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Early-life stressful experiences are critical for plasticity and development, shaping 
adult neuroendocrine response and future health. Stress response is mediated by the 
autonomous nervous system and the hypothalamic–pituitary–adrenal (HPA) axis while 
various environmental stimuli are encoded via epigenetic marks. The stress response 
system maintains homeostasis by regulating adaptation to the environmental changes. 
Pre-conceptual and in utero stressors form the fetal epigenetic profile together with 
the individual genetic profile, providing the background for individual stress response, 
vulnerability, or resilience. Postnatal and adult stressful experiences may act as the 
definitive switch. This review addresses the issue of how preconceptual in utero and 
postnatal events, together with individual differences, shape future stress responses. 
Putative markers of early-life adverse effects such as prematurity and low birth weight are 
emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of 
such events are discussed.
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STRESS, BRAIN, AND THE ENVIRONMENT

Physiological or biological stress is the response to a stressor, i.e., an environmental condition or a 
stimulus. Τhe body responds to stress by sympathetic nervous system activation as a result of the 
fight-or-flight response. The stress response aims to restore homeostatic control and facilitate 
adaptation. The brain processes stress in three main areas: amygdala, hippocampus, and prefrontal 
cortex (PFC). Amygdala and hippocampus play a critical role in memory formation and are associated 
with anxiety, fear, and cognitive processes. PFC is the brain region linked to planning complex 
cognitive behavior, personality expression, decision making, and moderating social behavior (1). The 
basic activity of the PFC region is to orchestrate thoughts and actions in accordance with internal 
goals and executive function (2). Corticosteroid receptors that react to the stressor through steroid 

Abbreviations: GR, glucocorticoid receptor; GRE, glucocorticoid response elements; HPA, hypothalamic–pituitary–adrenal; 
LBW, low birth weight; MR, mineralocorticoid receptor; PGGR, Primary Generalized Glucocorticoid Resistance (Chrousos 
syndrome); SNP, single-nucleotide polymorphism.
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hormone binding  are  abundant in these areas (3, 4). It is well 
established that stressful experiences during critical periods of 
early brain development can affect emotional and behavioral 
functions in adult life (5). The autonomous nervous system and 
the hypothalamic–pituitary–adrenal (HPA) axis are responsible 
for these functions and mediate stress response through targeted 
hormone release. This system acts by negative feedback to maintain 
brain homeostasis. The hypothalamus is stimulated by its inputs 
and releases the corticotropin-releasing hormone. This hormone 
is transported to its target, the pituitary gland, where it binds to the 
targeted receptors and causes the release of the adrenocorticotropic 
hormone. Although the main purpose of this system is well 
understood, recent studies attempt to identify underlying genetic 
mechanisms of brain function modulating mediators of this system 
including adrenaline and neuropeptides (6). Glucocorticoids reach 
the brain through the peripheral blood flow, where they bind to 
specific types of cytoplasmic glucocorticoid receptors (GRs) and 
mineralocorticoid receptors (MRs). MRs make up the majority of 
stress corticosteroid receptors with a high affinity for cortisol and 
are activated as soon as a stressor appears. GRs have a low affinity 
for cortisol and are only activated when stress reaches its peak on 
the brain. This complex is then translocated to the nucleus, where it 
binds to specific DNA elements [glucocorticoid response elements 
(GREs)] and acts as a transcription factor activating or repressing 
a great number of genes (7).

EARLY-LIFE STRESS, LEARNING, 
AND MEMORY

Exposure to early-life stressful events has been shown to activate 
the HPA stress hormone system. HPA axis mediator and receptor 
genes are prime targets of epigenetic modifications by DNA 
methylation and histone acetylation (8). The combination of 
genetic and epigenetic factors affects cell function and brain 
development. As a result, individuals who have experienced 
chronic stress during early development and childhood are at 
high risk for a wide range of behavioral problems that persist 
into adulthood. This phenotype becomes evident by learning 
and emotion regulation difficulties, alcohol and substance 
abuse, externalizing problems, as well as depression and anxiety 
disorders (7). Children who have experienced maltreatment or 
were exposed to maternal deprivation trauma have shown poor 
performance in tasks involving working memory, attention, 
planning, and learning processes (9, 10). In rodents, maternal 
deprivation is a well-established paradigm of early-life stress. 
Maternal deprivation of newborns from their dam leads to 
epigenetic changes in specific imprinted genes and dysfunctions. 
Behavioral and molecular effects depend on the duration and 
type of maternal deprivation and individual predisposition (11).

IN UTERO STRESS EXPOSURES

Intrauterine life events may have a much greater impact on 
epigenetic profiles than stressful exposures during adult life (12). 
Early stages of embryonic development are characterized by 

heightened brain plasticity that is adversely affected by exposure 
to environmental insults (13). Complex gene environment 
interactions during critical early developmental periods may 
have lasting effects and result in adult psychopathology (14, 
15). Maternal stress exposure, anxiety, and depression during 
pregnancy are considered in utero adverse experiences and 
have been associated with low birth weight (LBW) and future 
health problems (16–24). LBW, apart from being a risk factor for 
neonatal morbidity and mortality, has been proposed as a marker 
of early-life adversities (25, 26).

In this mini-review, genetic and epigenetic factors that shape 
stress response are discussed. The contribution of mitochondria 
and individual predisposition to developing mental health 
problems in response to a stressful stimulus will also be addressed.

GENETICS AND EPIGENETICS  
OF THE STRESS RESPONSE

Early-life adversities have been implicated in the occurrence 
of neuropsychiatric conditions, such as, Post-traumatic stress 
disorder (PTSD), depression, psychosis, and phenotypes 
resembling mood- and anxiety-related disorders (4–8). Recent 
data are beginning to unravel the complex interactions between 
genes and environment, namely, an individual’s genetic and 
epigenetic profile that renders the person resilient or at risk 
for developing a stress-related disorder (9, 10). Apart from the 
genetics of neuroendocrine stress response, it is important to 
take into consideration its epigenetic profile (11). A plethora 
of epigenetic marks, contributing to either the enhanced or 
suppressed expression of a gene, in combination with risk- 
or resilience-related predisposing polymorphisms, shape an 
individual’s phenotype (27). The complex interaction of the 
genetic background with the epigenetic profile that reflects early-
life experiences and is potentially reversible by environmental 
factors can result in a phenotype that is either resilient or sensitive 
towards adverse stress exposures (28, 29). Several genes and their 
epigenetic regulation have been implicated in the susceptibility 
to early-life stress. An overview of the below-discussed genes and 
their interrelations is provided in Figure 1.

NR3C1 and NR3C2 genes (Nuclear Receptor Subfamily  3 
Group C Member 1 and 2), encoding the GR and MR, 
respectively, are widely expressed in limbic regions of the brain 
and regulate HPA axis activity by cortisol binding. Deregulation 
of the GR–MR function may lead to HPA axis malfunction and 
stress vulnerability (43–45). The NR3C1 gene, localized on the 
5q31-32 chromosome, contains nine exons (1–9) (45, 46). In 
the 5′ Untranslated region (UTR), alternative splice variants of 
the first exon form the distal and proximal gene promoter that 
contains a crucial CpG island regulating the expression of exon 
1F. The multiple alternative first exon splice variants render the 
expression of NR3C1 tissue-specific (47–50). The first study in 
humans examining the epigenetic status of 1F promoter in low 
prenatal and increased maternal postnatal depression showed 
elevated methylation levels. This effect is reversed by maternal 
stroking of the newborns during the first postnatal weeks (51). In 
a thorough meta-analysis, psychosocial maternal prenatal stress 
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was significantly correlated with DNA methylation at CpG 36 of 
the 1F promoter (52). Interestingly, prenatal exposure of depressed 
mothers to serotonin reuptake inhibitors was not associated with 
alterations in the methylation profile of the 1F promoter. However, 
a correlation between the psychological profiles of depressed 
mothers, especially during the third trimester, and increased HPA 
axis reactivity of the newborns, has been reported (53). Maternal 
anxiety during the first two trimesters also affects the methylation 
status of NR3C1, thus diminishing NR3C1 gene expression (54). 
In a study examining the effects of maternal-related stressors 
such as maternal deprivation due to financial difficulties, daily 
psychosocial stress, and war-related phenomena, a strong 
correlation was found between the aforementioned maternal 
stressors, neonatal birth weight, and methylation of multiple CpG 
sites in the upstream NR3C1 promoter. These results support 
the hypothesis that intrauterine development and maternal 
environmental stressors affect the plasticity and adaptation to 
adverse stimuli (55). Further supporting this notion, decreased 
expression of NR3C1 was observed in hippocampal tissues of 
suicide completers abused during childhood. These findings can 

be explained by alterations in hippocampal methylation of tissue-
specific NR3C1, which persist into adulthood and lead to changes 
in HPA axis function (56–58). The NR3C2 gene on 4q31.1 
has recently been associated with behavioral abnormalities. 
Cognitive ability following acute stress has been associated with 
genetic variation of the GR–MR. Specifically, single-nucleotide 
polymorphisms (SNPs) of the above genes seem to affect cognition 
and HPA axis function (59, 60). In individuals with a history of 
childhood maltreatment, the minor NR3C2 allele rs17581262 was 
correlated, among others, with lower amygdala and hippocampal 
volumes and major depression, suggesting that  this  allele is a 
predisposing risk factor for stress-related disorders (61).

FKBP5 (6p21.31) encodes a 51-kDa immunophilin, which 
is a major component of the GR heterocomplex. Upon stress 
exposure, cortisol diffuses into the cytoplasm and binds the 
GR (62–64). FKBP5 slows down the translocation of GR to 
the nucleus (65, 66). FKBP5 expression is regulated by GREs 
via a cortisol-dependent short negative feedback loop (67, 
68). Ιn intron 2 of FKBP5 and close to a functional GRE, the 
significant SNP rs1360780 was identified (69). Structurally, 
the rare risk allele alters the chromatin conformation after GR 
binding to the GRE, inducing the transcription of FKBP5. In 
the presence of the protective allele, this induction is absent 
(67, 69). The aforementioned SNP has been linked to a variety 
of mental health conditions including depression, anxiety, 
psychosis, and posttraumatic stress disorder (70–72). During 
their in utero formation, brain regions including the amygdala 
and hippocampus are particularly vulnerable in cases of antenatal 
maternal depression and anxiety (73, 74). FKBP5 genetic variation 
among neonates combined with antenatal maternal depression 
can predispose toward the development of depressive symptoms 
in the offspring later in life due to alterations in neonatal brain 
regions (75). Interestingly, recent reports on the association of 
depression with childhood maltreatment did not report FKBP5 
methylation to be involved in mediatory mechanisms (76, 77).

Alterations in GR function through NR3C1 lead to a rare 
endocrinological condition known as Primary Generalized 
Glucocorticoid Resistance (PGGR, Chrousos syndrome) (78, 79). 
Mutations in the NR3C1 gene result in receptor conformation 
changes and low ligand binding affinity and contribute to the 
clinical profile and pathogenesis (80–83). PGGR is characterized 
by decreased tissue sensitivity toward cortisol, resulting in 
malfunctioning negative feedback loops (84, 85). This causes a 
compensatory activation of the HPA axis and hypersecretion of its 
end products (80, 85, 86). Interestingly, FKBP5 has been implicated 
in glucocorticoid resistance. The gene’s overexpression is considered 
to be responsible for the low ligand-binding affinity of the GR in 
New World primates, providing a selective advantage of an overall 
normal adrenal function but with high concentrations of circulating 
Adrenocorticotropic hormone (ACTH) and cortisol (87, 88).

Brain-derived neurotrophic factor (BDNF) is a neurotrophin 
expressed in hippocampus and PFC affecting neuron survival, 
development, and plasticity. Early-life stress and Val66Met 
polymorphism result in lower BDNF availability (29, 89).

Τhe GILZ (glucocorticoid-induced leucine zipper) or TSC22D3 
gene, located on Xq22.2 (90), is induced by cortisol-bound GR. 
This complex binds on the GRE in the promoter of GILZ, thus 

FIGURE 1 | The role of molecular genetic markers in cellular stress response. 
The interconnection between genes IGF2, MBL2, MEST, NR3C1, NR3C2, 
TSC22D3, and BDNF in the context of stress response is shown. Membrane-
bound IGF2 induction by maternal distress is associated with nuclear NR3C2 
induction (3). IGF2 shows similar changes in methylation levels with NR3C1 
during age-related stress (4), FKBP5 during the development of preterm 
infants (30), and MEST in infertile males (31). MBL2 and FKBP5 upregulation 
has been associated with parental-nutrition-induced stress (32, 33). NR3C2 
and NR3C1 interact to control gene expression during stress (8, 34). Nuclear 
NR3C1 (glucocorticoid receptor) seems to be a convergence point for 
FKBP5 (9, 35), NR3C2 (10, 36), MEST (11, 37), and IGF2 (4) action in stress. 
TSC22D3 is an established glucocorticoid signaling responsive gene that is 
regulated by NR3C1 (27, 38) and an NR3C2 target (28). BDNF is upregulated 
by IGF2 (39) in an Alzheimer’s disease mouse model, inhibited by NR3C1 
(40) in neuron-like cells, and associated with high NR3C2 and low NR3C1 
in high-cholesterol-diet rats (41). FKBP5 elevation is associated with BDNF 
suppression and improved anxiety, depression, and posttraumatic stress 
disorder conditions (42). Gene interaction analysis was performed using the 
Genomatix Pathway System (Genomatix.de).
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rendering this gene a valid measure of GR function (91–93). 
In an avian species, GILZ expression in the pituitary gland 
seems to be upregulated by glucocorticoids during the second 
half of the embryonic development and possibly plays a role in 
regulating pituitary hormone expression levels (94). GILZ is 
widely expressed in the brain, and its function depends on HPA 
axis activation. Increased expression of GILZ was found in the 
hippocampus and medial PFC of stressed mice, indicating a 
region-specific function (95). In human studies, decreased GILZ  
Messenger RNA (mRNA) levels were found in the PFC and the 
amygdaloid nuclei in teenage suicide completers (96). The above 
findings are only beginning to decipher the role of GILZ both in 
stress regulation and in immune system function.

GENETICS AND EPIGENETICS OF EARLY 
EMBRYONIC DEVELOPMENT

MBL2 (mannose binding lectin 2) is an important regulator of 
innate immunity and inflammatory processes. The MBL2 gene 
encodes for a protein that assembles into a mannose-binding 
lectin complex. MBL2 plays a very important role in the first-line 
immune responses, as a component of neonate immunity when 
the adaptive immunity system is not sufficiently developed (97). In 
humans, MBL2 expression levels are determined genetically by a 
number of polymorphic sites of the gene as well as in its promoter 
region. Three non-synonymous SNPs, which are linked to absence 
or low levels of MBL2, have been identified in exon 1 and the 
promoter region. The most important MBL2 gene SNPs associated 
with early infection and preterm delivery risk are variants B 
[rs1800450 (GGC→GAC)], C [rs1800451 (GGA→GAA)], and 
D [rs5030737 (CGT→TGT)]. Moreover, there are SNPs in the 
promoter region at position −550 in variant H/L (rs11003125) 
and at position −221 in variant X/Y (rs7096206) (25, 98). These 
MBL2 gene polymorphisms are associated with an increased risk 
of perinatal and neonatal infections and risk of premature delivery 
(99, 100). MBL2 levels could not predict the risk of newborn 
morbidity or mortality as a single factor since morbidity is also 
affected by other factors including sex, premature delivery, birth 
weight, etc. (97).

IGF2 (insulin growth factor 2), an imprinted gene, acts as a 
growth factor promoting differentiation and metabolism and 
plays an important role in the development and nutritional 
needs of the fetus (101). IGF2 and H19 are two genes of the same 
imprinted domain expressed from the paternal and maternal 
allele, respectively, that have been implicated in the control of 
placental and embryonic growth through cell proliferation and 
apoptosis (102, 103). H19 is crucial for growth and differentiation 
of the placenta (104, 105).

MEST (mesoderm specific transcript, 7q32) is a paternally 
expressed imprinted gene, which influences placental and 
embryonic growth, as well as birth weight of the infant (31, 106). 
MEST is a member of the a/b-hydrolase superfamily and expressed 
in the embryonic mesoderm (107). Increased MEST expression 
is linked to infants with high birth weight. Decreased MEST 
gene expression is observed in premature embryos compared to 
normal embryos, but does not affect DNA methylation (108).

MATERNAL STRESS AND 
MITOCHONDRIA

Moving from single genes to subcellular functional systems, 
converging lines of evidence have pointed to an important 
role of mitochondria, the traditional “powerhouses of the 
cell,” as regulators of the stress response (109–111). Given 
the maternal origin and inheritance of mitochondria, it is 
plausible that maternal stress may exercise its effects on the 
offspring via alterations of mitochondrial pathways in both 
the in utero maternal microenvironment and offspring. Along 
these lines, it has been shown that maternal prenatal stress 
affects mitochondrial protein expression in pathways related to 
mitochondrial biogenesis and energy production in PFC and 
hippocampus of male rat offspring (112). Early-life maternal 
deprivation leads to a decrease in mitochondrial-related muscle 
gene expression in adult rats. Interestingly, adult-onset chronic 
stress had no effect on mitochondrial-related muscle gene 
expression function, indicating an early-life stress-specific effect 
(113). In humans, maternal psychosocial stress has been reported 
to alter the expression of mitochondrial proteins in the placenta 
(114). In this study, a link between mitochondrial changes 
and infant temperament has also been suggested. Maternal 
psychosocial stress and lifetime trauma have been associated 
with decreased mitochondrial DNA copy number in the placenta 
(115, 116).

INDIVIDUALITY

Chronic stress links changes in the epigenetic landscape with 
health conditions (117). Different cell types are characterized 
by distinct patterns of gene expression due to developmental, 
environmental, physiological, and pathological reasons 
(117). Epigenetic mechanisms affect gene function in a 
dynamic way as a result of different environmental exposures 
during fetal development. Early-life stressful experiences, 
such as  nutritional deprivation, lack of maternal care, or 
chemical exposure during critical developmental periods, 
can lead to phenotypic differences later in life (118). In 
addition to genetic susceptibility (polymorphisms, genomic 
architecture) inter-individual phenotypic variations are 
also the result of epigenetic modifications. Once we realize 
how different environmental triggers affect the individual 
epigenetic processes, we may be able to develop new means 
to prevent or reverse environmentally driven epigenetic 
changes. A recent study supports this theory and suggests 
that adaptation to stress is a combination of three important 
factors: genetic predisposition, early-life environment, and 
late-life environment (119). In animal models, strain, age, sex, 
frequency, and duration of the stressor, time point within the 
light cycle and temperature, and even the housing conditions 
are some of the environmental factors that shape the stress 
response(120–122). In humans, genetic background, age, sex, 
type, frequency, and duration of the stressor and developmental 
stage have been suggested to be  important factors that shape 
individual stress response (123).
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DISCUSSIONS PERSPECTIVES

Early-life stress can influence brain plasticity with lasting 
effects. Epigenetic factors including type of exposure, 
timing, and diversity of experience in combination with 
genetic predisposition contribute to the individual resilience 
or  vulnerability toward stress. Elucidating the interplay 
and downstream affected pathways (Figure 2) among i) 
housekeeping genes of the reproductive system, ii) regulators of 
the HPA axis, iii) components of mitochondrial heterogeneity, 
and iv) individual genomic architecture will facilitate our 
understanding of the impact of early-life stressful events for 
later life outcomes. Our analysis reveals the top 20 “satellite” 
genes (Figure 2) that form a functional network, affecting and 
being affected by the core genes controlling early-life stress. 
Potentially stressful or compensatory individual experiences 
during lifetime may have an impact on the epigenetic 

landscape, thus masking the effects of early-life experiences. 
An improved understanding will allow an integrated, systemic 
approach to address pathological stress responses and pinpoint 
novel molecular targets for pharmacological and therapeutic 
interventions.
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FIGURE 2 | Gene interaction network discussed in the current review. The network was generated by the GeneMANIA prediction server (124). The left panel 
presents the different types of interactions with respective color coding, depicted with lines connecting genes in the network: physical interactions (pink), predicted 
(orange), co-expression (purple), and shared protein domains. The right panel presents gene functions, depicted with colored slices inside the respective genes: 
chaperone-mediated protein folding (red), heat shock protein binding (blue), calcium dependent protein binding (dark blue), protein folding (green), learning of 
memory (orange), complement activation (light blue), cognition (purple).
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