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Structured plant metabolomics for 
the simultaneous exploration  
of multiple factors
Nikolay Vasilev1, Julien Boccard2, Gerhard Lang3, Ulrike Grömping4, Rainer Fischer1,5, 
Simon Goepfert3, Serge Rudaz2 & Stefan Schillberg1

Multiple factors act simultaneously on plants to establish complex interaction networks involving 
nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological 
systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that 
have many components is a challenging task. We therefore developed a novel approach that combines 
experimental design, untargeted metabolic profiling based on multiple chromatography systems 
and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic 
changes in plants caused by different factors acting at the same time. Using this method, target 
geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on 
their response to different factors. We hypothesized that our novel approach may provide more robust 
data for process optimization in plant cell cultures producing any target secondary metabolite, based 
on the simultaneous exploration of multiple factors rather than varying one factor each time. The 
suitability of our approach was verified by confirming several previously reported examples of elicitor–
metabolite crosstalk. However, unravelling all factor–metabolite networks remains challenging because 
it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

Secondary metabolites play an important role in the adaptation of plants to environmental stress1. Plants react to 
exogenous factors such as nutrients, hormones and light through signalling pathways that induce downstream 
stress responses including the modulation of gene expression and the regulation of a broad range of biochem-
ical processes, resulting in the remodelling of metabolism2. Key signalling molecules include Ca2+, nitrates, 
phosphates, 2,4-dichlorophenoxyacetic acid (2,4-D), naphthalene acetic acid (NAA), indole acetic acid (IAA), 
6-benzylaminapurine (BAP), kinetin, abscisic acid (ABA), jasmonates, salicylic acid, gibberellic acid (GA3), eth-
ylene, polyamines, cyclic nucleotides (cAMP and cGMP) and diacylglycerol2–4. The accumulation of metabolites 
in stressed plants may also have economic significance1 because signalling components or elicitors can be used to 
trigger the production of secondary metabolites in whole plants or plant cell and tissue cultures5.

Design of experiments (DOE) approaches are used to study the influence of multiple factors simultaneously, 
allowing the influence of each factor to be determined regardless of other parameters while maintaining inde-
pendence between the assessment of different effects. This contrasts with the classic ‘one factor at a time’ approach, 
which is laborious, time consuming and lacks the ability to provide a global picture of molecular events6. Factorial 
designs have recently flourished in plant biology, where they have been used to optimize cultivation parameters 
for cell and tissue cultures7,8 and to increase the yield of metabolites9,10 or recombinant proteins11 by medium 
optimization. However, most of these applications of DOE featured a small number of response variables when 
describing the corresponding system or process. A much more comprehensive multivariate strategy is needed to 
identify multiple inducible biomarkers in the plant metabolome following the application of diverse elicitors, so 
the combination of DOE and metabolomics is an attractive approach for the systematic evaluation of changes in 
plant secondary metabolism12.
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Metabolomics generates large, multi-dimensional datasets using automated analytical procedures such 
as gas chromatography or high-pressure liquid chromatography coupled to mass spectrometry (GC-MS 
and HPLC-MS). It is therefore necessary to reduce the dimensionality of the data using multivariate statisti-
cal methods. The complexity of data mining is enhanced further when the data originate from several sources 
(e.g. complementary chromatography systems or ionization modes) and data fusion strategies are therefore 
required. An additional difficulty is encountered when multiple input factors are varied simultaneously, because 
different sources of variation are mixed. The importance of multiple simultaneous metabolic effects has been 
underestimated in the past and here we addressed this challenge by combining several orthogonal techniques: 
reversed-phase ultra-high-pressure liquid chromatography (RP-UHPLC) with positive and negative electrospray 
ionization (ESI) modes, and hydrophilic interaction liquid chromatography (HILIC), both coupled to time of 
flight mass spectrometry (TOF-MS) to achieve greater coverage of the metabolome.

Several strategies have been developed for the simultaneous analysis of multiple datasets. The proposed data 
modelling approach is an extension of the multiple kernel learning method to orthogonal partial least squares 
discriminant analysis (OPLS-DA), i.e. consensus OPLS-DA, which combines data blocks using the weighted sum 
of X·XT product association matrices corresponding to their linear kernel13. The OPLS-DA framework is advan-
tageous for data interpretation because relevant metabolic variations are associated with predictive components, 
whereas unrelated variation is summarized in so-called orthogonal components14. In consensus OPLD-DA, the 
block weighting is based on modified RV-coefficients so that the Y response orientates the consensus kernel 
towards improved predictability. Cross-validation is carried out to assess the optimal model size and avoids over-
fitting, using DQ2 (an adaptation of the conventional Q2 value) for discriminant analysis15.

To our knowledge, this is the first systematic investigation of metabolic remodelling in plants following simul-
taneous multi-factorial treatment. This novel combination of metabolomics and experimental design, associated 
with the simultaneous analysis of multiblock omics data, is a powerful approach that allows us to unravel the met-
abolic responses in transgenic tobacco cells at a global level when diverse input factors such as macronutrients, 
plant growth regulators and light are varied simultaneously. Furthermore, this high-throughput screening system 
can be used for process optimization with metabolically engineered cell lines. Herein we hypothesize that product 
optimization using the simultaneous exploration of multiple factors may achieve more accurate and reproducible 
results than the assessment of one factor at a time.

Results
UHPLC-QTOF-MS fingerprinting. The acquisition of high-quality metabolomics data is an essential 
aspect of metabolic profiling because it facilitates the identification step. The UHPLC-QTOF-MS gradient condi-
tions we applied allowed us to monitor more than 3500 features in the m/z range 100–1200 based on RP-UHPLC 
(ESI+ and ESI− ion detection modes) and HILIC (ESI+ ion detection mode). Pareto scaling was applied as data 
normalization. The multiblock data fusion strategy we used allows the integration of datasets originating from 
different ionization (ESI+/ESI−) and separation (RP/HILIC) modes, yielding 1500, 1366 and 1368 variables 
for the RP/ESI+, RP/ESI− and HILIC/ESI+ blocks, respectively. Some of the signals were present in all blocks, 
whereas others were found in only one or two data blocks and thus provided complementary information13. 
The target metabolites in methanol extracts, obtained from tobacco suspensions expressing Valeriana officinalis 
geraniol synthase (VoGES) gene, were identified based on mass fragmentation and the comparison of character-
istic m/z species with internal or publicly accessible natural product databases.

Consensus OPLS-DA data modelling and metabolite identification. A supervised data mining 
approach (consensus OPLS-DA) was applied to determine the distinct metabolic changes caused by the simul-
taneous modulation of diverse input factors, and leave-one-out cross-validation (LOOCV) was carried out to 
evaluate the appropriate number of orthogonal components based on the DQ2 parameter. A series of 1000 per-
mutation tests was performed for each model by randomizing the original Y class response in order to assess the 
statistical validity of the models13.

Significant models were obtained for most of the factors with a prediction accuracy (PA) of 87–100% and a 
statistical significance of p <  0.01. Lower prediction accuracy was observed for GA3 (PA =  62.5%, p =  0.013) and 
ethephon (PA =  60.4%, p =  0.015), whereas KH2PO4 (PA =  57.3%, p =  0.225) and MgSO4 (PA =  47.9%, p =  0.62) 
were found to be statistically non-significant (Table 1). Random permutations of the design matrix simulate data 
under the null hypothesis, i.e. no effect of the experimental factor under study. Because similar or higher predic-
tion accuracies could be achieved from randomly permutated designs, we decided to omit KH2PO4 and MgSO4 
from subsequent experiments aiming to identify metabolites and to determine their biological importance.

Next we used S-plots to highlight relevant metabolites based on their contributions to the model, reflecting 
both their amplitude of variation and their reliability14. This visualization method helps to identify biochemi-
cally significant metabolites based on their position in the S-plots. The ideal biomarker has a high covariance 
magnitude and high correlation reliability. This low risk of spurious correlations corresponds to the upper right 
quadrant (area 1) or lower left quadrant (area 4) of each S-plot. The biomarkers located in area 1 are associated 
with metabolites that become more abundant when the factor strength is enhanced or less abundant when the 
factor strength is reduced, i.e. an upregulation effect (metabolic levels(+)/factor(+) or metabolic levels(−)/factor(−)). 
Similarly, the biomarkers in area 4 are linked to metabolites that become less abundant when the factor strength 
is enhanced or more abundant when the factor strength is reduced, i.e. a downregulation effect (metabolic  
levels(−)/factor(+) or metabolic levels(+)/factor(−)). Because all three data blocks (RPLC NEG, RPLC POS and 
HILIC) are integrated in a single model for each factor, ions detected by each analytical protocol can be associated 
in a combined S-plot.

High-resolution QTOF-MS/MS profiling allowed 45 compounds represented by some of the most significant 
features with respect to the factors we investigated (i.e. they were located in areas 1 and 4 of the S-plots) to be 
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tentatively identified, at least to the level of the compound class (Table 2). However, the complete identification of 
all other relevant metabolites remains challenging and these preliminary results may serve as a starting point for 
the further targeted isolation and purification of the metabolites of interest.

Simultaneous treatments reveal nutrient–metabolite and elicitor–metabolite networks. Our 
primary goal was to identify metabolites that respond to each factor treatment when multiple factors are mod-
ulated simultaneously. Using this approach, we avoided the restriction of experimental results caused by the 
artificially narrow experimental conditions of the one factor at a time approach. In the following sections, bold 
numbers in parentheses represent the compounds from the list of identified metabolites (Table 2).

Nutrients. KNO3 treatment (Fig. 1) increased the abundance of several ions representing glutamine (8) and 
scopolin (9), but also single ions representing a 2,4-D metabolite (14) (tR =  8.85 min; m/z 559.2755) and hexosyl 
geranidiol (5) (tR =  5.96 min; m/z 355.1749). In contrast, KNO3 caused the extracellular loss of potassium ions, 
detected as K+ (KHCOO)n adducts (44), and inhibited the formation of nicotine (45), hydroxysphingosine (10) 
and C16:3 monoacylglycerol (29). Single ions representing the following compounds were also less abundant 
following treatment with KNO3: trihydroxy-C18:2 acids (37, 38) (tR =  11.36/11.18 min; m/z 327.2170/327.2171), 
a dihydrozeatin (DHZ) adduct (22) (tR =  3.26 min; m/z 354.1794), a cyclanilide metabolite (33) (tR =  9.26 min; 
m/z 620.0896) and BAP glycoside (26) (tR =  4.08 min; m/z 388.1647).

NH4NO3 treatment (Fig. S1) induced the synthesis of the monoterpenoid derivatives malonyl-hexosyl-geraniol 
(4), pentosyl-hexosyl-geraniol (2) and malonyl-hexosyl-geranidiol (7) as well as scopolin (9). Two single ion spe-
cies representing BAP glycosides were also more abundant following treatment with NH4NO3, i.e. BAP glucoside 
(26) (tR =  3.94 min; m/z 388.1634) and BAP riboside (27) (tR =  6.59 min; m/z 358.1532), as well as a salicylic acid 
glucoside (30) (tR =  3.31 min; m/z 323.0759). In contrast, auxin metabolites representing NAA (18) and 2,4-D 
(14) as well as single ions representing conjugated dihydroxy-C18:2 fatty acid (43) and hexosyl-hexosyl-geraniol 
(6) were less abundant following treatment with NH4NO3.

The formation of three metabolites was strongly induced by calcium treatment: hydroxysphingosine (10), 
scopolin (9) and hexosyl-hexosyl-geraniol (6). Adenosine (11) synthesis was also stimulated by calcium and was 
represented by a single ion (tR =  2.65 min; m/z 268.1082) (Fig. S2). Several metabolites became less abundant fol-
lowing calcium treatment, namely C16:3 monoacylglycerol (29), geraniol derivatives produced by the heterolo-
gous geraniol synthase (1, 2, 4 and 7), and a fatty acid with conjugated triene (40) (tR =  12.15 min; m/z 325.2013).

Auxins. Numerous metabolites were influenced by IAA (Fig. S3). We observed an increase in the abundance 
of indole-3-carboxylic acid glucoside (17) and K+ (44). The monoterpenoid derivatives pentosyl-hexosyl-geraniol 
(2) and malonyl-hexosyl-geraniol (4), a DHZ glycoside (21) (tR =  6.56 min; m/z 384.1906) and its adduct (22), 
C16:3 monoacylglycerol (29) and nicotine (45) (tR =  3.8096 min; m/z 163.1254) were also more abundant fol-
lowing treatment with IAA. The formation of other metabolites was inhibited, particularly adenosine (11), sco-
polin (9), BAP glucoside (26), and the geraniol derivatives pentosyl-hexosyl-geranidiol (1) (tR =  5.76 min; m/z 
487.2159), hexosyl-geranidiol (5) and malonyl-hexosyl-geranidiol (6) (tR =  8.96 min; m/z 501.2312).

Prediction accuracy Estimated p-value

KNO3 86.5% < 0.001

NH4NO3 100.0% < 0.001

CaCl2 76.0% < 0.001

KH2PO4 57.3% 0.225

MgSO4 47.9% 0.62

2,4-D 97.9% < 0.001

IAA 90.6% < 0.001

NAA 100.0% < 0.001

IBA 99.0% < 0.001

DHZ 100.0% < 0.001

Kinetin 100.0% < 0.001

BAP 100.0% < 0.001

MeJa 99.0% < 0.001

Salicylic acid 96.9% < 0.001

GA3 62.5% 0.013

Ethephon 60.4% 0.015

Cyclanilide 97.9% < 0.001

ABA 93.8% < 0.001

Light 97.9% < 0.001

Table 1.  Performance indices of the consensus OPLS-DA models evaluated for each of the screened 
factors. Prediction accuracy was evaluated by leave-one-out-cross-validation, whereas a series of 1000 
permutation tests allowed an empirical p-value to be e st im at ed .
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No. Metabolite name Characteristic m/z tR(min)
Detection 

mode

1 pentosyl-hexosyl-geranidiol

463.2174 5.7656 RPNEG

487.2159 5.7593 RPPOS

503.1882 5.7588 RPPOS

2 pentosyl-hexosyl-geraniol

447.2226 9.5952 RPPOS

471.2209 9.5930 RPPOS

487.1962 9.5926 RPPOS

919.4505 9.6056 RPNEG

3 hexosyl-geraniol
339.1804 10.3455 RPPOS

355.1536 10.3461 RPPOS

4 malonyl-hexosyl-geraniol
425.1792 11.2494 RPPOS

441.1559 11.2498 RPPOS

5 hexosyl-geranidiol 355.1749 5.9561 RPPOS

6 hexosyl-hexosyl-geraniol
477.2335 8.9770 RPNEG

501.2312 8.9609 RPPOS

7 malonyl-hexosyl-geranidiol 441.1744 6.9855 RPPOS

8 glutamine

130.0498 10.6332 HILIC

147.0752 10.6115 HILIC

293.1505 10.6280 HILIC

439.2178 10.6269 HILIC

585.2814 10.6283 HILIC

9 scopolin

191.0343 3.5987 RPNEG

193.0516 3.5994 RPPOS

193.0535 2.9972 HILIC

355.1048 3.5976 RPPOS

355.1061 3.0112 HILIC

377.0863 3.5995 RPPOS

399.0922 3.5982 RPNEG

731.1788 3.5973 RPPOS

10 hydroxysphingosine

280.266 15.0331 RPPOS

298.2763 15.0274 RPPOS

298.2784 5.9910 HILIC

309.2069 15.0493 RPNEG

316.2867 15.0264 RPPOS

316.2884 5.9926 HILIC

338.2696 15.0462 RPPOS

382.2419 15.0422 RPPOS

11 adenosine

136.0569 2.5932 HILIC

268.1082 2.6470 HILIC

535.2012 2.6454 HILIC

12 scopoletin

176.008 5.5960 RPNEG

178.0277 5.5921 RPPOS

191.0344 5.5952 RPNEG

193.0452 5.5936 RPPOS

13 scopoletin derivative

104.0255 5.5948 RPNEG

120.021 5.5951 RPNEG

133.0287 5.5925 RPPOS

137.0604 5.5922 RPPOS

148.0156 5.5950 RPNEG

165.0563 5.5930 RPPOS

215.0347 5.5938 RPPOS

292.9786 5.5956 RPPOS

300.0546 5.5893 RPPOS

308.0433 5.5902 RPPOS

316.0304 5.5889 RPPOS

324.0529 5.5906 RPPOS

383.0782 5.5973 RPPOS

Continued
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No. Metabolite name Characteristic m/z tR(min)
Detection 

mode

405.0578 5.5928 RPNEG

405.06 5.6036 RPPOS

423.9898 5.5906 RPPOS

439.0089 5.5932 RPNEG

439.0133 5.5951 RPPOS

629.0385 5.5924 RPNEG

820.0741 5.5947 RPNEG

14 metabolite of 2,4-D (1)

160.9559 8.8354 RPNEG

164.9515 8.8336 RPNEG

170.0464 8.8283 RPPOS

174.9733 8.8281 RPPOS

185.0569 8.8349 RPNEG

347.0196 8.8379 RPNEG

349.0374 8.8264 RPPOS

351.0158 8.8342 RPNEG

375.0145 8.8278 RPPOS

415.0057 8.8394 RPNEG

559.2755 8.8471 RPNEG

583.2731 8.8317 RPPOS

717.0307 8.8341 RPNEG

719.0288 8.8327 RPNEG

907.3045 8.8428 RPNEG

15 metabolite of 2,4-D (2)

124.9799 11.6718 RPNEG

163.9575 11.6759 RPNEG

164.951 11.6753 RPNEG

402.9077 11.6770 RPNEG

404.9042 11.6725 RPNEG

460.9137 11.6742 RPNEG

16 metabolite of 2,4-D (3)

170.0482 7.3887 HILIC

174.9755 7.3879 HILIC

349.0398 7.3867 HILIC

17 indole-3-carboxylic acid glucoside

118.0649 4.6888 RPPOS

262.0714 4.6832 RPNEG

322.0927 4.6813 RPNEG

346.0923 4.6828 RPPOS

669.1911 4.6807 RPPOS

18 metabolite of NAA (1)

105.0175 5.8475 HILIC

108.0443 5.8300 HILIC

109.0283 5.8394 HILIC

117.0192 5.8314 HILIC

127.0403 5.8528 HILIC

141.0702 9.1835 RPNEG

141.0725 5.8253 HILIC

145.0526 5.8169 HILIC

159.0322 5.8371 HILIC

167.0494 9.1845 RPNEG

181.0659 9.1840 RPNEG

199.0765 9.1833 RPNEG

204.107 5.8286 HILIC

209.06 9.1827 RPNEG

227.0711 9.1826 RPNEG

230.0709 5.8179 HILIC

231.0554 5.8478 HILIC

248.0818 5.8441 HILIC

249.0667 5.8482 HILIC

266.0926 5.8349 HILIC

Continued
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No. Metabolite name Characteristic m/z tR(min)
Detection 

mode

271.0456 9.1705 RPPOS

339.1097 9.1620 RPPOS

413.1212 9.1701 RPPOS

452.1573 5.8402 HILIC

457.1119 9.1727 RPPOS

457.1131 5.8504 HILIC

473.0864 5.8473 HILIC

473.0876 9.1693 RPPOS

480.188 5.8748 HILIC

794.2701 5.8362 HILIC

815.3345 9.1788 RPNEG

867.2371 9.1825 RPNEG

886.2783 5.8310 HILIC

889.2184 9.1827 RPNEG

19 metabolite of NAA (2)

101.023 7.9271 RPNEG

131.0338 7.9234 RPNEG

132.0298 7.9449 RPNEG

141.0704 7.9282 RPNEG

141.0706 7.9397 RPPOS

161.0452 2.1990 RPNEG

185.0612 7.9236 RPNEG

209.0611 7.9270 RPNEG

221.0668 7.9282 RPNEG

263.0772 7.9266 RPNEG

300.0866 7.9416 RPNEG

324.0873 7.9409 RPPOS

389.1215 7.9262 RPNEG

551.1765 7.9259 RPNEG

614.2078 7.9002 HILIC

619.1631 7.9120 RPPOS

623.1633 7.9484 RPNEG

635.1373 7.9012 HILIC

918.244 7.9416 RPNEG

1191.3449 7.9262 RPNEG

20 IBA glycoside

364.1395 6.4291 RPNEG

386.1211 6.4297 RPNEG

388.1387 6.4199 RPPOS

21 glycoside of DHZ

222.138 6.5705 HILIC

382.1723 2.2985 RPNEG

384.1896 2.2933 RPPOS

384.1906 6.1062 HILIC

384.1906 6.5631 HILIC

422.1449 6.5183 HILIC

22 DHZ adduct

220.1198 3.2585 RPNEG

222.1346 3.2604 RPPOS

354.1794 3.2625 RPPOS

354.1807 2.3623 HILIC

398.1679 3.2561 RPNEG

23 DHZ metabolite
148.0651 3.7100 HILIC

222.1377 3.7152 HILIC

24 kinetin glucoside

214.0732 2.7567 RPNEG

216.09 2.7568 RPPOS

216.0905 4.0422 HILIC

376.1252 2.7571 RPNEG

378.1424 2.7578 RPPOS

378.1442 4.0310 HILIC

Continued
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No. Metabolite name Characteristic m/z tR(min)
Detection 

mode

25 kinetin riboside

216.0891 5.0179 RPPOS

346.1149 5.0193 RPNEG

348.1326 5.0207 RPPOS

26 BAP glucoside

224.0928 3.9369 RPNEG

226.107 4.0927 HILIC

226.1073 3.9362 RPPOS

386.1458 3.9367 RPNEG

388.1634 3.9383 RPPOS

388.1647 4.0897 HILIC

410.1452 3.9378 RPPOS

454.1317 3.9345 RPNEG

631.2459 4.0379 HILIC

773.3008 3.9366 RPNEG

775.3158 4.0637 HILIC

27 BAP riboside

224.0935 6.5916 RPNEG

226.1085 6.5889 RPPOS

356.1355 6.5914 RPNEG

358.1532 6.5893 RPPOS

402.1407 6.5909 RPNEG

28 BAP ribotide
438.1187 4.1593 RPPOS

598.1542 4.1559 RPNEG

29 C16:3 monoacylglycerol
325.2295 9.2430 RPPOS

325.2318 7.0100 HILIC

30 salicylic acid glucoside

121.0281 3.3077 RPPOS

137.0229 3.3048 RPNEG

185.0448 3.3072 RPPOS

257.1397 3.3079 RPPOS

299.0764 3.3034 RPNEG

301.0316 3.3041 RPPOS

323.0759 3.3067 RPPOS

599.1603 3.3049 RPNEG

621.1426 3.3023 RPNEG

637.1167 3.3054 RPNEG

653.0792 3.3044 RPNEG

943.2115 3.3038 RPNEG

31 salicylic acid, dihexosyl-glucoside
137.0238 3.7150 RPNEG

485.1274 3.7172 RPPOS

32 cyclanilide metabolite (1)

177.0566 9.3597 RPPOS

321.0997 9.3597 RPPOS

339.1095 9.3596 RPPOS

934.1961 9.3783 RPNEG

958.1897 9.3600 RPPOS

33 cyclanilide metabolite (2)

153.0191 9.2740 RPNEG

159.973 9.2749 RPNEG

161.9896 9.2591 RPPOS

179.056 9.2728 RPNEG

187.9678 9.2742 RPNEG

213.0404 9.2755 RPNEG

227.9976 9.2761 RPNEG

255.9955 9.2588 RPPOS

263.0773 9.2750 RPNEG

271.9874 9.2746 RPNEG

275.9838 9.2753 RPNEG

313.9993 9.2750 RPNEG

347.0969 9.2584 RPPOS

357.0818 9.2749 RPNEG

Continued
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Indole-3-butyric acid (IBA) treatment (Fig. S4) induced the synthesis of IBA glycoside (20), geraniol glyco-
sides (2, 4) and C16:3 monoacylglycerol (29) but caused the loss of other metabolites including geraniol deriva-
tives (1, 5, 6).

NAA treatment (Fig. S5) mainly increased the abundance of its own derivatives (18, 19). The follow-
ing metabolites became less abundant: several single ions characteristic of fatty acids with conjugated triene 
(40–42), trihydroxy-C18:2 acid (37), indole-3-carboxylic acid glucoside (17) (tR =  4.68 min; m/z 346.0923), 
pentosyl-hexosyl-geraniol (2), malonyl-hexosyl-geraniol (4) and nicotine (45).

The formation of several compounds was induced by 2,4-D treatment (Fig. S6): 2,4-D metabolites (14–16), 
adenosine (11) and the geraniol derivatives (1, 5, 6). Pentosyl-hexosyl-geraniol (2), malonyl-hexosyl-geraniol (4) 
and C16:3 monoacylglycerol (29) became less abundant.

Our observations show that naturally occurring (endogenous) auxins such as IAA and IBA upregulate (2 and 4)  
and downregulate (1, 5 and 6) the synthesis of geraniol glycosides, whereas the synthetic auxins (NAA and 2,4-D) 
have exactly the opposite effects on these metabolites.

Cytokinins. The presence of kinetin (Fig. S7) strongly induced the synthesis of kinetin glucoside (24) 
and kinetin riboside (25), and to a lesser extent the geraniol derivatives pentosyl-hexosyl-geraniol (2), 
malonyl-hexosyl-geraniol (4) and malonyl-hexosyl-geranidiol (7) as well as trihydroxy-C18:2 acid (37). DHZ 
treatment (Fig. S8) induced the formation of three derivatives: DHZ glycoside (21), DHZ adduct (22) and DHZ 
metabolite (23). BAP treatment (Fig. S9) resulted in the appearance of three derivatives: BAP glucoside (26), BAP 
riboside (27) and BAP ribotide (28).

Other plant growth regulators. Methyljasmonate (MeJa) treatment (Fig. S10) only induced the formation 
of C16:3 monoacylglycerol (29) to a significant extent, but we also observed smaller increases in the abundance 

No. Metabolite name Characteristic m/z tR(min)
Detection 

mode

476.0503 9.2743 RPNEG

498.0332 9.2736 RPNEG

527.2492 9.4612 RPNEG

596.0928 9.2734 RPNEG

618.0751 9.2752 RPNEG

620.0896 9.2595 RPPOS

34 cyclanilide metabolite (3)

159.9712 14.1734 RPNEG

566.9654 14.1686 RPNEG

568.9623 14.1689 RPNEG

35 ABA glycoside

153.0915 6.2662 RPNEG

425.1808 6.2678 RPNEG

449.1792 6.2491 RPPOS

36 ABA metabolite

139.076 4.4449 RPNEG

279.1236 4.4451 RPNEG

303.1176 4.4479 RPNEG

465.1742 4.4411 RPPOS

37 trihydroxy-C18:2 acid (1) 327.217 11.3581 RPNEG

38 trihydroxy-C18:2 acid (2) 327.2171 11.1797 RPNEG

39 glycoside of abscisic acid metabolite
281.1393 3.1053 RPNEG

467.1902 3.0957 RPPOS

40 unidentified fatty acid with 
conjugatedtriene (1) 325.2013 12.1543 RPNEG

41 unidentified fatty acid with conjugated 
triene (2) 325.2012 10.1746 RPNEG

42 unidentified fatty acid with conjugated 
triene (3) 325.2011 9.9604 RPNEG

43 dihydroxy-C18:2 fatty acid (conjugated) 311.222 13.3326 RPNEG

44 potassium ion

122.9253 8.4619 HILIC

206.8899 8.4611 HILIC

290.8524 8.4597 HILIC

458.7723 8.4606 HILIC

542.7322 8.4597 HILIC

878.5772 8.4627 HILIC

45 nicotine

106.0650 3.7917 HILIC

120.0816 3.8033 HILIC

163.1254 3.8096 HILIC

T ab le 2.  List of identified metabolites.
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of a cyclanilide metabolite (33), hydroxysphingosine (10), nicotine (45), unidentified fatty acids with conjugated 
triene (41, 42), trihydroxy-C18:2 acids (37, 38), adenosine (11) and a 2,4-D metabolite (14). The only heterolo-
gous monoterpenoids induced by MeJa were pentosyl-hexosyl-geraniol (2) and malonyl-hexosyl-geranidiol (7). 
The formation of scopolin (9) was strongly inhibited, whereas the synthesis of hexosyl-hexosyl-geraniol (6), BAP 
riboside (27) and abscisic acid glycoside (35) was more weakly downregulated.

Salicylic acid treatment (Fig. S11) mainly induced the formation of its polar derivatives salicylic acid glucoside 
(30) and salicylic acid dihexosyl-glucoside (31), but also C16:3 monoacylglycerol (29), trihydroxy-C18:2 acid (38) 
and the unidentified fatty acids with conjugated triene (41–43). The monoterpenoids pentosyl-hexosyl-geraniol 
(2) and malonyl-hexosyl-geraniol (4) were also more abundant. Salicylic acid treatment inhibited the forma-
tion of a cyclanilide metabolite (32), a 2,4-D metabolite (14), scopoletin (12), a scopoletin derivative (13), 
hexosyl-hexosyl-geraniol (6) and BAP riboside (27).

GA3 treatment (Fig. S12) induced the formation of C16:3 monoacylglycerol (29), pentosyl-hexosyl-geranidiol (1),  
trihydroxy-C18:2 acid (37), BAP glucoside (26), adenosine (11), malonyl-hexosyl-geranidiol (7), 
hexosyl-geranidiol (5), NAA metabolites (18, 19) and the unidentified fatty acid with conjugated triene (42). It 
inhibited the formation of scopolin (9), a 2,4-D metabolite (14), hexosyl-geraniol (3), hexosyl-hexosyl-geraniol (6),  
a DHZ adduct (22) and a cyclanilide metabolite (32).

Ethephon treatment (Fig. S13) induced the formation of C16:3 monoacylglycerol (29), pentosyl-hexosyl- 
geraniol (2), BAP glucoside (26), trihydroxy-C18:2 acid (38), scopolin (9) and malonyl-hexosyl-geraniol (4), but 
inhibited the formation of a DHZ adduct (22), adenosine (11), hydroxysphingosine (10), hexosyl-geranidiol (5), 
hexosyl-hexosyl-geraniol (6) and a cyclanilide metabolite (32).

Cyclanilide treatment (Fig. S14) induced the formation of its own metabolites (32–34) as well as one 
NAA metabolite (18), hexosyl-hexosyl-geraniol (6), unidentified fatty acids with conjugated triene (40–42),  
and trihydroxy-C18:2 acids (37, 38). The formation of numerous compounds was downregulated, 
including pentosyl-hexosyl-geraniol (2), malonyl-hexosyl-geraniol (4), C16:3 monoacylglycerol (29), 
pentosyl-hexosyl-geranidiol (1), conjugated dihydroxy-C18:2 fatty acid (43), scopolin (9), scopoletin (12) and 
malonyl-hexosyl-geranidiol (7).

ABA treatment (Fig. S15) resulted in the accumulation of ABA glycoside (35), an ABA metabolite (36) and 
its glycoside (39), trihydroxy-C18:2 acids (37, 38), and to a lesser degree the unidentified fatty acids with con-
jugated triene (40–42), pentosyl-hexosyl-geranidiol (1) and malonyl-hexosyl-geranidiol (7). The abundance of 
DHZ (22), a 2,4-D metabolite (14), a cyclanilide metabolite (32), kinetin riboside (25), scopolin (9), and DHZ 
glycoside (21) declined in response to ABA.

Light. Light was the only physical factor we included in our experimental design, and it was associated 
with an increase in the levels of adenosine (11), two unidentified fatty acids with conjugated triene (41, 42), 
trihydroxy-C18:2 acids (37, 38), malonyl-hexosyl-geranidiol (7), and to a lesser extent glutamine (8), a 2,4-D 
metabolite (14) and C16:3 monoacylglycerol (29). Light inhibited the production of alkaloids, i.e. scopoletin 
(12), a scopoletin derivative (13) and scopolin (9), and the monoterpenoids pentosyl-hexosyl-geraniol (2), 
hexosyl-geraniol (3), and malonyl-hexosyl-geraniol (4). A DHZ adduct (22) and hydroxysphingosine (10) were 
also less abundant under strong illumination (Fig. S16).

Figure 1. KNO3 S-plot showing the distribution of metabolites in transgenic tobacco cell cultures exposed 
to different combinations of environmental factors, revealing metabolites in areas 1 (upper right) and 
4 (lower left) that are the most sensitive to changes in KNO3 levels. Numbers refer to compounds listed in 
Table 2.
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Clustering. Cluster analysis provided a global overview of regulation events that follow changes in the exper-
imental factors. This approach allows the grouping of metabolites with similar ion features using a dendrogram, 
and a heat map summarizes the contribution of each of the factors in the context of each identified metabolite and 
thus enables the visualization of upregulation and downregulation in response to different treatments (Fig. 2).

Both geranidiol glycosides (1 and 5) are located in a small cluster, whereas the third geranidiol derivative (7), 
an esterified monoglycoside, is found in a neighbouring cluster (Fig. 2). The geraniol metabolites (1 and 5) are 
upregulated by 2,4-D, DHZ, GA3 and ABA and downregulated by NH4NO3, CaCl2, IAA, IBA, BAP, salicylic acid 
and ethephon, whereas the upregulation of compound (7) is related to NH4NO3, kinetin, MeJa, GA3, ABA, and 
light, and its downregulation is associated with CaCl2, NAA, BAP and cyclanilide. The geraniol glycosides (2, 3 
and 4) are located in a common larger cluster. These three metabolites are upregulated by IAA, IBA, kinetin and 
ethephon, but downregulated by CaCl2, 2,4-D, NAA and light. Compounds (2 and 4) are distinguished from 
hexosyl-geraniol (3) mainly by the action of NH4NO3, i.e. (2 and 4) are upregulated whereas (3) is downregulated 
by NH4NO3. The heat map also shows the upregulation of hexosyl-hexosyl-geraniol (6) by CaCl2, 2,4-D, BAP and 
cyclanilide, and its downregulation by NH4NO3, IAA, IBA, DHZ, MeJa, salicylic acid, GA3, ethephon and ABA.

Discussion
The combination of fractional factorial design and consensus OPLS-DA methods allowed us to systematically 
explore the effect of multiple factors on plant metabolism, using transgenic tobacco cell cultures as a model sys-
tem. This simultaneous application of treatment stress assesses all experimental factors under diverse conditions 
that could occur in nature. We tentatively identified 45 constituents in areas 1 and 4 of the S-plots following 
the fractionation and analysis of plant cell extracts by UHPLC-QTOF-MS, corresponding to metabolites whose 
abundance changed substantially in response to the experimental factors. These metabolites represented multiple 
classes of natural products: monoterpenoids, nitrogen-containing compounds, coumarins, fatty acids and their 
esters, and derivatives of phytohormones and plant growth regulators used as additives in the experiments.

Geraniol and its glycosides do not occur naturally in tobacco plants and their presence in our samples reflects 
the activity of the stably integrated VoGES gene16. However, the glycosylation profile of geraniol produced by our 
cell suspension cultures differed to that observed in whole plants. The cells produced seven distinct geraniol gly-
cosides whereas 19 variants were produced by transgenic tobacco plants and Nicotiana benthamiana leaves used 
for transient expression. The acetylated glycosides produced at later stages of plant development were not moni-
tored in our plant cell cultures. The cell suspension cultures produced geraniol monoglycosides and diglycosides, 
whereas the whole plants also produced geraniol glycosides with three or more sugar adducts. However, our cell 
suspension cultures accumulated geranidiol derivatives that are not produced in agroinfiltrated or transgenic 
plants, which instead produce geranic acid glycosides16.

Nitrogenous compounds are found in tobacco cells because they have multiple core metabolic functions and 
are also precursors in the biosynthesis of tobacco alkaloids17. Phytoalexins defend plants against biotic and abiotic 
stress18. The coumarin scopoletin (12) is one of the phytoalexins produced in tobacco19–21. C16:3 monoacylg-
lycerol (29) is a glyceride which can be formed by the esterification of glycerol with one fatty acid or by enzy-
matic hydrolysis of a fatty acid from diacylglycerol by the action of diacylglycerol lipase. Diacylglycerol acts as a 

Figure 2. Cluster analysis and heat map. 
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signalling molecule during plant development and in response to stress tolerance, nutrient deficiency and other 
environmental stimuli22–24.

Our metabolomic analysis showed that plant cells react strongly to phytohormones and plant growth reg-
ulators. Plants limit the impact of harmful xenobiotic compounds by hydroxylation, glutathione conjugation, 
glycosylation, malonylation and sulfonylation25,26. Most of the phytohormone and growth regulator derivatives 
we identified were polar glucosylated products, which are generally more soluble than the parent molecule thus 
facilitating elimination. We also detected malonylated geraniol glycosides, confirming that malonylation is one of 
the key mechanisms used by tobacco cells to metabolize xenobiotic compounds27.

The production of glutamine was strongly upregulated by KNO3 treatment in our experiment. Nitrate is 
assimilated by plant cells from nitrite and ammonium, and is then converted into the amino acid glutamine28. 
The protein kinase CIPK23 is involved in both nitrate and potassium signalling29. CIPK23 phosphorylates nitrate 
transporter NPF6.3 after interacting with the calcineurin-B-like protein CBL9, and reduces nitrate uptake capac-
ity in the presence of high external NO3

− concentrations, whereas the CBL1-CIPK23 and CBL9-CIPK23 com-
plexes activate the K+ channel AKT130. A monoacylglycerol derivative (29) was also less abundant following 
KNO3 treatment. This may be a hydrolysis product of diacylglycerol which activates protein kinase C and induces 
nitrate reductase gene expression31.

The NO3
−/NH4

+ ratio in the culture medium influences the activity of auxins and cytokinins32. We observed 
an increase in the abundance of ions representing 2,4-D and the loss of ions representing DHZ metabolites and 
BAP glycoside in the KNO3 S-plot, but an increase in the abundance of BAP glycosides and the loss of ions rep-
resenting 2,4-D and NAA metabolites in the NH4NO3 S-plot. This indicates that the balance between NO3

− and 
NH4

+ ions may affect phytohormone sensitivity.
NH4NO3 and CaCl2 had the most significant impact on the biosynthesis of geraniol glycosides among the 

inorganic factors we tested. NH4NO3 induced the formation of geraniol glycosides (2, 4, 7) but inhibited the for-
mation of hexosyl-hexosyl-geraniol (6), whereas calcium showed the opposite behaviour. Higher concentrations 
of useable nitrogen also enhanced the accumulation of linalool and citronellol by Saccharomyces cerevisiae33. 
Geraniol blocks calcium and potassium channels in mammalian cells34 and similar cyclic nucleotide-gated ion 
channels are found in plants35.

Ca2+ induced the hydroxylation of sphingosine and adenosine agreeing with previous observations that 
sphingosine-1-phosphate increases cytosolic free Ca2+ 36 and cyclic adenosine monophosphate regulates calcium 
channels in the plasma membrane of Arabidopsis thaliana leaf guard and mesophyll cells37.

Scopolin and its 7-O-glucoside are key components of the abiotic stress response18 and the abundance of both 
compounds increased following treatment with all three statistically significant nutrients in our study. The accu-
mulation of scopoletin in tobacco cells and its conversion to a glucoside is also induced by 2,4-D21. Ions represent-
ing scopolin were also detected following the treatment of our cells with 2,4-D. Scopoletin synthesis was strongly 
inhibited by MeJa concurring with data showing that scopoletin biosynthesis induced by Alternaria alternata is 
strongly dependent on jasmonic acid but not ABA, although MeJA does not induce scopoletin production in the 
absence of A. alternata38. In our cells, the formation of scopoletin was also inhibited by GA3.

We detected nicotine produced in trace amounts by our transgenic tobacco cell cultures, which comprise 
green (photosynthesizing) cells derived from the aerial parts of the plant, although de novo nicotine synthesis 
takes place mainly in the roots39. MeJa induced nicotine production in our tobacco cells in a similar manner 
as previously shown for N. attenuata39. The downregulation of nicotine production we observed following the 
treatment with KNO3 and NAA agrees with previous reports for cultured tobacco callus, and the effect of K+ is 
probably mediated by NAA40. We also observed that nicotine biosynthesis was induced by IAA but moderately 
suppressed by 2,4-D41. The combined effect of MeJa, auxins and K+ on the regulation of nicotine synthesis sug-
gests that multiple factors contribute to the same process.

The biosynthesis of monoterpenoid glycosides appeared to be influenced by auxins and cytokinins, perhaps 
reflecting the antagonistic crosstalk between these two phytohormone classes42. Our experimental results sup-
port the idea that phytohormones function in a complex network involving the different hormonal pathways but 
that there is also elaborate crosstalk with nutrients and elicitors. The auxin-sensitive signalling protein SHY2 is 
regulated by the cytokinin-induced protein ARR1 (Arabidopsis response regulator), which in turn is repressed by 
gibberellin thus connecting three hormones in one network42. This may explain why our GA3 S-plot contained 
ion traits that were also affected by auxins and cytokinins. We also observed evidence for ethylene/cytokinin and 
cytokinin/ABA crosstalk42.

Light has a potent effect on monoterpenoid metabolism by modulating the expression of monoterpenoid syn-
thase genes, controlling precursor synthesis, and affecting constitutive promoter activity43,44. Geraniol glycosides 
were also influenced by light in our cell cultures. Light induced the formation of malonyl-hexosyl-geranidiol (7) but 
suppressed the formation of pentosyl-hexosyl-geraniol (2), hexosyl-geraniol (3) and malonyl-hexosyl-geraniol (4).

We have developed a systematic approach, which implements an experimental design strategy in the con-
text of metabolomics to account for the diverse factors applied simultaneously to plant cells. This is a valuable 
method for the investigation of complex environmental stress and its impact on plant metabolism by optimizing 
the number of experiments needed to assess the factors. Our approach significantly reduces the time and effort 
required for testing by using consensus OPLS-DA models to evaluate and interpret metabolic changes caused by 
the simultaneous application of diverse ecological factors. This systematic workflow may facilitate the discovery 
and characterization of factor–nutrient–elicitor networks and appropriate biomarkers. Finally, we conclude that 
this novel approach should be able to streamline process optimization for the reproducible production of any 
secondary metabolite in plant cell cultures by the simultaneous exploration of multiple factors rather than the 
assessment of one factor at a time.
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Materials and Methods
Plant cell cultures, treatments and harvesting. We used tobacco (N. tabacum cv. Samsun NN) trans-
genic cell suspension cultures, expressing stably V. officinalis geraniol synthase. The cell cultures were initiated 
and maintained as previously described8. Two levels (low/high) were used for each of the factors selected for anal-
ysis. The low level of each macronutrient in the plant cell culture medium was based on classical Murashige and 
Skoog (MS) medium11,45 whereas the high level was based on our recent medium optimization study, although 
the concentrations of NH4NO3 were reversed11,45. The specific low/high concentrations were prepared as follows: 
KNO3 (18.79/70.16 mM), CaCl2 (2.99/10.84 mM), KH2PO4 (1.25/2.72 mM), MgSO4 (1.5/3.0 mM) and NH4NO3 
(4.24/20.61 mM). For the auxins, cytokinins and plant regulators (IAA, IBA, NAA, 2,4-D, kinetin, DHZ, BAP, 
MeJa, salicylic acid, GA3, ethephon, cyclanilide and ABA) the low and high levels were set to 0 and 10 μ M, respec-
tively. Finally, the low and high levels of light were set to 11.50 and 35.62 μ mol/cm2/s, respectively8. The factor 
levels are summarized in Table S1.

The following cultivation conditions were used: flask volume 50 ml (Erlenmeyer glass flasks), filling volume 
25 ml, inoculum size 1.4 g fresh weight (FW), triacetyl-β -cyclodextrin concentration 2 mM, and shaking fre-
quency 180 rpm8. The plant cell suspension cultures were grown for 9 days before the cells were harvested, then 
filtered twice under vacuum and frozen at − 20 °C. The cultures were elicited with phytohormones and plant 
growth regulators 6 days post-inoculation. The experiment was conducted at 26 °C with a 16-h photoperiod in an 
ISF1-X shaker (Kühner AG, Birsfelden, Switzerland).

Sample preparation. The samples were extracted as previously described46. Briefly, ~100-mg aliquots of 
plant material were mixed with methanol (1:3 w/v) in a shaker mill (TissueLyser, Retsch, Haan, Germany) and 
pulverized with a steel ball at 25 beats per second for 1 min. Homogenized samples were sonicated (15 min), cen-
trifuged (1750 ×  g, 10 min, 25 °C) and supernatants were passed through a 0.2-μ m membrane filter.

UHPLC-MS. The samples prepared above were analysed on an Acquity UPLC system coupled to a QTOF 
Premier MS detector (Waters, Milford, MA, USA). For RP-UHPLC, a Waters Acquity BEH C18 column 
(2.1 ×  150 mm, 1.7 μ m) was used with water containing 0.1% (v/v) formic acid (A) and acetonitrile containing 
0.1% (v/v) formic acid (B) as eluents applied as the following gradient: 0 min, 5% B; 23.5 min, 80% B; 24 min, 
96% B; 26 min, 96% B. The flow rate was 0.4 ml/min with the column temperature set to 45 °C. HILIC separation 
was carried out using a Waters Acquity HILIC column (2.1 ×  150 mm, 1.7 μ m) with 33 mM aqueous ammonium 
formate, pH 4.5 (A) and acetonitrile (B) as eluents applied as the following gradient: 0 min, 4% A; 3 min, 4% A; 
17.5 min, 32% A; 18 min, 55% A; 20 min, 55% A. The flow rate was 0.5 ml/min with the column temperature set 
to 50 °C.

A pool was created by adding equal volumes from all samples to serve as a QC injection. Nine QC injections 
in total were distributed at regular intervals in the analytical batch. An acceptable variation was achieved for all 
peaks, including those with the highest intensity (coefficient of variation less than 40%).

Positive and negative ESI was applied in separate analytical runs (positive only for the HILIC method) with a 
desolvation gas flow of 780 l/h at 400 °C, a capillary voltage of 4.5 kV and a cone voltage of 45 V. Mass spectra were 
acquired over the m/z range 100–1200 in “W mode” using leucine enkephalin as a lock mass standard.

Raw data processing. Mass/retention time markers were extracted from the raw UHPLC-ESI-MS 
data using MarkerLynx XS v4.1 (Waters). The following method parameters were set: retention time window  
1.6–24.6 min, m/z range 100–1200, XIC window 0.02 Da, peak smoothing activated, marker intensity thresh-
old 30, mass window 0.04 Da, retention time window 0.2 min, noise elimination level 6.0, and deisotope data 
activated. All mass (m/z)/retention-time features related to the auxins, cytokinins and plant growth regulators 
provided as supplements in the plant cell culture media, as well as features derived from impurities in the LC elu-
ents, were removed from the raw metabolomics datasets by removing all features detected in blank runs (solvent 
injection) or in analytical runs of the pure additives before data evaluation.

Experimental design. The experimental design was based on an orthogonal array with 96 runs created 
with the free open-source R package DoE.base47 as described in the supplementary material. Given the size of this 
experiment, tests for effects of 2-level factors at significance level 5% can detect effects of size “one standard devi-
ation” with about 99% power, effects of size “half a standard deviation” with about 68% power, and effects of size 
“0.75 standard deviations” with about 95% power. The design was optimized to screen 14 factors by keeping the 
confounding of low-order effects minimal: all main effects are orthogonal to each other (orthogonal array), the 
design was based on an array with the lowest possible number of squared canonical correlations from three-factor 
sets equal to 148 and the factors were accommodated on columns of the base array such that confounding between 
main effects and two-factor interactions, and subsequently among two-factor interactions, was minimized8.

This fractional factorial design, with a randomized run order, was used to screen 12 two-level factors, one 
three-level factor and one four-level factor: we thus screened for the effects of light and 18 diverse substances rep-
resenting macronutrients, auxins, cytokinins and elicitors. For the two-level factors, we investigated the presence 
of the high levels of NH4NO3, KNO3, CaCl2, KH2PO4, MgSO4, MeJa, salicylic acid, GA3, ethephon, cyclanilide, 
ABA and light. For auxins (four-level factor), exactly one of IAA, IBA, NAA or 2,4-D was present, whereas for 
cytokinins (three-level factor), exactly one of kinetin, DHZ or BAP was present. The experimental design with 
96 runs is summarized in coded values in Table S2. The remaining potentially relevant confounding between 
main effects and two-factor interactions in terms of triples of factor comparisons are summarized in Fig. S17. For 
each such triple, the comparison between the levels of each factor in the triple might be affected by an interaction 
between the other two factors (e.g. an interaction between KNO3 and NH4NO3 might affect the assessment of the 
BAP vs. DH-z comparison for cytokinins). Sceptics might argue that this possibility for confounding is a reason 
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to refrain from using an experimental design approach in favour of only changing one factor at a time (OFAT 
approach). However, if two-factor interactions are indeed relevant – as would be necessary for the experimental 
design approach to suffer from misleading conclusions in terms of factor level comparisons – the conclusions 
from an OFAT approach are also limited in the same manner and would be valid only for the exact settings at 
which the other factors have been fixed. Furthermore, to achieve a reasonable amount of replication, the OFAT 
approach would need a much larger number of experimental runs – e.g. 24 runs for the reference level combina-
tion (the number obtained for the four-level factor in the 96-run experiment) might be combined with 24 runs 
each for the other level of the 12 two-level factors (12*24), and 24 runs each for the other levels of the three-level 
and the four-level factors (5*24), resulting in a total of 18*24 =  432 runs instead of the 96 runs in our experiment.

Data processing and analysis. For each experimental factor, a consensus OPLS-DA model was built to 
relate the experimental metabolomics data (X) to a class matrix consisting of zeros and ones, filled according 
to the levels of each factor (Y). The columns of the experimental design were therefore used individually as a 
response matrix in the context of supervised analysis. For auxins and cytokinins, a response vector was gener-
ated individually for each hormone and filled with zero when the corresponding hormone was absent, whereas 
a value of one indicated its presence. The consensus OPLS algorithm implements data fusion based on multiple 
kernel learning. The joint analysis of multiple data tables is achieved by the combination of association matrices 
computed for each block. Therefore, requirements in terms of memory resources and computation time are min-
imized without information loss even if the experimental data include a large number of signals. A block-scaling 
step ensures fairness between blocks by offering equal starting chances to contribute to the model. RV coefficients 
are then computed to build a consensus matrix and orientate the model towards better prediction performance. 
A common subspace is built using a kernel version of the OPLS algorithm and the optimal number of orthogonal 
components is estimated by cross-validation. Because systematic variations are summarized using Y-predictive 
and Y-orthogonal components (OPLS framework), the interpretation of the multiblock model is straightforward. 
Like classical multivariate methods, a consensus score plot allows the distribution of the observations to be eval-
uated. Because linearity is maintained, variable loadings can easily be computed for biomarker discovery. The 
weight of each block in the projection also allows the role of each data source to be evaluated13.
The OPLS model can be summarized as follows:

= + +X(i) t (j)p (i, j) t (j)p (i, j) E(i, j) (1)p p
T

o o
T

= +Y(j) t (j)q (i, j) F(i, j) (2)p p
T

where X contains the normalized metabolomic data from data block i (i ∈  [RPPOS, RPNEG, HILICPOS]), Y 
represents a 0/1 indicator variable for experimental condition j (j ∈  [NH4NO3, KNO3, CaCl2, KH2PO4, MgSO4, 
IAA, IBA, NAA, 2,4-D, kinetin, DHZ, BAP, MeJa, salicylic acid, GA3, ethephon, cyclanilide, ABA, light]), tp is 
the Y-predictive score matrix, pp is the Y-predictive loading matrix for X, to is the Y-orthogonal score matrix, po 
is the Y-orthogonal loading matrix for X, qp is the Y-predictive loading matrix for Y, and E and F are the resid-
ual matrices for X and Y, respectively. Note that the four indicator variables for the cytokinins sum to a column 
of “+ 1” entries, as do the three indicator variables for the auxins. Consensus OPLS-DA modelling was carried 
out under the MATLAB®  v8 environment (The MathWorks, Natick, USA) with combinations of toolboxes and 
in-house functions, including the publicly available RV-coefficients MATLAB m-file49 and the KOPLS open 
source package50.

Cluster analysis. Subsets of metabolites sharing similar patterns were investigated using cluster analysis. For 
that purpose, the contribution (loading) of each ion feature associated with an identified metabolite was collected 
across all significant consensus OPLS-DA models and displayed in a dendrogram and a heat map. This strategy 
highlights upregulation and downregulation. Cluster analysis was carried out with the Bioinformatics Toolbox 
v4.2 under the MATLAB®  v8 environment (The MathWorks) using Euclidean distances and the Ward aggrega-
tion method.

Factors with more than two levels. Auxins and cytokinins were two factors in our design associated 
with three and four levels, respectively. Exactly one auxin and one cytokinin were included in each run of the 
experimental design. Consequently, the four Y(j) indicator columns corresponding to auxins and the three Y(j) 
indicator columns corresponding to cytokinins are linearly dependent, as stated above. Our analysis included all 
indicator columns, because each is treated separately. This implies that downregulation or upregulation must be 
interpreted within the linearly-dependent groups, e.g. if the three auxins IAA, IBA and 2,4-D are identified as 
downregulators, the fourth (NAA) must be an upregulator (relative to the other auxins). This behaviour is clearly 
shown in the heat map and also implies analogous dependencies among the S-plots of the auxins and cytokinins, 
respectively.
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