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Coiled-coil domain-containing 68 (CCDC68) plays different roles in cancer and is
predicted as a tumor suppressor in human colorectal cancer (CRC). However, the
specific role of CCDC68 in CRC and the underlying mechanisms remain unknown.
Here, we showed that CCDC68 expression was lower in CRC than that in corresponding
normal tissues, and CCDC68 level was positively correlated with disease-free survival.
Ectopic expression of CCDC68 decreased CRC cell proliferation in vitro and suppressed
the growth of CRC xenograft tumors in vivo. CCDC68 caused G0/G1 cell cycle arrest,
downregulated CDK4, and upregulated ITCH, the E3 ubiquitin ligase responsible for
CDK4 protein degradation. This increased CDK4 degradation, which decreased CDK4
protein levels and inhibited CRC tumor growth. Collectively, the present results identify a
novel CDK4 regulatory axis consisting of CCDC68 and ITCH, which suggest that
CCDC68 is a promising target for the treatment of CRC.
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INTRODUCTION

Colorectal cancer (CRC), one of the three most common cancers worldwide, has the third highest
incidence rate (10%) and the second highest mortality rate (9.4%), and is therefore a considerable
threat to human life and health (1). Currently, approximately one in ten CRC patients die from the
disease each year despite undergoing treatment (1). Understanding the molecular mechanisms
underlying the occurrence and development of CRC and exploring new approaches to the treatment
of CRC are important research objectives.

The occurrence and development of CRC are mediated by a complex process that involves
multiple pathways (2, 3), such as the EGFR, Wnt/b-catenin, TGF-b, and Sonic Hedgehog pathways.
The factors and/or genes involved in these pathways may be potential therapeutic targets in CRC (4,
5). The combination of panitumumab, a human monoclonal antibody against EGFR, with
supportive therapy is a common strategy for the treatment of metastatic CRC (6). Several
inhibitors of the Wnt/b-catenin signaling pathway have been developed for the treatment of
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CRC (7). Identifying and understanding the factors and/or genes
implicated in CRC occurrence and development would facilitate
the early diagnosis or treatment of CRC patients.

Coiled-coil domain-containing (CCDC) proteins are a large
family of proteins possessing a unique a-helical coiled coil that
mediates multiple functions, including cytoskeleton formation,
regulation of cell polarity and movement, transportation of
intracellular substances, molecular recognition, and signal
transduction (8). Many members of this family are involved in
the progression of multiple cancers, such as CCDC43 in gastric
cancer (9), CCDC8 in lung cancer (10), and CCDC34 in bladder
cancer (11). CCDC68, a member of the CCDC family, is an
important component of mother centriole subdistal appendages;
it is a centrosome protein and is thus involved in cell cycle
progression (12–14). CCDC68 also plays a role in cancer.
Radulovich et al. found that CCDC68 is downregulated and
acts as a tumor suppressor in pancreatic ductal adenocarcinoma
(15). However, CCDC68 is upregulated in non-small cell lung
cancer (NSCLC) and promotes cell proliferation (16). Therefore,
the role of CCDC68 in cancer remains controversial. There is
only one article reporting that CCDC68 is downregulated in 89%
of patients with primary CRC, suggesting that CCDC68 might be
a new candidate tumor suppressor gene in CRC (17). The specific
biological role of CCDC68 in CRC and the underlying
mechanism remain largely unclear.

In this study, we demonstrated that CCDC68 suppresses CRC
cell proliferation in vitro and in vivo by promoting ITCH
transcription. This was mediated by upregulation of the
transcription factor RXRa and alterations of cyclin-dependent
kinase (CDK)-4 protein degradation. We showed that CCDC68
downregulation promoted the growth of CRC cells through the
RXRa/ITCH/CDK4 axis, thereby identifying a new mechanism
underlying the development of CRC and providing a theoretical
basis for targeted therapy for CRC.
MATERIALS AND METHODS

Plasmids, Antibodies, and Reagents
The HA-CCDC68 plasmid, a set of shRNA plasmids specifically
targeting ITCH, and the Flag-RXRa plasmid were purchased
from MiaoLingBio (Wuhan, China). The pEGFP-CDK4 plasmid
was constructed as described in our previous study (18). The
luciferase reporter driven by the ITCH promoter was constructed
by inserting the ITCH promotor sequence into the pGL3-basic
vector (E1751; Promega) with the primers (F) 5′;-TCTATC
GATAGGTACCTGACTTTCCAGATGGCAAAATACT-3′;
and (R) 5′;-CCGGAATGCCAAGCTTTTCGCCCACGGGGGT
TTA-3′;. Antibodies against CDK2 (sc-6248), CDK4 (sc-260),
CDK6 (sc-177), cyclinD1 (sc-20044), P21 (sc-397), and P27 (sc-
1641) were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Antibodies against CDC37 (4793S), cyclin E2
(4132S), HA (3724S), BTRC (11984S), and RXRa (3085S) were
purchased from Cell Signaling Technology (Boston, MA, USA).
Antibodies against a-Tubulin (ab7291), FBXO4 (ab230302), and
SOCS7 (ab224589) were purchased from Abcam (Cambridge,
Frontiers in Oncology | www.frontiersin.org 2
UK). Antibodies against CCDC68 (PA5-61687) and FZR1 (34-
2000) were purchased from Invitrogen (Grand Island, NY, USA).
Antibody against ITCH (20920-1-AP) was purchased from
Proteintech (Chicago, IL, USA). The chemicals cycloheximide
(CHX) and MG132 were purchased from Calbiochem (San
Diego, CA, USA).

Clinical Specimens
This study was approved by the Ethics Committee of Wenzhou
Medical University. Tumor tissues and corresponding adjacent
normal tissues were obtained from patients with colorectal
cancer treated at the First Affiliated Hospital of Wenzhou
Medical University (Zhejiang, China). A total of 150 pairs of
tumor and normal tissues were collected and confirmed by
histological and pathological diagnosis (Table S1). Each
specimen was divided into two parts: RNA was extracted from
one third of the material, and cDNA was synthesized and stored
at -80°C until analysis. Two thirds of the material were fixed in
formalin, embedded in paraffin, and stored at room temperature.

Cell Culture and Transfections
The human CRC cell lines HCT116 and HT29 were obtained
from the Cell Bank of Shanghai Institute of Biochemistry and
Cell Biology, Chinese Academy of Sciences. SW480 cells were
bought from ATCC. HCoEpiC and RKO cells were bought from
Cobioer (Nanjing, China). HCT116 and HT29 cells were
maintained in McCoy’s 5A medium supplemented with 10%
fetal bovine serum (FBS); RKO and SW480 cells were cultured in
1640 medium (Gibco, 11875–093) containing 10% FBS; and
HCoEpiC cells were cultured in minimum essential medium
(MEM; Gibco, 11095–080) containing 10% FBS. All cells were
grown in a 5% CO2 cell culture incubator at 37°C. For stable cell
line construction, HCT116 and RKO cells were transfected with
plasmids using PolyJet™ DNA In Vitro Transfection Reagent
(SignaGen Laboratories, SL100688). After 48 h, cells were
subjected to selection with puromycin (4–6 mg/mL; J593,
Amresco Inc) or G418 (1000–1500 mg/mL; sc-29065, Dallas,
TX, USA) according to the antibiotic resistance of different
transfected plasmids.

Lentivirus Packaging and Infection
Lentivirus packaging and infection experiments were performed
as described previously (18). HA-CCDC68 stable expression cells
and vector control cells were constructed by lentivirus infection.
Briefly, two packaging vectors, 1.2 mg pMD2.G (12259, Addgene)
and 1.2 mg psPAX2 (12260, Addgene), and 2.0 mg HA-CCDC68-
PLVX-puro or HA- PLVX-puro plasmid, were transfected into
293T cells. The viral supernatants were then collected after 48 h,
filtered, and used to infect HCT116 and RKO cells. Stable cell
lines were screened by puromycin.

Immunohistochemistry (IHC)
IHC assays were performed to detect CCDC68 expression in
formalin fixed paraffin embedded CRC specimens obtained from
humans. An antibody specific against CCDC68 (PA5-61687;
Invitrogen, Grand Island, NY, USA) was used for IHC
staining, which was performed using a kit from Boster Bio-
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Engineering Company (SA1022; Wuhan, China). Immunostained
images were captured with the Nikon Eclipse Ni microsystem
(DS-Ri2) and analyzed with Image-Pro Plus version 6.0 (Media
Cybernetics, Rockville, MD, USA) by calculating the integrated
optical density (IOD) of each stained area (IOD/area). At least five
images per specimen were counted.

Western Blotting
The cells were lysed with a lysis buffer containing 10 mM Tris-
HCl, 1 mM Na3VO4, and 1% SDS (pH 7.4) on ice. The samples
were then collected and heated at 100°C for 5 min, and nucleic
acids were broken with ultrasound. Protein samples were
separated on SDS-PAGE gels, followed by transfer to
polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA,
USA). The membranes were blocked with 5% non-fat milk and
probed with the indicated primary antibodies overnight at 4°C,
and then incubated with AP-conjugated secondary antibody.
The ECF western blotting system (RPN5787; GE Healthcare, PA,
USA) was used to detect the protein signal, and images were
captured using a phosphorimager (Typhoon FLA 7000, GE
Healthcare) (19).

Anchorage-Independent Growth Assay
The potential inhibitory effect of CCDC68 on the anchorage-
independent growth of human CRC cells was assessed in the
HCT116 and RKO cell lines. First, 0.5% agar in Basal Medium
Eagle (BME) containing 10% FBS was used to cover the bottom
layer of 6-well plates. Then, 1 × 104 HCT116 (Vector), HCT116
(CCDC68), RKO (Vector), and RKO (CCDC68) stable
transfectants were suspended in 1 mL of 0.33% agar in 10%
FBS-BME and seeded on the bottom layer. After culturing in a
5% CO2 incubator for 2–4 weeks, the number and size of cell
colonies were determined under a microscope (DMi1; Leica
Microsystems, Germany) (20).

Cell Proliferation
A Cell Titer-Glo Luminescent Cell Viability Assay kit (G7572;
Promega) was used to determine the effect of CCDC68 on the
proliferation of CRC cells. The assay was performed as described
previously (18). Briefly, 2000 HCT116 (Vector), HCT116
(CCDC68), RKO (Vector), and RKO (CCDC68) cells were
seeded into each well of 96-well plates. After adherence, the
cells were synchronized for 12 h by exposure to 0.1% FBS
medium and then cultured in complete medium for the
indicated days. Cell viability was detected at 1, 3, and 5 days
using a Centro LB 960 luminometer (Berthold Technologies,
Berthold, Germany). Cell proliferation rate was defined as the
relative absorbance of cells cultured for 3 and 5 days versus that
of cells cultured for 1 day. Each experiment was repeated at least
three times.

Cell Cycle Analysis
Cell Cycle Analysis was performed by flow cytometry (FCM).
Cells were collected and fixed with 70% ethanol at 4°C overnight,
and then washed and stained with a mixed solution of propidium
iodide and RNase A (9:1) (KGA511; KeyGen Biotech, Nanjing,
China) for 1 h at room temperature. Immediately thereafter, the
Frontiers in Oncology | www.frontiersin.org 3
cell cycle was detected by CytoFLEX (Beckman Coulter, San
Diego, CA, USA), and the results were analyzed with the
CytExpert software.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was extracted using TRIzol (15596018, Invitrogen),
and cDNAs were synthesized using the SuperScript™ First-
Strand Synthesis system (18091200, Invitrogen). qRT-PCR
assays were performed using the Fast SYBR Green Master Mix
kit (4385614, Applied Biosystems) in the Q6 real-time PCR
system (Thermo Fisher Scientific, Waltham, MA, USA). The
primers used in this assay were as follows: human CCDC68
(forward, 5′-TCTGCCTTGTATGAGTCTACGTCC-3′; reverse,
5′- A GGATCCATTTCAGAATCAGAGCC-3′), human CDK4
(forward, 5′-CTACAGCTACCAGATGGCACTTAC-3′; reverse,
5′-CAAAGATACAGCCAACACTCCACA-3′), human ITCH
(forward, 5′-GGAAGCAACCCCTTACAGTTATC-3′; reverse,
5′-CTAATGCAGCAGTTCCCAACAA-3′), and human
GAPDH (forward, 5′-GACTCATGACCACAGTCCATGC-3′;
reverse, 5′-CAGGTCAGGTCCACCACTGA-3′).

Dual-Luciferase Reporter Assay
HCT116 (Vector), HCT116 (CCDC68), RKO (Vector), and RKO
(CCDC68) cells were transiently co-transfected with the ITCH
promoter-driven luciferase reporter and pRL-TK for 24 h. After
washing twice with PBS, cells were lysed with passive lysis buffer
for 10 min at room temperature. Then, 20 mL cell lysate was
transferred to a 96-well plate, and 40 mL Luciferase Assay
Reagent II was added to detect ITCH promoter activity.
Thereafter, Stop & Glo Buffer (Promega, USA) was added to
each well to detect TK activity, which was measured in a Centro
LB 960 luminometer (Berthold).

Protein Degradation Assay
To evaluate the potential effects of CCDC68 on the degradation
of CDK4 in CRC cells, 5 × 105 stably transfected HCT116
(Vector) and HCT116 (CCDC68) cells were added into each
well of a 6-well plate and cultured in complete medium at 37°C in
a 5% CO2 incubator. The medium was replaced by 0.1% FBS
medium after the cell density reached 50–60%, and cells were
then starved for 12 h, followed by culture in 10% FBS medium for
12 h. Thereafter, cells were treated with medium containing 10
µM MG132 for 5 h before exposure to CHX (50 mg/mL) for 0, 3,
6, and 12 h. The protein stability of CDK4 was evaluated by
western blotting at each time point.

Immunoprecipitation
293T cells were transiently transfected with GFP-CDK4 plasmid.
At 36 h after transfection, cells were harvested, and total cell
lysates were extracted using cell lysis buffer (9803, Cell Signaling
Technology, USA) containing a complete protein inhibitor
cocktail (04693116001, Roche, Germany) on ice. The obtained
lysates were incubated with rotation at 4°C for 30 min. After
centrifugation, the supernatant (1000 mL) was divided into two
aliquots: 450 mL (50 mL was removed, denatured, and stored to
check the input by western blotting) was incubated with 2 µg
anti-CDK4 antibody (sc-260); and 450 mL (50 mL was removed,
April 2021 | Volume 11 | Article 668743
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denatured, and stored to check the input by western blotting)
was incubated with a nonspecific antibody (rabbit IgG, sc-2749).
After incubation overnight at 4°C, 30 µL protein A/G-coated
magnetic beads (Thermo Fisher Scientific) were added to each
sample and incubated for 2–4 h at 4°C. Extracts were sequentially
washed five times with 1× Cell Lysis Buffer using a magnetic
stand. Finally, 60 µL protein elution buffer and 0.6 µL DTT were
added, and samples were heated at 37°C for 2 h to denature and
separate the magnetic beads. The samples without magnetic
beads were subjected to western blotting analysis.

Xenograft Model in Nude Mice In Vivo
Animal experiments were performed in the animal institute of
Wenzhou Medical University according to the protocols
approved by the Laboratory Animal Center of Wenzhou
Medical University and the Laboratory Animal Ethics
Committee of Wenzhou Medical University, as described in
our previous publication (21). Female BALB/c athymic nude
mice (3 or 4 weeks old) were purchased from Shanghai Silaike
Experimental Animal Company (license no. SCXK, Shanghai
2010-0002). After 1–2 weeks of acclimatization, mice were
randomly allocated to one of two groups (five mice/group) and
then subcutaneously injected into the right flank with 5 × 106

HCT116 (Vector) or HCT116 (CCDC68) cells suspended in 100
mL Serum-free medium McCoy’s 5A. After 4 weeks, mice were
sacrificed, and tumors were surgically removed, imaged, and
weighed. Two third of the tumor was fixed in 4%
paraformaldehyde for IHC, and the remaining third was frozen
at -80°C to extract RNA if necessary.

Bioinformatic Analysis
UbiBrowser database was used to screen possible E3 ligases
related to CDK4 (http://ubibrowser.ncpsb.org/). The potential
transcription factors binding to the ITCH promoter were
predicted by the JASPAR database (http://jaspar.genereg.net/),
with a profile score threshold of 95%.

Statistical Analysis
All experimental data are expressed as the mean ± standard
deviation (mean ± SD). Graphs and statistical analyses were
performed using GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA). The Kaplan–Meier method was used to draw
the survival curve, and the log-rank test was used to compare the
differences between groups. Comparisons between the control
group and the experimental group were performed using the
Student’s t-test. P < 0.05 was considered statistically significant.
RESULTS

CCDC68 is Downregulated in CRC and
Related to Patient Prognosis
To investigate the potential role of CCDC68 in human CRC
progression, the Cancer Genome Atlas (TCGA) database was
used to analyze the expression levels of CCDC68 in 41 pairs of
Frontiers in Oncology | www.frontiersin.org 4
cancerous and normal tissues from CRC patients. The results
showed that CCDC68 was markedly downregulated in CRC
(Figure 1A). Furthermore, we analyzed the expression levels of
CCDC68 in 150 fresh CRC samples and matched adjacent
(normal) colorectal tissues by qRT-PCR and IHC assays. The
results showed that CCDC68 was significantly downregulated in
tumor tissues, which was consistent with TCGA data (Figures
1B–D).

To assess the role of CCDC68 in CRC, we analyzed the
relationship between CCDC68 expression levels and disease-free
survival (DFS) data from the TCGA database. Kaplan–Meier
survival analysis revealed that CCDC68 downregulation was
associated with a poor prognosis in CRC patients (Figure 1E).
In addition, CCDC68 expression was lower in human CRC cell
lines (HCT116, HT29, RKO, and SW480) than that in the human
immortalized normal colorectal epithelial cell line HCoEpiC
(Figure 1F).

CCDC68 Overexpression Suppresses
Human CRC Cell Growth In Vitro
and In Vivo
To evaluate whether CCDC68 is involved in the development of
CRC, we constructed four stable transfectants, HCT116
(CCDC68), HCT116 (Vector), RKO (CCDC68), and RKO
(Vector), which were examined by western blotting (Figure
2A). CCDC68 overexpression significantly decreased the
monolayer growth of HCT116 and RKO cells compared with
that of control vector transfectants (Figures 2B, C). CCDC68
overexpression also significantly decreased the anchorage-
independent growth of CRC cells (Figures 2D, E). These data
indicate that CCDC68 inhibited CRC cell growth in vitro.

To extend our findings in vivo, a xenograft nude mouse model
was established by subcutaneous injection of equal numbers of
HCT116 (Vector) and HCT116 (CCDC68) cells into nude mice.
Tumor size was measured periodically, and a tumor growth
curve was drawn (Figure 2F). The results showed that the weight
and size of the subcutaneous tumors were significantly reduced
in mice injected with HCT116 (CCDC68) cells than that in the
HCT116 (Vector) control group (Figures 2G, H). These data
confirmed that overexpression of CCDC68 decreased the growth
ability of CRC cells.

Overexpression of CCDC68 Induces G0/G1
Phase Arrest in CRC Cells and
Downregulates the Expression
of the CDK4 Protein
Uncontrolled cell cycle progression and cell proliferation are two
important biological characteristics of tumor cells (22). We
therefore used FCM to analyze cell cycle progression in
HCT116 (Vector or CCDC68) and RKO (Vector or CCDC68)
cells, and to explore the potential molecular mechanism
underlying the effect of CCDC68 on inhibiting CRC cell
growth. As shown in Figures 3A, B, CCDC68 overexpression
induced cell cycle G0/G1 arrest, suggesting that the inhibition of
CRC cell growth by CCDC68 is related to its ability to induce G0-
G1 growth arrest.
April 2021 | Volume 11 | Article 668743
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To elucidate the molecular mechanism underlying the effect
of CCDC68 on inducing G0/G1growth arrest in CRC cells, the
expression of G0/G1 phase-related proteins was detected in
HCT116 and RKO cells by western blotting. Ectopic expression
Frontiers in Oncology | www.frontiersin.org 5
of CCDC68 did not significantly affect the expression of the cell
cycle regulatory proteins CDK2, CDK6, cyclin D1, cyclin E2,
P21, and P27 (Figure 3C). However, CDK4 expression was lower
in HCT116 (CCDC68) and RKO (CCDC68) cells than in the
A B

C D

E F

FIGURE 1 | CCDC68 is downregulated in CRC tissues and cells. (A) CCDC68 mRNA levels in CRC according to the Cancer Genome Atlas (TCGA) data. (B) The
mRNA expression level of CCDC68 in 150 pairs of CRC tissues and paracancerous tissues (normal). (C) Representative IHC images of CCDC68 protein expression
in CRC tissues and adjacent normal tissues. (D) Quantification of CCDC68 expression in 150 pairs of CRC tissues and adjacent normal tissues. (E) CCDC68 mRNA
expression levels and disease-free survival of patients from TCGA CRC data. (F) Expression of CCDC68 in human CRC cell lines (HCT116, HT29, RKO, and SW480)
and in the normal colorectal epithelial cell line HCoEpiC. Data are presented as the mean ± SD, *P < 0.05.
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corresponding control cells. These results suggest that CDK4 is a
key downstream molecule associated with the inhibition of CRC
cell proliferation by CCDC68.

CCDC68 Inhibits the Proliferation of CRC
Cells by Targeting CDK4
To further explore the role of CDK4 as a downstream effector of
CCDC68, CDK4 was ectopically expressed in HCT116
(CCDC68) and RKO (CCDC68) cells (Figures 4A, D). The
effect of CDK4 overexpression on the anchorage-independent
proliferation of HCT116 (CCDC68) and RKO (CCDC68) cells
was examined by soft agar assay. As shown in Figures 4B, C, E, F,
Frontiers in Oncology | www.frontiersin.org 6
ectopic expression of GFP-CDK4 increased anchorage-
independent growth. The results of FCM analysis confirmed
that CCDC68-induced G0/G1 growth arrest was reversed by
CDK4 overexpression compared with that in the control vector
(Figures 4G, H). Collectively, these results suggest that CDK4 is a
downstream regulator mediating the inhibition of CRC cell
proliferation by CCDC68.

ITCH might Serve as an E3 Ubiquitin
Ligase Targeting CDK4 for Degradation
To elucidate the molecular mechanism underlying the effect of
CCDC68 on downregulating CDK4 expression, the mRNA levels
A B C

D

F G

E H

FIGURE 2 | CCDC68 overexpression inhibits CRC cell growth in vitro and in vivo. (A) Stable transfectants of HCT116 (Vector) vs. HCT116 (HA-CCDC68) and RKO
(Vector) vs. RKO (HA-CCDC68) were identified by western blotting. (B, C) Cell proliferation was detected by ATP assay. Data were analyzed Student′s t-test.
(D, E) Anchorage-independent growth was examined by soft agar assay. Cell colonies were counted, and data were presented as colonies per 10,000 cells and
analyzed by Student′s t-test. (F) Tumor growth curve for each group. Data were analyzed by Student′s t-test. (G) Representative images of tumors in each group.
(H) Statistical analysis of tumor mass in each group; n = 5, Student′s t-test. Data are presented as the mean ± SD. *P < 0.05.
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of CDK4 were measured in HCT116 (CCDC68) and RKO
(CCDC68) cells by qRT-PCR. The results showed that the
mRNA levels of CDK4 did not differ significantly between the
CCDC68 overexpression group and the control group (Figure
5A). This suggests that CCDC68 regulates CDK4 expression at
the protein level rather than at the mRNA level. Cells were
treated with MG132 (10 µM) and CHX (50 mg/mL) (23), and
harvested at different time points, and CDK4 protein levels were
detected by western blotting. As shown in Figures 5B, C, the rate
of degradation of the CDK4 protein was significantly higher in
HCT116 cells overexpressing CCDC68 than in the control
group. These results indicate that CCDC68 downregulates
CDK4 by promoting its ubiquitination.

Next, we examined the mechanism by which CCDC68
regulates the ubiquitination of CDK4. FBXO4 is an E3 ubiquitin
ligase for CDK4 (24), and cell division cycle 37 (Cdc37), a partner
of heat stress protein 90 (HSP90), enhances CDK4 stability and
promotes CRC cell survival (25). In addition, we used the
UbiBrowser database to screen for possible E3 ligases related to
CDK4 degradation (Figure 5D). Potential E3 enzymes acting as
tumor suppressors in CRC and related to cell growth were selected
from the top 20 E3 enzymes identified (Figure 5E), and the
expression levels of these proteins were examined in HCT116 and
RKO cells overexpressing CCDC68 by western blotting. The
results showed that the expression of ITCH was significantly
higher in the HCT116 (CCDC68) and RKO (CCDC68)
transfectants than in the control groups, whereas other enzymes
showed no significant differences in expression (Figure 5F). We
Frontiers in Oncology | www.frontiersin.org 7
speculated that CCDC68 may accelerate the degradation rate of
CDK4 through ITCH, ultimately inhibiting the malignant
proliferation of CRC cells.

CCDC68 Promotes the Degradation of
CDK4 by Upregulating ITCH Expression
To verify the role of ITCH in CCDC68-regulated cell growth,
four stable ITCH knockdown clones of HCT116 (CCDC68) cells
were established (Figure 6A). The effect of ITCH knockdown on
cell proliferation and cell cycle progression was examined by soft
agar assay and FCM in HCT116 (CCDC68) cells. The results
showed that ITCH knockdown markedly reversed the inhibitory
effects of CCDC68 on HCT116 anchorage-independent growth
and G0/G1cell cycle arrest (Figures 6B–D).

To further investigate whether ITCH mediates CDK4
degradation, the effect of ITCH knockdown on CDK4
expression was examined by western blotting in HCT116
(CCDC68) cells; a protein degradation assay and IP assay were
also performed. As shown in Figures 6E, F, knockdown of ITCH
in HCT116 (CCDC68) cells significantly upregulated CDK4 and
dramatically decreased the rate of CDK4 protein decay. The
results of IP with an antibody that specifically pulls down the
CDK4 protein showed that ITCH was present in the immune
complex (Figure 6G), suggesting that ITCH binds to and
interacts with CDK4 to trigger its degradation. These results
suggest that CCDC68 promotes CDK4 protein degradation by
regulating ITCH protein expression, thereby inhibiting the
malignant proliferation of CRC cells.
A C

B

FIGURE 3 | Overexpression of CCDC68 induces G0/G1 phase arrest and downregulates CDK4 in CRC cells. (A, B) Cell cycle of HCT116 (Vector/HA-CCDC68)
and RKO (Vector/HA-CCDC68) cells examined by flow cytometry. (C) Expression of positive cell cycle regulators in the G0/G1 phase of HCT116 (Vector/HA-
CCDC68) and RKO (Vector/HA-CCDC68) cells.
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CCDC68 Promotes ITCH Transcription by
Upregulating RXRa Protein Expression
To elucidate the potential mechanisms underlying the
upregulation of ITCH by CCDC68 in CRC cells, the mRNA
expression level of ITCHwas measured in transfectants. As shown
in Figure 7A, ITCH mRNA levels were markedly higher in
CCDC68-overexpressing stable transfectants than in vector
transfectants, suggesting that the upregulation of ITCH occurs at
the transcriptional level or by modulating mRNA stability.
Frontiers in Oncology | www.frontiersin.org 8
To determine whether CCDC68 regulates ITCH promoter
activity, we detected the promoter activity of ITCH in HCT116
(CCDC68) and RKO (CCDC68) cells, and in the corresponding
control groups using a dual-luciferase reporter assay. The results
showed that CCDC68 overexpression significantly promoted the
transcriptional activity of the ITCHpromoter (Figure7B), indicating
that CCDC68 upregulates ITCH expression at the transcriptional
level. Transcription factors regulate the expression of target genes by
binding to the promoter region. Therefore, we predicted the
A B C

D E

G H

F

FIGURE 4 | CCDC68 inhibits malignant CRC cell proliferation by downregulating CDK4. (A, D) Stable transformation efficacy was assessed by western blotting in
HCT116 (CCDC68) and RKO (CCDC68) cells overexpressing GFP-CDK4. (B, E) A soft agar colony formation assay was used to detect the effect of CDK4 on the
proliferation of CRC cells. (C, F) Diagrams comparing the number of cell clones between the control and experimental groups. (G, H) Effect of CDK4 on the G0/G1
phase in HCT116 (CCDC68) and RKO (CCDC68) cells. Data are presented as the mean ± SD and analyzed by Student′s t-test, *P < 0.05.
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transcription factors that may bind to the ITCH promoter using the
JASPAR dataset with a profile score threshold of 95%.

Next, quantitative proteomics analysis was performed to
identify the transcription factor involved in the regulation of
Frontiers in Oncology | www.frontiersin.org 9
ITCH expression by CCDC68. The transcription factors that play
an inhibitory role in CRC were identified, and the data were
combined with the results of website prediction and proteomics
analysis. The results indicated that RXRamight be involved in the
A

C D

E F

B

FIGURE 5 | ITCH may function as an E3 ubiquitin ligase targeting CDK4 for degradation. (A) Relative CDK4 mRNA expression in HCT116 (Vector/HA-CCDC68) and RKO
(Vector/HA-CCDC68) cells. Student′s t-test, ns, not significant. (B) CDK4 protein degradation was monitored in HCT116 (CCDC68) and HCT116 (Vector) cells pretreated
with MG132 for 5 h followed by CHX for various times. (C) CDK4 protein degradation rates in HCT116 (CCDC68) and HCT116 (Vector) cells. Three independent degradation
experiments were performed, and the results were analyzed using ImageJ software and analyzed by Student′s t-test. *P < 0.05. (D)Molecules potentially involved in the
regulation of CDK4 protein degradation were predicted by the UbiBrowser database. (E) Venn diagram screening the E3 enzymes involved in the regulation of CDK4 protein
degradation. (F) Expression of CDK4, ITCH, BTRC, CDC37, FBXO4, and SOCS7 in HCT116 (Vector/HA-CCDC68) and RKO (Vector/HA-CCDC68) cells.
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regulation of ITCH expression by CCDC68 at the transcriptional
level (Figure 7C). Analysis of RXRa expression in HCT116
(CCDC68) and RKO (CCDC68) cells and control cells by western
blotting showed that RXRa was upregulated in CCDC68-
overexpressing cells (Figure 7D). RXRa was overexpressed in
HCT116 cells, and the mRNA level, promoter activity, and
protein levels of ITCH were analyzed. RXRa overexpression
significantly increased ITCHmRNA levels, promoter activity, and
the expression of the ITCH protein (Figures 7E–G). Collectively,
these results identified RXRa as a critical transcription factor
involved in the regulation of ITCH transcription by CCDC68.
DISCUSSION

CCDC68 is upregulated in NSCLC, and downregulating
CCDC68 expression decreases cell proliferation and increases
Frontiers in Oncology | www.frontiersin.org 10
apoptosis, suggesting that CCDC68 is a candidate biomarker for
the detection of malignant transformation in lung cancer (16).
However, CCDC68 plays a tumor-inhibitory role in pancreatic
cancer (15), which is inconsistent with the tumor-promoting
function of CCDC68 in NSCLC. This suggests that CCDC68
plays different roles in various human cancers. CCDC68 copy
number is decreased in CRC (17), although its specific biological
function and underlying molecular mechanism remain unclear.
In this study, we confirmed the role of CCDC68 in inhibiting the
growth of human CRC cells, and clarified the molecular
mechanism underlying the effect of CCDC68 on the
progression of CRC. The results showed that CCDC68
expression was lower in human CRC than in paired non-
tumor tissues, and analyses of a human CRC database and cell
lines supported the low expression of CCDC68 in CRC. The data
suggested that CCDC68 acts as a tumor suppressor in CRC and
has a potential prognostic role in predicting survival.
A B

C D

E F G

FIGURE 6 | CCDC68 accelerates the degradation of CDK4 by regulating ITCH expression. (A) Western blotting analysis of the efficacy of HCT116 (CCDC68)
transfection with shITCH lentivirus or Nonsense lentivirus. (B, C) HCT116 (CCDC68/shITCH#3, #4) and HCT116 (CCDC68/Nonsense) cells were tested for
anchorage-independent growth. Cell colonies were counted, and the results are presented in the diagram. Data are presented as the mean ± SD and analyzed by
Student′s t-test, *P < 0.05. (D) Analysis of HCT116 (CCDC68/shITCH#3, #4) and HCT116 (CCDC68/Nonsense) cell cycles by flow cytometry. (E) Western blotting
analysis of CDK4 levels in HCT116 (CCDC68/shITCH #3 and #4), and HCT116 (CCDC68/Nonsense) cells. (F) Effect of ITCH knockdown on CDK4 degradation rate
in HCT116 (CCDC68) cells detected by western blotting. (G) The interaction between CDK4 and ITCH was analyzed by co-immunoprecipitation in 293T cells
transfected with the GFP-CDK4 plasmid.
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FIGURE 7 | CCDC68 promotes ITCH transcription by upregulating RXRa expression. (A) CCDC68 overexpression increased the mRNA levels of ITCH. (B) ITCH
promoter activity in CCDC68 overexpression cells compared with vector control cells. (C) Bioinformatics and proteomics analysis of transcription factors potentially
involved in the regulation of ITCH transcription. (D) RXRa expression levels in HCT116 (Vector/HA-CCDC68) and RKO (Vector/HA-CCDC68) cells. (E) ITCH mRNA
levels in HCT116(RXRa) and HCT116(Vector) cells. (F) ITCH promoter activity in HCT116 (RXRa) and HCT116 (Vector) cells. (G) Expression levels of ITCH in
HCT116 (RXRa) and HCT116 (Vector) cells. (H) Schematic diagram of the molecular mechanism underlying the effect of CCDC68 on regulating the proliferation of
colorectal cancer cells. Data are presented as the mean ± SD and analyzed by Student′s t-test. *P < 0.05.
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Overexpression of CCDC68 inhibited the monolayer growth
and adhesion-independent growth of CRC cells in vitro, and the
growth of transplanted tumors in vivo. In addition, CCDC68
promoted the transcription of ITCH by upregulating the
transcription factor RXRa, and increased levels of ITCH
downregulated CDK4 expression by inducing its degradation.
Thus, CCDC68 inhibits the malignant transformation of cells by
inhibiting G0/G1 cell cycle phase transition, thereby playing an
important role in inhibiting the growth of CRC. These findings
provide important insight into the role of CCDC68 in the
development of human CRC. Consistent with the inhibitory
function of CCDC68 in pancreatic cancer, it plays a tumor
suppressor role in CRC, providing a potential new target for
early diagnosis and treatment of CRC.

CDKs are endogenous cell cycle regulators that modulate cell
division and proliferation (26). CDK4 is an important regulator of
the G1 phase of the cell cycle. CDK4/6 bind to cyclin D to form a
kinase-active complex, which phosphorylates retinoblastoma
protein and drives the progression from G1 to S phase (27).
Several studies have demonstrated that CDK4 is upregulated in
cancer (28–33) and inhibiting CDK4 expression increases the
efficacy of clinical treatments for breast cancer, melanoma,
liposarcoma, and mantle cell lymphoma (34–37). This indicates
that CDK4 could be a target for the treatment of malignant
tumors. However, current CDK4 inhibitors are not clinically
effective in treating CRC. Therefore, looking for specific
inhibitors that regulate CDK4, developing highly selective drugs
for CDK4, and preparing reasonable and effective combined
strategies for specific patients are of great significance for
improving the clinical treatment effect of CRC patients (38).
However, the mechanism underlying the regulation of CDK4
protein degradation in human CRC has not been fully
elucidated. Ubiquitin-mediated degradation is essential for
controlling CDKs. Studies have shown that PAQR4 controls the
steady-state level of CDK4 by regulating the Skp2-mediated
ubiquitination of CDK4 (24). In CRC, Cdc37 activates the RB1
signaling pathway by increasing the stability of CDK4, which plays
a key role in promoting the survival of CRC cells (25). In addition,
Bury et al. showed that DUX4, a direct inhibitor of CDK1 activity,
can also bind to CDK4, but it is unclear whether DUX4 inhibits
CDK4 activity (39). The present results indicate that CCDC68 is a
key upstream regulator of CDK4 in CRC. CCDC68
overexpression accelerated the degradation rate of the CDK4
protein. A bioinformatics screening of E3 ubiquitin ligases
interacting with CDK4 showed that ITCH was involved in
CDK4 degradation mediated by CCDC68.

Ubiquitination is a post-translational modification involved
in the regulation of signaling pathways (40), and E3 ubiquitin
ligases catalyze the ubiquitination of target proteins (41). ITCH is
a member of the Nedd4 family of HECT-type E3 ligases, which
mediate the ubiquitination of multiple targets (42–44). ITCH
acts as a cancer-promoting factor in breast cancer, pancreatic
cancer, hepatocellular carcinoma, and chronic lymphocytic
leukemia (45–47). However, studies analyzing the expression
and function of ITCH in CRC show that ITCH is downregulated
in CRC and acts as a tumor suppressor by inhibiting the Wnt/b-
Frontiers in Oncology | www.frontiersin.org 12
catenin pathway (48, 49). In addition, Kathania et al. found that
ITCH can inhibit IL-17-mediated colon inflammation and
tumorigenesis through ROR-gt ubiquitination (50), and Ko
et al. reported that ITCH can form a destruction complex to
antagonize tumor necrosis factor receptor I (TNFRI), thereby
inhibiting TNF-NF-kB signal transduction and tumorigenesis
(51). In this study, we found that overexpression of CCDC68
significantly upregulated ITCH and downregulated CDK4 in
CRC cells, resulting in G0/G1 phase arrest. Knockdown of ITCH
in HCT116 (CCDC68) cells decreased the degradation rate of the
CDK4 protein, thereby promoting the formation and
proliferation of CRC cell colonies. Co-immunoprecipitation
assays confirmed the interaction between ITCH and CDK4,
revealing a new mechanism underlying the role of CCDC68 in
regulating CDK4 protein degradation through ITCH. The results
indicated that ITCH acts as a downstream effector of CCDC68 to
inhibit the growth of CRC, which is consistent with reports that
ITCH plays a negative regulatory role in the progression of CRC
(48, 49). Taken together, these findings indicate that
upregulating ITCH may provide therapeutic benefits for
CRC patients.

The regulation of ITCH expression has not been studied
extensively. Studies show that ITCH expression is regulated by
microRNAs in cancer (46–52). We showed that CCDC68
upregulated the expression of ITCH at the transcriptional level.
RXRa is a member of the nuclear receptor (NR) superfamily,
which functions in the regulation of transcription, and in
controlling the development, homeostasis, and metabolism of
organisms (53). RXRa is downregulated in cervical cancer and
inhibits its progression (54). In this study, proteomics analysis
and bioinformatics prediction showed that the ITCH promoter
contains a DNA binding site for RXRa, and ITCH and RXRa
were consistently upregulated. Western blotting experiments
indicated that CCDC68 overexpression significantly increased
the levels of RXRa, suggesting that RXRa is involved in the
transcription of ITCH. Low expression levels of RXRa are closely
related to the pathogenesis and progression of CRC (55). Volate
et al. reported that low concentrations of green tea are sufficient
to de-silence RXRa and inhibit intestinal tumorigenesis in the
ApcMin/+ mouse (56). Therefore, epigenetic regulation of RXRa
may be a new strategy for the prevention and treatment of CRC.
However, the exact mechanisms underlying the regulation of
RXRa by CCDC68 need to be further studied.

In summary, as shown in Figure 7H, the present study
identified a new CCDC68/RXRa/ITCH/CDK4 regulatory axis
involved in CRC progression. CCDC68 was downregulated in
CRC, and functional experiments showed that CCDC68
inhibited CRC cell growth in vitro and tumor formation in
vivo. CCDC68 overexpression increased the transcription and
expression of ITCH by upregulating RXRa, thereby promoting
the binding of ITCH to CDK4 and the degradation of CDK4.
This led to the inhibition of G0/G1 phase transition and cell
growth in human CRC cells. The present results indicate that
CCDC68 is an important tumor suppressor molecule in CRC,
and CCDC68 and its downstream effectors may become
potential targets for the early diagnosis and/or treatment of CRC.
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