  a  Average MFI �/ �  SD of at least three separate experiments

  b  Signifi cant difference between Th1 and Th2 (P  �  0.01) by unpaired Student ’ s  t  test
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 Cytokine profi les of CD4 T cell subsets 

 We next compared cytokine production by Th2 eff ectors, 
and eff ectors rested for either 3 (rested eff ector) or 60 d 
(memory) in MHC II KO hosts ( Fig. 2 A ), and by rested 
eff ectors generated in either intact B6 hosts, or in vitro 
( Fig. 2 B ).  Purifi ed CD4 T cells were stimulated with 
APCs and peptide for 18 h, during which time naive cells 

this panel of markers ( Table I ). These results demonstrate that 
both Th1 and Th2 eff ectors undergo rapid, comprehensive 
phenotypic changes upon antigen clearance, and that resting 
cells of both lineages are far more similar phenotypically than 
the eff ectors that are their precursors, suggesting that certain 
functional diff erences between them may be expressed only 
at the activated eff ector stage. 

 Figure 2.   Cytokine production from CD4 T cell subsets. (A) AND.Thy1.1 Th2 effectors (Effector) and effectors rested for either 3 (Rested Effec-

tor) or 60 d (Memory) in MHC II KO hosts were stimulated with APC and PCCF peptide (5  � M) for 18 – 20 h. Supernatants were analyzed for cyto-

kines by Luminex; the summary of three experiments is shown � the SD. * denotes the significant difference from effector cytokine production 

(P � 0.05) as obtained by an unpaired, two-tailed Student ’ s  t  test. (B) Effectors rested for 3 d in either MHC II KO or B6 hosts or rested in vitro were 

cultured with APCs and peptide for 18 – 20 h. Cytokine production from effectors and naive cells is also shown. (C) Th2-rested effector and memory 

populations were either stimulated or not with PMA and ionomycin and analyzed for ICCS. Brefeldin A was added after 2 h, and after 4 h cells were 

stained for IL-2 and -4. (D) Th2 effector, rested effector, or memory cells were cultured with APC, and graded doses of peptide for 18 – 20 h. IL-4 was 

measured in supernatants from three separate experiments, and the summary of the percentage of maximal IL-4 titer obtained with each peptide 

concentration is shown. (E) Comparison of the percent maximal IL-4 response to graded peptide doses by Th2 effectors rested either in vivo or 

in vitro for 3 d.   
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cells stimulated with graded doses of specifi c peptide. Results 
are presented as the percentage of maximal IL-4 production 
because the populations produced diff erent maximal quanti-
ties of IL-4 ( Fig. 2 A ). Both rested eff ector and memory cells 
responded better than eff ectors to less peptide, producing 
near maximal IL-4 levels to 10-fold lower antigen doses ( Fig. 
2 C ). Eff ectors rested 3 d in vitro or in vivo responded identi-
cally ( Fig. 2 D ). 

 Several reports support the existence of separate subsets 
of memory T cells based on expression of CD62L and CCR7. 
It has been suggested that CD62L high , CCR7 high  cells be 
termed  “ central – memory, ”  and that this subset produces IL-2 
in response to restimulation, whereas  “ eff ector – memory ”  
cells (CD62L low  and CCR7 low ) produce little IL-2 and in-
creased amounts of eff ector cytokines ( 15 ). To test for func-
tionally heterogeneous subsets of rested eff ector and memory 
cells based on CD62L expression, we restimulated Th2-
polarized cells in the presence of TAPI-2, which blocks the 
activation-induced cleavage of surface CD62L ( 39 ) that ordi-
narily confuses discrete populations based on CD62L expres-
sion. This allowed analysis of cytokine production and CD62L 
expression on a single-cell level using ICCS. CD62L high  and 
CD62L low  populations of eff ector, rested eff ector, and memory 
cells contained nearly identical frequencies of IL-4 – , IL-10 – , 
and IL-2 – positive cells ( Fig. 3 ), suggesting no obvious func-
tional heterogeneity in cytokine production potential corre-
lating with CD62L expression.  This pattern was also observed 

produced only low levels of IL-2 and -6 ( Fig. 2 B ). As 
previously reported ( 9, 37 ), memory cells produced sig-
nifi cantly less IL-4 and -5, but more IL-2 than eff ectors 
( Fig. 2 A ). Memory cells also produced less IL-6, -13, and 
strikingly less IL-10 than eff ectors. Cytokine production 
from rested eff ectors and memory cells was very similar and 
signifi cantly diff erent from eff ectors, with reacquisition of 
IL-2, reduction of IL-4, -5, -6, and -13, and loss of IL-10 
production ( Fig. 2 A ). Cytokine production from rested 
eff ector and memory populations was also similar, as de-
termined by intracellular cytokine staining (ICCS), with 
similar numbers of IL-4 � , -2 � , and double IL-4 � /-2 �  cells 
( Fig. 2 C ). These results show that, in addition to pheno-
type ( Fig. 1 ), cytokine production from rested eff ector and 
memory populations is similar on a per-cell basis. A similar 
transition was observed in Th1-polarized cells both on a 
population and on a per-cell basis with increased IL-2, 
decreased IFN- � , and an almost complete loss of IL-10 
production by both rested eff ectors and memory cells com-
pared with Th1 eff ectors (unpublished data). Eff ectors rested 
for 3 d in intact B6 hosts, or rested in vitro for 3 d pro-
duced similar amounts and patterns of cytokines as cells 
rested in MHC II KO hosts ( Fig. 2 B ). 

 Another key feature of primed CD4 T cells is their ability 
to be optimally restimulated by several-fold lower doses of 
antigen than is needed for naive cells ( 38 ). We measured IL-4 
from supernatants of eff ectors, rested eff ectors, and memory 

 Figure 3.   Cytokine production and CD62L expression within CD4 subsets. AND.Thy1.1 Th2 Effectors (Effector), and effectors rested for 3 (Rested 

Effector) or 60 d (Memory) in MHC II KO hosts were stimulated with PMA and ionomycin in the presence of TAPI-2. Intracellular staining was performed 

for IL-2, -4, and -10. Histograms representing the cytokine production of CD62L high  (black line) and CD62L low  (red line) subsets of each population were 

generated from CD4 � , Thy1.1 �  events. Shaded histograms represent unstimulated controls. The percentage of CD62L high/low  cells within each population 

is shown in the far left column.   
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apoptosis trends seen in eff ectors were reversed during 3 d of 
rest through rapid down-regulation of active growth and cell 
cycle regulators, including  Akt1 , cyclins, and cyclin-dependent 

with Th1-polarized cells when assayed for IFN- � , IL-2, and 
IL-10 (unpublished data). We were unable to similarly sepa-
rate subpopulations based on CCR7 expression, as no signifi -
cant diff erences in staining were observed within antigen-
experienced CD4 T cell subsets (unpublished data). 

 AICD of CD4 T cell subsets 

 Activated eff ectors, in contrast to resting naive and memory 
cells, are highly susceptible to AICD ( 3, 23, 25, 40 ). To test 
whether 3 d – rested eff ectors resemble sensitive eff ector or re-
sistant memory cells more, CD4 T cells rested in vivo were 
purifi ed and restimulated in vitro. As previously reported ( 40 ), 
20-h restimulation induced signifi cantly more AICD in Th1 
relative to Th2 eff ectors (Fig. S3, available at http://www
.jem.org/cgi/content/full/jem.20070041/DC1). We con-
centrated on Th1-polarized cells because of the dramatic level 
of observed eff ector AICD relative to Th2 cells. Several path-
ways can lead to apoptosis of activated T cells ( 40 – 42 ), and we 
therefore assayed for several cellular criteria associated with 
apoptosis, including DNA fragmentation (TUNEL staining), 
nuclear permeability (7-aminoactinomycin-D [AAD] staining), 
phosphatidylserine exposure on the cell surface (annexin-V 
staining), and loss of mitochondrial membrane potential (Mi-
totracker red staining). By all criteria, rested eff ectors displayed 
a dramatically reduced level of apoptotic and dead cells com-
pared with eff ectors, including a greater than threefold re-
duction in TUNEL �  cells, and a fourfold increase in both 
Mitotracker � Annexin V -  cells and 7-AAD -  cells ( Fig. 4 ).  Ef-
fectors rested in vitro were equally resistant to AICD (unpub-
lished data), and this level of AICD is similar to that previously 
seen in memory populations ( 23 ). 

 Rapid loss of expression of  “ effector-associated ”  genes 

 Our functional and phenotypic analyses focused on known 
attributes and activities of activated and resting CD4 T cells. 
It is possible that an unbiased, broader investigation might 
reveal additional diff erences between rested eff ector and 
memory populations. Thus, we compared gene expression 
profi les of highly purifi ed CD4 T cell subsets from both Th1 
and Th2 lineages. In this analysis, we looked at 	4,000 lym-
phocyte-specifi c genes expressed without restimulation. 250 
genes, common in both Th1 and Th2 lineages, were highly 
expressed in eff ectors relative to naive cells and were signifi -
cantly down-regulated in memory cells generated by resting 
eff ectors for 60 d in MHC II KO hosts. Strikingly, the major-
ity of these eff ector-associated genes (84%; 210 of 250) were 
rapidly down-regulated as a consequence of resting highly 
activated eff ectors for only 3 d in vitro ( Fig. 5 A  and Table 
S1, available at http://www.jem.org/cgi/content/full/jem
.20070041/DC1), with only a fraction (16%; 40 of 250) ex-
hibiting signifi cant diff erences between such rested eff ectors 
and memory cells.  Using a diff erent gene fi lter, 3 d in vitro –
 rested eff ectors closely resembled 3 d in vivo – rested eff ectors 
(18; Table S2). 

 Analysis of the function of known eff ector-associated 
genes revealed changes in several gene classes. First, growth and 

 Figure 4.   AICD in CD4 T cell subsets. Highly enriched populations of 

4 d Th1 AND.Thy1.1 effectors and 3 d – rested effectors were restimulated 

for 20 h in vitro. (A) After 20 h, cells were harvested and analyzed for 

dead and apoptotic cells via TUNEL assay; populations were analyzed 

before (ex vivo) and after stimulation with platebound V  
  3. (B) Effectors 

and rested effectors were stimulated with APC and PCCF peptide, ana-

lyzed for mitochondrial permeability by Mitotracker red staining, and 

stained with Annexin V. (C) After 20-h stimulation, populations of effec-

tors and rested effectors were stained with 7-AAD.   
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 Figure 5.   Identifi cation of effector-associated genes lost during the transition from effector to memory. (A) Patterns of down-regulation of 

effector-associated genes common in Th1 and Th2 lineages. Using rested effectors generated in vitro as intermediates, three patterns of down-regulated 

expression can be seen (from top to bottom): rapidly down-regulated in rested effector and memory, gradually down-regulated, and down-regulated only 

in memory. Numbers indicate genes in each group. (B) Functional grouping of effector cell – associated genes. Genes whose expression levels were signifi -

cantly down-regulated during transition from effector to memory are presented as the normalized intensity ratio between effector and effector (E), effector 

and rested effector (RE), and effector and memory cells (M). The data were derived from 12 independent measurements of 3 independent hybridizations. 

Genes with increased expression are shown in red and decreased expression is shown in green. Complete data can be found in Table S1, available at 

http://www.jem.org/cgi/content/full/jem.20070041/DC1.   
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 Figure 6.   Identifi cation of memory-associated genes. (A) Patterns 

of up-regulation of memory-associated genes common in Th1 and Th2 

lineages. Using rested effectors generated in vitro as intermediates, three 

patterns of down-regulated expression can be seen (from top to bottom): 

up-regulated only in memory, gradually up-regulated, and up-regulated in 

both rested effector and memory. Numbers indicate genes in each group. 

(B) Functional grouping of memory cell – associated genes. Genes whose 

expression levels were signifi cantly up-regulated during transition from 

effector to memory are presented as the normalized intensity ratio between 

effector and effector (E), rested effector and effector (RE), and memory and 

effector cells (M). The data were derived from 12 independent measure-

ments of 3 independent hybridizations. Complete data can be found in 

Table S2, available at http://www.jem.org/cgi/content/full/jem.20070041/DC1.   

kinases, as well as caspases and granzymes ( Fig. 5 B ). Second, 
a rapid reduction of expression of genes coding for several ef-
fector molecules, including surface receptors, adhesion, and 
other related molecules was observed ( Fig. 5 B ). Third, we 
observed expression changes likely to be associated with the 
transition from a cycling to a resting state, including decreases 
in cytoskeleton proteins, the decline of glycolysis-related en-
zymes, and of enzymes in other metabolic pathways ( Fig. 5 B ). 
Most of these genes were up-regulated during transition of 
naive cells to eff ectors, which is consistent with the designa-
tion as eff ector-associated genes (Table S1). 

 Gradual acquisition of expression a cohort 

of  “ memory-associated ”  genes 

 We also identifi ed 144 genes, common in both Th1 and Th2 
lineages, which were signifi cantly increased in memory cells. 
Compared with the rapid loss of expression of eff ector-asso-
ciated genes, the gain of expression of memory-associated 
genes was often more gradual. Only 13% of memory-associ-
ated genes (18 of 143;  Fig. 6 A  and Table S1) were expressed 
at similar levels by in vitro – rested eff ectors and memory cells.  
A similar pattern was observed when 3 d in vivo – rested eff ec-
tors were compared with memory cells (18; Table S2). The 
expression level of the majority of memory-associated genes 
continued to increase as cells continued to rest (113 of 143; 
79%;  Fig. 6 A  and Table S3, available at http://www.jem
.org/cgi/content/full/jem.20070041/DC1). 

 Within the cohort of memory-associated genes, we found 
up-regulation of genes associated with exit from cell cycle, 
such as cyclin-dependent kinase inhibitor ( cdkn2c ), as well as 
genes associated with enhancement of survival ( Fig. 6 B ). We 
also found up-regulation of expression of a variety of surface 
receptors and up-regulation of several intracellular signaling 
molecules such as  Jak1 , Ras p21 protein activator ( Rasa3 ), 
Sac kinase member  Lyn , protein kinase C ( Prkcn ), and  dual 
specifi city phosphatase 10  ( Dusp10 ). Finally, we found increases 
in  DNA  ( cytosine5 -)- methyltransferase 3 - like  ( Dnmt3L ), which 
is a regulator of DNA methylation in maternal imprinting 
during development ( 43 ). Thus, in addition to the loss of 
 expression of a great many eff ector-associated genes, memory 
cells that survive for �60 d up-regulated a cohort of genes to 
a level greater than that seen at 3 d after the initiation of a 
resting state. 

  DISCUSSION  

 We show that major aspects of the transition from eff ector to 
memory CD4 T cell occur rapidly, with eff ectors adopting 
the phenotype and functional attributes of resting memory 
cells within 3 d of antigen and cytokine removal. This transi-
tion is mirrored by the rapid down-regulation of a large co-
hort of eff ector-associated genes. However, we do fi nd a 
smaller cohort of memory-associated genes that increases in 
expression only after an extended period of rest. Our results 
suggest that this rapid transition represents a largely default, 
cell-intrinsic program, as similar results were seen in both Th1 
and Th2 populations that were rested in vivo, in both intact 
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sites ( 48 ). The distribution of rested eff ectors resembled that 
of transferred memory cells ( 24, 49 ). 

 Several observations indicate that memory CD4 T cells, as 
compared with eff ectors, regain the ability to secrete signifi -
cant amounts of IL-2 upon stimulation ( 9, 18, 50, 51 ). We 
show that the ability to produce IL-2 is regained rapidly after 
removal of antigen. IL-2 acts as a growth and survival factor 
in primary CD4 T cell responses ( 52 ), and thus may be an 
essential autocrine or paracrine factor driving secondary 
expansion. IL-2 is also key for supporting memory CD8 T cell 
survival ( 53 ). The transition from eff ectors, that do not secrete 
IL-2, to rested eff ectors and memory cells that do, thus has the 
potential to shape very diff erent responses. We also fi nd that 
both Th1 and Th2 eff ectors produce signifi cantly more IL-10 
than rested eff ectors and memory cells. It is interesting to 
speculate that production of IL-10, which is a cytokine associ-
ated with immunosuppressive eff ects ( 54 ), may constitute a 
poorly understood, transient mechanism of immune modula-
tion acting during the peak of highly activated CD4 T cell 
responses. A further attribute of highly activated eff ector cells 
is their high susceptibility to AICD. We report that only a 3-d 
rest is required for the acquisition of the AICD-resistant phe-
notype by highly activated eff ectors, which is an attribute 
classically associated with memory CD4 T cells. 

 Observations in a diff erent model system suggest that 
memory CD4 T cells that were primed and maintained long-
term in MHC II KO environments can display impaired 
eff ector functions. This fi nding correlated with increased ex-
pression of CD5, CD3, and TCR on cells resting in MHC II 
KO as opposed to MHC II intact hosts ( 55 ). In contrast to 
Kassiotis et al., we found that CD4 T cell eff ectors primed 
in vitro and rested in MHC II KO hosts displayed a decreased 
level of CD5 compared with cells resting in B6 hosts ( Fig. 1 B ) 
and equivalent levels of CD3 and TCR (unpublished data), 
and we found no evidence of functional impairment. 

 By taking transcriptional portraits of highly purifi ed pop-
ulations, we have identifi ed several hundred genes that are 
diff erentially expressed during the transition from eff ector to 
memory CD4 T cells of both Th1 and Th2 lineages. First, 
we fi nd a rapid transition from actively dividing eff ectors to 
relatively quiescent memory cells that occurs within 3 d of 
withdrawal of antigen and cytokines, as indicated by down-
regulation of cell cycle – activating and up-regulation of cell 
cycle-arresting genes. Second, rapid changes in expression of 
adhesion molecules, growth factors and receptors, and signal-
ing molecules are consistent with the rapid shifts in constricted 
migration patterns, resistance to AICD, and lack of division 
of memory cells in response to cytokine ( 12 ). Finally, a more 
gradual transition from eff ector to memory seems to involve 
the up-regulation of expression of genes involved in chroma-
tin remodeling, resulting in epigenetic changes that, along 
with diff erential expression of transcription factors and signal-
ing molecules, ensures the sustained alterations that allow a 
rapid memory response to proceed in a subsequent encounter 
with antigen. Although most epigenetic changes occur dur-
ing cell division, it is possible that certain modifi cations are 

and MHC II KO hosts, as well as in vitro. These observa-
tions support a model in which, other than the removal of 
antigen, few if any positive signals are required for the tran-
sition from the eff ector to memory mode, indicating that 
the transition was programmed during activation or eff ector 
generation, as has been suggested for other aspects of T cell 
behavior, including proliferation and contraction ( 44, 45 ). 
Transfer studies of cells stimulated in vitro suggest that pro-
gramming for memory, like that for eff ector function, oc-
curs within 1 – 2 d after initial stimulation ( 46 ). Various signals 
during priming, all of which are present in our eff ector cul-
tures, may separately and/or together program CD4 T cells 
for memory. 

 Recent observations have suggested that some memory 
CD4 T cells may be maintained long-term by antigen ( 47 ), 
and that two distinct populations of cells, one dependent on 
and one independent of antigen for long-term survival, might 
explain heterogeneity seen in some studies of CD4 T cell 
memory ( 19 ). Thus, variables such as TCR avidity might 
drive competition within a responding polyclonal CD4 T cell 
population for various survival niches, complicating the anal-
ysis of the properties of memory cells. Our analysis of memory 
cells maintained long-term in MHC II KO hosts is restricted 
to cells that have the potential for prolonged persistence in the 
absence of antigen. Using this well-defi ned, homogeneous 
population of long-term resting, antigen-experienced cells 
allows for unambiguous conclusions concerning the transition 
from activated eff ector to resting memory cell. 

 Several factors must regulate and limit the long-term per-
sistence of individual memory CD4 T cells in vivo as indi-
cated by the dramatically lower number of transferred eff ector 
cells surviving in intact B6 hosts compared with MHC II KO 
hosts 60 d after transfer. The mechanisms of homeostasis of 
memory CD4 T cells are currently not as well defi ned as for 
memory CD8 T cells. One extrinsic factor that we have pre-
viously identifi ed as being critical for the survival of memory 
CD4 T cells in the absence of antigen is IL-7 ( 32, 34 ). It is 
interesting that eff ectors rested for 3 d in intact B6 hosts ex-
pressed signifi cantly lower levels of CD127 than cells rested 
in MHC II KO hosts. It is possible that the low number of 
transferred cells surviving long-term in B6 hosts is, at least in 
part, caused by suboptimal access of transferred cells to IL-7 
caused by competition with endogenous T memory cells. 
This interpretation is supported by the fi nding that cells sur-
viving in either host at 60 d expressed similarly high levels of 
CD127, implying an equivalent access to IL-7 signaling in 
surviving long-term memory cells. 

 The low level of many adhesion and homing molecules 
expressed on rested eff ectors suggests that they should traffi  c 
diff erently than activated eff ectors and should be similar in 
migration to memory cells. We have previously addressed the 
homing pattern of eff ectors and rested eff ectors after adoptive 
transfer into naive animals. Although eff ector CD4 T cells 
displayed a broad homing pattern to both lymphoid and non-
lymphoid sites, rested eff ectors traffi  cked preferentially to 
spleen and lymph node and were only rarely found in tertiary 



2208 RAPID TRANSITION FROM EFFECTOR TO MEMORY | McKinstry et al.

naive virus-specifi c TCR transgenic CD4 T cells can be moni-
tored ( 59 ). We have previously shown that only the most dif-
ferentiated cohort of transgenic cells migrates to the lung at the 
peak of the primary response against the virus, and that these 
CD4 T cells resemble in vitro generated – Th1 eff ectors ( 59 ). 
After viral clearance (10 – 12 d after infection), transgenic cells 
remaining in the lung at day 14 resemble the rested eff ectors 
described in this study, showing reduced cell size, down-regu-
lation of almost all adhesion and costimulatory markers, re-
gained ability to produce IL-2 and loss of IL-10 production 
upon restimulation, and increased resistance to AICD (unpub-
lished data) ( 55 ). These studies show that the transition from 
highly activated eff ector to a resting memory-like cell can oc-
cur rapidly in vivo. 

 Our results off er an insight into the special features of 
the memory CD4 T cell response. First, IL-2 and other 
 eff ector-associated cytokines are rapidly produced by memory 
cells, whether they are newly formed (rested eff ector) or have 
persisted for some time. These cytokines can provide potent 
help for B cells, resulting in more rapid antibody produc-
tion. Eff ector cytokines may also activate other APC popu-
lations with which they interact in a more dramatic way 
than naive CD4 T cells or highly diff erentiated eff ectors, 
which do not secrete IL-2. Second, the rapid loss of eff ector 
properties, including migration to nonlymphoid sites and 
loss of direct proliferation to cytokines ( 12 ), coupled with 
the shift from sensitivity to insensitivity to AICD, seem to 
ensure an abrupt switch from the activated eff ector mode, 
which acts in peripheral sites but may be pathological, to a 
more benign resting memory mode, where responses must 
be reinitiated in the periphery from a small, persistent mem-
ory population. Third, the high sensitivity of memory cells to 
low antigen doses should facilitate more rapid responses to 
live pathogens, which infect in small numbers and then 
replicate extensively. 

  MATERIALS AND METHODS  
 Mice.   Naive CD4 T cells were obtained from either AND.Thy1.1 trans-

genic (Tg) mice on a C57BL/6 (B6) background or AND Tg mice crossed 

to B6-GFP mice (AND.GFP) ( 60 ). 

 AND Tg mice express a TCR (V  �  11, V  
  3) recognizing aa 88 – 104 of 

pigeon cytochrome  c  fragment (PCCF). Naive CD4 T cell donors were be-

tween 4 and 8 wk of age. Recipients of cell transfers were either intact B6 or 

MHC II – defi cient mice (A 
  �/� ) on a B6 background. Mice were obtained 

from the animal breeding facilities at the Trudeau Institute. All experimental 

animal procedures were conducted in accordance with the Trudeau Institute 

Animal Care and Use Committee guidelines. 

 Naive CD4 T cell isolation.   Naive CD4 T cells were obtained from pooled 

spleen and lymph node cells of unimmunized TCR Tg mice, as previously 

described ( 38 ). In brief, cells were passed through nylon wool and treated with 

antibodies against CD8, MHC II, CD11c, and CD24, followed by comple-

ment-mediated lysis (Harlan Bioproducts; Pel-Freez Biologicals). Remaining 

cells were further purifi ed via discontinuous Percoll gradient separation 

(Sigma-Aldrich). Alternatively, naive cells were purifi ed using positively 

selecting CD4 MACS beads (Miltenyi Biotec) after red blood cell lysis and 

Percoll separation. Resulting cells were routinely 	95% CD4 � , V  �  11 � , and 

V  
  3 � , displaying a naive phenotype (CD44 low , CD62L high ). For gene expres-

sion analysis, naive AND.GFP CD4 T cells were sorted to 	99% purity. 

initiated in resting memory CD4 T cells ( 56 ). In addition, 
some of the changes in gene expression between rested ef-
fector and memory cells may also refl ect selection of those 
resting cells that are most able to survive in the limited 
environmental niches that support memory T cell survival. 
Up-regulation of IL-7 receptor (CD127) and increase in 
 Bcl2a1a  expression in memory versus rested eff ector CD4 T 
cells may be indicative of such selection. Overall, expression 
patterns of Th1 and Th2 CD4 T cell subsets were strikingly 
similar, suggesting that underlying events associated with 
memory cell development are highly conserved. This is fur-
ther supported by our observations of a near identical surface 
phenotype on resting Th1 and Th2 cells. 

 Genes highly expressed in memory cells are of great interest. 
For example, in view of its role in control of the formation of 
functional plasma cells ( 57 ),  cdkn2c  might also play a role in 
functional CD4 T memory cell formation. The role of  Dnmt3L  
may be to suppress the transcription of those genes highly 
expressed in eff ector cells by methylation of DNA and/or 
deacetylation of histones by recruiting Hdac1 into chromatin 
to keep chromatin structures in an inactive status ( 58 ). These 
genes, and nearly all other memory-associated genes, were 
weakly expressed in naive CD4 T cells. Thus,  Fig. 6  provides 
a short list of candidates that may explain some aspects of the 
profound diff erences between naive and memory CD4 T cells. 
Further studies are warranted to elucidate the functions of each 
of these genes in memory T cell generation, function, and 
homeostasis. Although the cells we obtained after transfer into 
MHC II KO hosts meet all criteria of  “ true ”  memory cells, it 
will be important to compare their gene expression profi le to 
memory CD4 T cells obtained from animals in which the 
competition for memory niches can be manipulated, resulting 
in progressively fewer transferred cells surviving long-term. 
This comparison might further highlight certain memory-
associated genes identifi ed here, or reveal additional genes 
involved in the homeostasis of memory CD4 T cells. 

 Overall, gene expression profi les were remarkably similar 
between naive and memory CD4 T cells; we found only  � 20 
genes that were uniquely expressed by memory cells resting in 
MHC II KO mice for 60 d, compared with naive cells. Thus, 
although memory cells might express certain genes conferring 
the ability to survive long-term, they still have much in com-
mon with shorter-lived naive CD4 T cells. It is interesting to 
speculate that long-lived memory CD8 T cells might not 
resemble naive CD8 T cells to the degree that we have 
observed with CD4 T cells, as this might explain in part the 
often observed paucity of long-term memory CD4 T cells as 
compared with memory CD8 T cells. 

 Based on our fi ndings, we would suggest that in vitro – 
generated CD4 T cell eff ectors, rested by removal of stimula-
tion, are actually early memory cells. We postulate that such 
cells are generated in vivo as soon as antigen is cleared, causing 
an abrupt shift from an eff ector state to a memory state in the 
host responding to immunization or pathogen exposure. We 
have assessed the transition from eff ector to memory in vivo 
using an infl uenza infection model in which the response of 



JEM VOL. 204, September 3, 2007 

ARTICLE

2209

phocyte-specifi c cDNA microarray gene fi lter consisting of 4,608 cDNA 

clones. Of the genes on the fi lter,  � 64% are known genes, 26% are unnamed 

genes, and 10% are expressed sequence tags. Genes were amplifi ed by PCR 

and printed onto nylon membranes (SuperCharge Nylon; S & S) using a 

MicroGrid II printer (BioRobotics; Apogent Discoveries, Inc.). Each cDNA 

clone was printed twice with one open spot for local background. RNA isola-

tion, cDNA probe synthesis, and labeling were performed as previously de-

scribed ( 30 ). In brief, total RNA was isolated from highly purifi ed CD4 T cells 

using STAT60 (TEL-TEST, Inc.), and cDNA probes were generated from 

5 – 15  � g of total RNA of cells using Superscript II RNase H-Reverse Tran-

scriptase (Invitrogen) in the presence of 100  � Ci  � -[ 33 P]dCTP (PerkinElmer 

Life Sciences) and 500-ng oligo (dT) 12-18  primers (Invitrogen). Two gene fi l-

ters were prehybridized with 10 ml MicroHyb solution (Invitrogen) at 43 ° C 

for 2 h; cDNA probes were added into the prehybridized fi lters, along with 

1 ng/ml poly-dA, 1  � g/ml denatured mouse Cot-1, and 200  � g/ml dena-

tured salmon sperm DNA (Invitrogen), and hybridization continued over-

night. Filters were washed at 65 ° C with SSC (2 times), with 1% SDS for 30 

min, and with SSC (0.5 times) with 1% SDS for 30 min, and then exposed to 

a phosphorimaging screen for 2 d. Images were collected from a Typhoon 

9410 Imager (GE Healthcare) at 50  � m resolution. 

 Complete MAIME compliant microarray data is available from GEO 

(accession no. GSE8352 and NCBI tracking no. 15303196). 

 Microarray data analysis and RT-PCR.   Images were processed using 

Array-Pro Analyzer 4.0 software (Media Cybernetics). The resulting inten-

sity values were normalized fi lter-wide with the median intensity value. 

Normalized spot intensity was used for the analysis between cell subsets with 

a modifi ed false discovery rate (FDR) ( 63, 64 ). The FDR was set to 0.05, 

which corresponds to the mean proportion of false positives � 5%. Addi-

tional selection criteria, such as intensity fold changes and minimum inten-

sity, were applied to further reduce the FDR. Genes were grouped based on 

the biological role of each gene using Onto-Express ( 65 ). The identity of 

selected clones was confi rmed by sequencing. The diff erentially expressed 

genes were further confi rmed by real-time quantitative RT-PCR by the 

standard procedure, as previously described ( 66 ). 

 Online supplemental material.   Fig. S1 summarizes the frequency and 

absolute number of eff ector CD4 T cells transferred into either MHC II KO 

or B6 hosts after 3 or 60 d. Fig. S2 compares the long-term persistence of 

naive and rested eff ector CD4 T cells after transfer into intact B6 hosts. 

Fig. S3 highlights the diff erence in maximal level of AICD between Th1- 

and Th2-polarized eff ector populations. 3 tables are included to provide 

more extensive information on gene expression studies. Table S1 provides a 

complete list of genes found to be highly expressed by eff ector cells of both 

Th1 and Th2 lineage as compared with rested eff ector and memory cells (as 

summarized in  Fig. 5 ).Table S2 summarizes the comparison of gene expres-

sion between in vitro –  and in vivo – rested eff ectors. Table S3 provides a 

complete listing of genes found to be up-regulated in memory compared 

with eff ector CD4 T cells (as depicted in  Fig. 6 ). The online version of this arti-

cle is available at http://www.jem.org/cgi/content/full/jem.20070041/DC1. 
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