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Abstract: Tumor necrosis factor (TNF) is a regulator of several chronic inflammatory diseases, such
as rheumatoid arthritis. Although anti-TNF biologics have been used in clinic, they render several
drawbacks, such as patients’ progressive immunodeficiency and loss of response, high cost, and
intravenous administration. In order to find new potential anti-TNF small molecule inhibitors,
we employed an in silico approach, aiming to find natural products, analogs of Ampelopsin H, a
compound that blocks the formation of TNF active trimer. Two out of nine commercially available
compounds tested, Nepalensinol B and Miyabenol A, efficiently reduced TNF-induced cytotoxicity in
L929 cells and production of chemokines in mice joints’ synovial fibroblasts, while Nepalensinol B also
abolished TNF-TNFR1 binding in non-toxic concentrations. The binding mode of the compounds was
further investigated by molecular dynamics and free energy calculation studies, using and advancing
the Enalos Asclepios pipeline. Conclusively, we propose that Nepalensinol B, characterized by the
lowest free energy of binding and by a higher number of hydrogen bonds with TNF, qualifies as
a potential lead compound for TNF inhibitors’ drug development. Finally, the upgraded Enalos
Asclepios pipeline can be used for improved identification of new therapeutics against TNF-mediated
chronic inflammatory diseases, providing state-of-the-art insight on their binding mode.

Keywords: in silico; TNF; crystal structure; natural products; molecular dynamics; L929; TNF-TNFR1
binding; chemokines; Nepalensinol B

1. Introduction

Chronic inflammatory disorders, such as rheumatoid arthritis (RA), Crohn’s disease,
inflammatory bowel disease, and psoriasis, have been associated with deregulated inflam-
matory responses to multiple cytokines, which induce immune infiltration and fibroblast
activation, leading to tissue damage [1]. Focusing on RA, according to recent recommenda-
tions [2], first-line treatment should include conventional disease-modifying antirheumatic
drugs (DMARDs), such as methotrexate and glucocorticoids. For non-responsive patients,
targeted synthetic DMARDs, inhibiting several kinases—Janus kinases (JAKs), mitogen-
activated protein kinase (MAPK) and spleen tyrosine kinase (SYK)-Bruton’s tyrosine kinase
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(BTK) (SYK-BTK) [3] as well as biologic agents for blocking pro-inflammatory cytokines,
including interleukine 1 (IL-1), interleukine 6 (IL-6) and tumor necrosis factor (TNF)—
are administered.

TNF is a soluble cytokine, which belongs to the tumor necrosis family of homotrimeric
proteins [4,5]. TNF functions through two receptors: TNFR1/p55 and TNFR2/p75. After
the protein trimer has been formed, TNF binds to its receptors, leading, respectively, to the
initiation of several inflammatory signaling pathways (e.g., NF-κB, JNK, p38-MAPK) [1].
Soluble TNF binds mainly to TNFR1, while transmembrane TNF binds to TNFR2. The
monomeric and dimeric forms of TNF are inactive, and thus, in order to block the TNF
relevant signaling, the inhibition of the trimeric form of TNF has been suggested [6].

Analyzing the TNF crystal structure, the inner part of each TNF monomer consists of
hydrophobic residues, while the outer part constitutes the exposed surface of the cytokine.
The top of the trimer presents polar interactions, with a possible salt bridge between Glu104
of one subunit and Arg103 of the other subunit. The center consists of hydrophobic contacts
involving Tyr119, Leu57 and Leu157. Further hydrophobic interactions are present between
Tyr59, Tyr119 and Tyr153 as well as Phe124 of an adjacent subunit. Finally, the bottom of
the trimer contains a salt bridge between Lys11 of one subunit and the terminal carboxylate
group of Leu156 of another subunit [5].

TNF has been broadly studied and reviewed in the literature [7–13], underlining the
importance and the relevance of this growth factor as a valuable drug target.

As mentioned above, TNF antagonists have been widely used and proved effective
in clinic [7]. However, these antagonists are mainly biologics, i.e., monoclonal antibodies
(infliximab, adalimumab, certolizumab pegol, golimumab) [7,14,15] and fusion proteins
(etanercept) [16], which bear certain drawbacks. Such disadvantages include causing
hypersensitivity, increased risk of patients to develop serious infections, such as tubercu-
losis and hepatitis B because of the caused immune system suppression, loss of patients’
response during therapy due to arisen immunogenicity, and intravenous/subcutaneous
administration as well as high cost of production and supply [8,10,11,17–22]. Thus, there is
a great need for the development of potent small molecules that will efficiently inhibit TNF
activity, as they can be inexpensively produced and distributed; they can be formulated to
accommodate a plethora of administration routes (e.g., per os) while they can also present
lower immunosuppressive side effects than biologics [8,10,11,21].

The first small molecule identified as a TNF inhibitor in vitro was suramin, synthe-
sized in 1916 [23,24]. Hence, it has been used as a template for identifying other com-
pounds with inhibitory activity, such as Evans blue and Trypan blue, while also setting
the basis of structure–activity relationship (SAR) studies for this biomolecular target [25].
He et al. [6] developed SPD304, which exhibited a micromolar inhibitory activity in TNF-
TNFR1 interaction, binding to the TNF dimer as revealed via X-ray crystallography, thus
blocking the formation of the active TNF trimer. The structure elucidation of the bound
ligand afforded valuable SAR information, which surprisingly does not include any hy-
drogen bond or electrostatic interactions of the bound ligand with the TNF dimer. All
interactions were hydrophobic, while interactions of the ligand with TNF residues Tyr59
and Tyr119 were identified as highly important for TNF inhibition [5]. Starting from
the ligand SPD304 in 2005, several small molecule TNF inhibitors have been developed,
including heterocyclic compounds, small organic ligands, natural products (NPs) and
metal-complexed compounds [10–12,26–28]. Blevitt et al. [29] discovered an inhibitor that
forms an aggregating conglomerate, which antagonizes a protein subunit of the TNF trimer
and alternates the quaternary structure of TNF upon binding. Thus, the formation of the
TNF-TNFR1 is disrupted, due to the quaternary structure change induced by the aggregate.
O’Connell et al. [27] and Dietrich et al. [12] developed small molecules with oral bioavail-
ability that bind deeply in the TNF homotrimer, being able to allosterically stabilize an
asymmetric complex or the trimer itself, leading to signaling inhibition. Xiao et al. [30] also
proposed a compound that deforms the TNF trimer upon binding, leading to deregulated
signaling upon binding of the TNF trimer to TNFR1.
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In silico approaches were recently used to facilitate the identification of new potential
anti-TNF therapeutics [21,31,32]. Computational modeling supports drug development,
as it reduces both the time and the cost spent; it can predict clinical responses and it
supports the 3R (replacement, reduction and refinement) concept requests [33]. Five
novel TNF-α inhibitors were identified, following a structure-based virtual screening in
combination with in vitro experiments [33,34]. Saddala and Huang [35] used a chemoin-
formatic workflow which employed pharmacophore modeling, docking and ADMET
property prediction within the ZINC database to identify potential lead candidates with
oral bioavailability for the inhibition of TNF; however, their biological activity has not
been addressed. Recently, Melagraki et al. [36] developed two dual TNF-RANKL (receptor
activator of nuclear factor κ-B ligand) micromolar inhibitors, thus impeding the active
biological form of both cytokines, which play a determinant role in chronic inflamma-
tory diseases. Two compounds have been identified employing the Enalos [37] in silico
workflow, which combines a structure-based chemical library screening approach together
with a ligand-based consensus quantitative structure–activity relationship (QSAR) model
filtering and molecular dynamics simulations in order to further investigate computation-
ally the compounds’ binding mode [31,32,35]. Continuing their work in dual inhibitors,
Melagraki et al. [9] proposed a NP, named A11 (Ampelopsin H), which efficiently blocks
both TNF and RANKL, using a further automated version of the EnalosMD [9] workflow,
which was recently included in the Enalos Asclepios KNIME nodes.

In this study, our aim is to identify further lead compounds that act as protein–protein
interaction (PPI) inhibitors, binding to the inactive TNF dimer and inhibiting the formation
of the active trimer. Development of small-molecule PPI inhibitors is very challenging [38],
as a PPI inhibitor can act on certain “hot spots” on the protein surfaces [39–41], that are
typically large, flat and solvent-exposed, while they are predominantly characterized by
non-specific features (hydrophobic and electrostatic interactions) [42,43]. The large size
and solvent exposure of the binding site require additionally that PPI inhibitors should
achieve high potency and exhibit low molecular weight (MW), optimal lipophilicity and
solubility [10,21,43]. To attain these pharmacokinetic properties of a prospective TNF
small molecule ligand, we focused on NPs, deeming that, due to their natural origin as
plant metabolites, they would bear an improved pharmacokinetic profile in comparison to
synthetic compounds. Towards the identification of prospective PPI compounds with TNF
inhibitory action in chemical libraries datasets, our group has further optimized the Enalos
computational drug discovery pipeline. Conclusively, in this paper, we used our in silico
pipeline to discover new NP lead compounds as potential TNF inhibitors, continuing our
previous work in the field [9,36,44–46].

2. Results
2.1. Computer-Aided Drug Design (CADD)
2.1.1. Initial Search and Filtering

Following up on our earlier efforts, we proceeded to an in silico optimization of
compound A11 (Ampelopsin H) [9], using a modified version of our cheminformatics-
aided workflow, EnalosMD and the Enalos+ suite [9,47–49]. More specifically, a data
mining procedure was performed, using the Enalos PubChem similarity node [37,49],
searching for NPs that would be analogs of Ampelopsin H. Molecular similarity (termed
also as chemical similarity) suggests that structurally similar molecules are likely to have
similar biological and physicochemical properties. This concept is widely known as the
similarity principle, and it is fundamental in cheminformatics, as it is the basis of many
property prediction models, as well as compound design models [50]. Our model uses a
similarity method to search PubChem for molecules, which are similar to the structure
of enquiry (Tanimoto similarity 85%) [51]. This search yielded 113 relevant compounds,
which were selected for molecular docking simulations.
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2.1.2. Molecular Docking Simulations Using Enalos Asclepios KNIME rxDock Node

The molecular docking studies were performed using rDock [52] and the highest-score
values were considered for the complexes’ construction. The docking was based on the
TNF dimer complex with ligand SPD304 crystal structure (PDB code: 2AZ5) [6], after
conducting a homology modeling to fill in missing residues (cf. Section 4). The docked
SPD304 conformation reproduced its crystal form between the docked and the crystal
SPD304 structure, while the docking score of SPD304 binding to TNF was calculated to be
−54.269. After their preparation and their geometry optimization with the QM (quantum
mechanics) node of the Enalos Asclepios workflow, the NPs that were identified by the
similarity search were docked into the active site of TNF, and the highest-scored docking
poses were selected. More specifically, the highest score of ampelopsin H was −45.140.
The Enalos Asclepios KNIME nodes consist of a powerful tool, which fully automates the
preparation of any ligand–protein complex and performs molecular dynamics simulations,
offering optimal performance and versatility by employing a wide range of functionalities.

This refined docking step resulted in 53 compounds, which were deemed promising for
further study. We acquired the 9 commercially available compounds out of these 53 identified
compounds (Vitisin B, Miyabenol A, Kobophenol A, trans-Diptoindonesin B, trans-Miyabenol
C, cis-Diptoindonesin B, cis-Miyabenol C, Nepalensinol B, Flexuosol A) to proceed to the
phenotypic pharmacological testing and a more sophisticated in silico investigation.

2.2. Pharmacological Testing

The pharmacological testing experiments included testing of the compounds in TNF-
regulated assays ex vivo and in vitro. The first ex vivo screening of the compounds included
quantification of the potential of the NPs to downregulate TNF-induced cytotoxicity in
the L929 cell line, as previously reported [9,36]. Five out of the nine compounds tested
showed an improved potential to block TNF activity (Figure 1A). Four compounds, named
trans-Diptoindonesin B, trans-Miyabenol C, cis-Diptoindonesin B, cis-Miyabenol C, were
excluded from further validation, as they seemed ineffective to block L929 TNF-induced
death (Figure 1B). L929 cells were also used to assess the compounds’ toxicity, measured
by a Crystal Violet assay, as described by Melagraki et al., 2017 (Figure 1C) [9,36]. The
half maximal inhibitory concentration (IC50) values of the compounds’ efficacy in the
L929 TNF-induced assay as well as the half maximal lethal concentration (LC50) values
for the influence of the compounds in the L929 cell survival, are described in the table
of Figure 1D. As for their toxicity, compounds Vitisin B, Kobophenol A and Flexuosol A
reached a plateau of maximum cytotoxicity at >85% survival at a high concentration range,
attaining a good therapeutic window (cf. Figure 1C). Nepalensinol B and Miyabenol A
seemed the most effective compounds, as they supported L929 cells survival, upon TNF
treatment, with an IC50 of 28.97 µM and 16.03 µM, while they presented LC50 in a higher
concentration, at 171 µM and 955 µM, respectively.

Additionally, the anti-inflammatory potential of the top three compounds (Nepalensi-
nol B, Miyabenol A and Flexuosol A) were studied in primary cells, using synovial fibrob-
lasts (SFs), isolated either from the ankle joints of human TNF transgenic (hTNFtg) mice,
or their wild-type littermates, as previously reported [53]. hTNFtg mice carry five copies of
the hTNF transgene [54] and they spontaneously develop chronic polyarthritis, a disease
similar to human RA; while they have been successfully used as drug testing platforms for
anti-TNF therapeutics [55], SFs have been highlighted as the key driver cell type in this
model of disease, as TNF/TNFR1 signaling in SFs is sufficient and necessary for the disease
manifestation [56]. SFs were treated with different concentrations of the experimental
compounds with (WT SFs, Figure 2A) or without (hTNFtg SFs, Figure 2B) the addition of
hTNF. hTNFtg SFs secrete spontaneously hTNF, while wild-type (WT) SFs were stimulated
with 10 ng/mL hTNF to increase their pro-inflammatory responses. At 48 h following the
treatment of the SFs with different concentrations of the test compounds, their supernatants
were analyzed by ELISA for the detection of CCL5/RANTES, a pathogenic chemokine
in RA. Interestingly, Nepalensinol B and Miyabenol A were effective in downregulating
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CCL5, presenting, respectively, IC50s values of 7.39 µM and 25.25 µM in WT TNF-induced
SFs and 3.7 µM and 2 µM in hTNFtg SFs. Flexuosol A, which presented a higher IC50 in
the L929 TNF death–induced assay, was also about 10 times less effective in eliminating
CCL5 levels in the tested concentrations.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. Ex vivo assays for the first pharmacological screening of the compounds. (A) Compounds that showed 
potential to downregulate the TNF induced cytotoxicity on L929 cells. (B) Compounds that were ineffective in 
downregulating the TNF induced cytotoxicity on L929 cells were excluded from further analysis. (C) Cytotoxicity of the 
effective compounds on L929 cells. All error bars indicate SEM values. (D) Conclusive table of the IC50 values of A and 
LC50 values of (C). 

Additionally, the anti-inflammatory potential of the top three compounds 
(Nepalensinol B, Miyabenol A and Flexuosol A) were studied in primary cells, using 
synovial fibroblasts (SFs), isolated either from the ankle joints of human TNF transgenic 
(hTNFtg) mice, or their wild-type littermates, as previously reported [53]. hTNFtg mice 
carry five copies of the hTNF transgene [54] and they spontaneously develop chronic 
polyarthritis, a disease similar to human RA; while they have been successfully used as 
drug testing platforms for anti-TNF therapeutics [55], SFs have been highlighted as the 
key driver cell type in this model of disease, as TNF/TNFR1 signaling in SFs is sufficient 
and necessary for the disease manifestation [56]. SFs were treated with different 
concentrations of the experimental compounds with (WT SFs, Figure 2A) or without 
(hTNFtg SFs, Figure 2B) the addition of hTNF. hTNFtg SFs secrete spontaneously hTNF, 
while wild-type (WT) SFs were stimulated with 10 ng/mL hTNF to increase their pro-
inflammatory responses. At 48 h following the treatment of the SFs with different 
concentrations of the test compounds, their supernatants were analyzed by ELISA for 
the detection of CCL5/RANTES, a pathogenic chemokine in RA. Interestingly, 
Nepalensinol B and Miyabenol A were effective in downregulating CCL5, presenting, 
respectively, IC50s values of 7.39 μΜ and 25.25 μΜ in WT TNF-induced SFs and 3.7 μΜ 
and 2 μΜ in hTNFtg SFs. Flexuosol A, which presented a higher IC50 in the L929 TNF 
death–induced assay, was also about 10 times less effective in eliminating CCL5 levels in 
the tested concentrations. 

Finally, the three aforementioned compounds were further tested for their potential 
to interrupt TNF-TNFR1 binding (Figure 2D). TNF/TNFR1 binding was quantified by an 
in vitro sandwich ELISA (as previously reported) [9,36]. Nepalensinol B showed the 
highest potential to interrupt TNF-TNFR1 binding, followed by Miyabenol A, with IC50 
values of 90.2 ± 19 μΜ and 132 ± 14 μΜ, respectively (Figure 2C). However, Miyabenol 
A did not manage to interrupt the TNF-TNFR1 binding more than 70%, indicating that 
Nepalensinol B is probably a more promising inhibitor of the TNF-TNFR1 complex 
formation. Surprisingly, although Flexuosol A did not produce promising results ex 
vivo, it downregulated in vitro TNF-TNFR1 binding with an IC50 of 1.8 ± 0.45 μΜ at 
about 50%. 

Figure 1. Ex vivo assays for the first pharmacological screening of the compounds. (A) Compounds
that showed potential to downregulate the TNF induced cytotoxicity on L929 cells. (B) Compounds
that were ineffective in downregulating the TNF induced cytotoxicity on L929 cells were excluded
from further analysis. (C) Cytotoxicity of the effective compounds on L929 cells. All error bars
indicate SEM values. (D) Conclusive table of the IC50 values of A and LC50 values of (C).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 29 
 

 

 
Figure 2. Validation of effective compounds. (A) Treatment of WT SFs with several concentrations of the compounds to 
assess the anti-inflammatory potential of the compounds on exogenous induction of TNF. (B) Treatment of hTNFtg SFs, 
which overexpress hTNF, with several concentrations of the compounds to assess the anti-inflammatory potential of the 
compounds. (C) Table with IC50s values of (A,B). (D) In vitro TNF-TNFR1 sandwich ELISA to assess the compounds’ 
potential to inhibit the interaction of TNF with its main receptor TNFR1. All error bars indicate SEM values. 

2.3. Molecular Dynamics and Free Energy Calculations 
Molecular Dynamics Simulations with Enalos Asclepios KNIME MD-Simulation Node, 
Free Energy Calculations with MM-GBSA Method 

Figure 3 summarizes schematically the entire workflow followed. Molecular 
dynamics (MD) simulations and free energy of binding calculations were conducted for 
the compounds exhibiting a pharmacological response to validate and enhance the 
predictive ability of our computational models, while investigating the binding mode of 
the compounds to TNF. The poses selected for complex formation and MD simulation, 
derived from the aforementioned docking procedure, in the classic merge of molecular 
docking and MD simulations. Each pose–receptor complex was embedded within TIP3P 
water solvent, and the 7 systems ran for 1 μs. According to the root-mean-square 
deviation (RMSD) graphs, the MD for all our ligands gave us stable trajectories (Figure 
4). The analysis performed focused on the following aspects: (a) the number of the 
hydrogen bond and hydrophobic interactions that are formed between the cavity 
residues of TNF and the ligand compound, which are maintained until the end of the 
simulation for each ligand, (b) the conformational changes of the receptor after the 
simulation and (c) the binding affinity prediction and its most crucial terms. 

Specifically, the MD results showed that protein structures stabilized early during 
the simulations in all complexes (cf. Figure 4). The RMSD values did not exceed 2.5–3 Å 
in TNF, and eventually all complexes showed convergence after ~350–400 ns (Figure 4). 
Cα-RMSD values for TNF complexes with the compounds were particularly stable, with 
an average deviation of 1.5–2.5 Å from the crystal structure (Figure 4). The ligand RMSD 
values for each TNF complex showed non-considerable changes throughout the 
trajectory. Miyabenol A, Nepalensinol B and Flexuosol A complexes showed RMSD 1.5–
2.5 Å, with the most noteworthy fluctuation being observed in the first ~125 ns of the 
Miyabenol A–TNF simulation and after ~282 ns in the case of Flexuosol A–TNF 
simulation (Figure 4). 

Figure 2. Validation of effective compounds. (A) Treatment of WT SFs with several concentrations of
the compounds to assess the anti-inflammatory potential of the compounds on exogenous induction
of TNF. (B) Treatment of hTNFtg SFs, which overexpress hTNF, with several concentrations of the
compounds to assess the anti-inflammatory potential of the compounds. (C) Table with IC50s values
of (A,B). (D) In vitro TNF-TNFR1 sandwich ELISA to assess the compounds’ potential to inhibit the
interaction of TNF with its main receptor TNFR1. All error bars indicate SEM values.
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Finally, the three aforementioned compounds were further tested for their potential
to interrupt TNF-TNFR1 binding (Figure 2D). TNF/TNFR1 binding was quantified by an
in vitro sandwich ELISA (as previously reported) [9,36]. Nepalensinol B showed the highest
potential to interrupt TNF-TNFR1 binding, followed by Miyabenol A, with IC50 values of
90.2 ± 19 µM and 132 ± 14 µM, respectively (Figure 2C). However, Miyabenol A did not
manage to interrupt the TNF-TNFR1 binding more than 70%, indicating that Nepalensinol B
is probably a more promising inhibitor of the TNF-TNFR1 complex formation. Surprisingly,
although Flexuosol A did not produce promising results ex vivo, it downregulated in vitro
TNF-TNFR1 binding with an IC50 of 1.8 ± 0.45 µM at about 50%.

2.3. Molecular Dynamics and Free Energy Calculations
Molecular Dynamics Simulations with Enalos Asclepios KNIME MD-Simulation Node,
Free Energy Calculations with MM-GBSA Method

Figure 3 summarizes schematically the entire workflow followed. Molecular dy-
namics (MD) simulations and free energy of binding calculations were conducted for the
compounds exhibiting a pharmacological response to validate and enhance the predictive
ability of our computational models, while investigating the binding mode of the com-
pounds to TNF. The poses selected for complex formation and MD simulation, derived
from the aforementioned docking procedure, in the classic merge of molecular docking
and MD simulations. Each pose–receptor complex was embedded within TIP3P water
solvent, and the 7 systems ran for 1 µs. According to the root-mean-square deviation
(RMSD) graphs, the MD for all our ligands gave us stable trajectories (Figure 4). The
analysis performed focused on the following aspects: (a) the number of the hydrogen bond
and hydrophobic interactions that are formed between the cavity residues of TNF and the
ligand compound, which are maintained until the end of the simulation for each ligand,
(b) the conformational changes of the receptor after the simulation and (c) the binding
affinity prediction and its most crucial terms.

Specifically, the MD results showed that protein structures stabilized early during
the simulations in all complexes (cf. Figure 4). The RMSD values did not exceed 2.5–3 Å
in TNF, and eventually all complexes showed convergence after ~350–400 ns (Figure 4).
Cα-RMSD values for TNF complexes with the compounds were particularly stable, with
an average deviation of 1.5–2.5 Å from the crystal structure (Figure 4). The ligand RMSD
values for each TNF complex showed non-considerable changes throughout the trajectory.
Miyabenol A, Nepalensinol B and Flexuosol A complexes showed RMSD 1.5–2.5 Å, with
the most noteworthy fluctuation being observed in the first ~125 ns of the Miyabenol
A–TNF simulation and after ~282 ns in the case of Flexuosol A–TNF simulation (Figure 4).
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Figure 3. Schematic representation of the experimental workflow, containing a combination of pharmacological studies
with computational models. The workflow starts by applying a molecular similarity search in PubChem, which yields
113 compounds. These compounds are further refined via a docking process in a homology model based on PDB: 2AZ5 (TNF
dimer complex with ligand SPD304), resulting in 53 candidate ligands with a prospective affinity. Out of these compounds,
9 were commercially available, and thus they were acquired and further tested. An initial ex vivo screening in L929 cells
verified that 2 compounds exhibit promising potency. Their optimal pharmacological profile was affirmed by further ex
vivo testing in primary murine joints’ SFs and in vitro testing, evaluating the potential of the compounds to interrupt TNF
binding to its main receptor, TNFR1. To investigate the compounds’ binding mode, a set of molecular dynamics simulations
and free energy calculations was performed, suggesting that one of the two compounds, Nepalensinol B, could better serve
as a candidate lead structure for anti-TNF drug design.
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3. Discussion

Interestingly, the vast majority of NPs (all except Vitisin B) yielded from the screening
procedure are resveratrol oligomers, i.e., they belong to the chemical classes of stilbenes
and stilbenoids (Figure 5).

These compound classes have been shown to possess a wide range of multifaceted
activities of pharmacological interest, stretching from anticancer, antimicrobial, antioxi-
dant, anti-inflammatory, antiplatelet, antidiabetic, hepato-, cardio- and neuroprotective,
spasmolytic to tyrosinase inhibitory and ecdysteroid antagonist activities [57–59].
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similar to Ampelopsin H, that can potentially block the TNF trimer formation.

Examining every compound separately, Flexuosol A is a stilbenoid that belongs
to resveratrol tetramers. It is isolated from the plants Vitis flexuosa Vitaceae and Dry-
obalanops lanceolata Dipterocarpaceae. It has exhibited moderate antibacterial activity
against Staphylococcus strains [57,60]. Nepalensinol B is also a stilbenoid that belongs
to resveratrol dimers and it can be found in the plants Kobresia Nepalensis Cyperaceae,
Cenchrus Echinatus L. Poaceae and Sophora Stenophylla Fabaceae. Its total synthesis
has been reported, albeit bearing an academic interest rather than providing a commer-
cial perspective since it consists of a 13-step synthetic route. As for its pharmacological
properties, it has shown anticancer activity by inhibiting DNA topoisomerase II (with a
higher potency than etoposide) while exhibiting antiproliferative activity against adenocar-
cinoma cells [61–63]. Both cis-Miyabenol C and trans-Miyabenol C are resveratrol trimers.
Cis-Miyabenol C is obtained by various Vitis, Muscadinia and Carex species; its pharmaco-
logical interest concerns inhibition of amyloid β fibril formation and ecdysteroid antagonist
activity [58,64–66]. Trans-Miyabenol C is obtained by Caragana sinica of Leguminosae and
various Vitis, Muscadinia and Carex species; it has been found to inhibit protein kinase C
while presenting antioxidant activity [58,64,65,67,68]. Cis- and trans-Diptoindonesin B
are stilbenoids, resveratrol trimers which were isolated from the plant Dryobalanops ob-
longifolia Dipterocarpaceae [69]. A recent in silico study suggested that they may act as
sirtuine1 enzyme inhibitors, therefore demonstrating anticancer activity [70]. Additionally,
Kobophenol A is a stilbene, resveratrol tetramer that has been isolated from various plants:
Caragana sinica of Leguminosae [67], Carana sinica of Fabaceae [71], and many Carex
Cyperaceae species (e.g., Carex kobomugi, Carex buchananii, Carex cuprina, and Carex fol-
liculate) [58,72]. It has exhibited anti-inflammatory activity by downregulating the NF-κB
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signaling pathway that mediates inflammation [71]. In addition, Kobophenol A has yielded
promising results as a potential prophylactic/therapeutic compound for osteoporosis and
cardiotoxicity [73–75]. Furthermore, it has shown moderate antibacterial activity against
Staphylococcus aureus [76] and antiproliferative activity [58]. A recent study reported that
Kobophenol A could be a candidate lead compound against COVID−19 by inhibiting the
interaction between angiotensin-converting enzyme 2 receptor of the host cells and the viral
spike protein of SARS-CoV-2 [77]. Additionally, Miyabenol A is also a stilbene, resveratrol
tetramer and it has been isolated from Vitis ficifolia Vitaceae and various Carex Cyper-
aceae species (e.g., Carex capillacea, Carex fedia var. miyabei, Carex hirta, Carex pendula,
and Carex pumila) [58,78,79]. It has exhibited antimicrobial (Staphylococcus aureus and
Bacillus subtilis), [58] anti-inflammatory [79], antioxidative and antiplatelet aggregation
activity [80]. Vitisin B is a pyranoanthocyanine found in various red wines [81]. It has been
successfully synthesized by reacting malvidine-3-monoglucoside with acetaldehyde [82] or
vinyloxytrimethylsilane [83], and it has exhibited promising antioxidant activity [84].

Thus, the nine commercial compounds that emerged from our initial screening were,
according to the literature, interesting candidates for further investigation, as their anti-
inflammatory/antioxidant properties could be due to blockade of the TNF trimer formation.

Studying these nine compounds ex vivo in the L929 TNF induced necroptosis as-
say, [85,86], we found that, indeed, five compounds were able to support L929 cell
survival upon addition to the cells. SPD304, when bound to TNF [6], was found to
reduce L929 TNF–induced death (IC50 5 ± 0.2 µM), presenting however high toxicity
(LC50 7.5 ± 0.2 µM) [9,87]. Notably, the new two best NPs identified, although ~5-fold less
effective than SPD304, presented much less toxicity on the cells (in the range of two orders
of magnitude). Additionally, mostly Nepalensinol B, and to a lesser extent, Miyabenol A,
were able to downregulate chemokine ligand 5 (CCL5), which was found to be, among
others, a pathogenic chemokine, being used for drug testing, both in human RA [88]
and mouse chronic polyarthritis [89]. Both Nepalensinol B and Miyabenol A reduced
CCL5 in both hTNFtg SFs, which spontaneously secrete high levels of chemokines, and
wild-type (WT) SFs exogenously stimulated with human TNF in order to increase their
pro-inflammatory potential. Using both cell settings, we show that compounds regulate
the SFs responses by interfering with the TNF pathway itself. The combination of low
toxicity along with the anti-inflammatory properties could assign to the most effective
compounds, Nepalensinol B and Miyabenol A, a highly promising therapeutic potential, as
they can serve as lead compounds addressing drug development for chronic inflammatory
diseases. Miyabenol A and Nepalensinol B proceeded also to TNF-TNFR1–binding ELISA
studies. Interruption of TNF-TNFR1 interaction contributes to the compounds’ desired
properties, as disruption of TNF binding to its principal receptor, TNFR1, has been a long-
desired goal in the development of novel therapeutics in chronic inflammatory models of
disease [90]. Nepalensinol B interrupted TNF-TNFR1 binding at low concentrations devoid
of cytotoxicity, indicating that this compound could be employed as a direct TNF inhibitor.
Interestingly, Nepalensinol B completely abolished TNF-TNFR1 interaction at tested con-
centrations over 50 µM (Figure 2D), while Ampelopsin H achieved a downregulation of
around 60% of TNF-TNFR1 binding in the same concentration range [9].

The docking studies investigating the binding affinity of the nine commercial com-
pounds, using our recently developed TNF homology model, released through the Enalos
Asclepios KNIME workflow (Supporting Information Figure S3), presented Nepalensinol B
as a highly ranked ligand with a docking score of −35.722, although it was not the highest
ranked. Interestingly, Miyabenol A did not yield a relatively high docking score (−23.104).
On the contrary, Ampleopsin H was the highest ranked (second after SPD305 which was
the reference compound) with a docking score value of −45.140, followed by Kobophenol
A with −43.617, Vitisin B with −37.549, and trans-Diptoindonesin with −44.674. As these
docking scores did not comply with the biological effect of the compounds, and in an effort
to further investigate the binding and SAR of the ligands, we proceeded to conduct MD
simulations. The elucidation and analysis of SAR afforded from the MD simulations led to
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a better understanding of the pharmacological profile of the compounds. Nepalensinol B’s
docking pose exhibits interactions between the ligand and the carbonyl of the Gln52 amide
group. Noteworthy hydrophobic pi–pi stacking interactions were observed between the
two resorcinyl moieties of the ligand with their adjacent Tyr110 of each TNF subunit. The
hydrogen bonds from visual inspection and distance analysis of the docking structure are
formed between the backbone of amino acids Ser60, and Gln61 and the ligands’ phenolic
hydroxyl group. This, in combination with the strong hydrophobic nature of the interac-
tions that can be observed with the bulky phenol groups of the ligand, rises as the main
driving force for the ligand’s core stabilization deep inside the cavity. These hydrophobic
interactions are formed via the Leu57, Tyr57, Tyr119 and Tyr151 side chains.

During the molecular dynamics simulation, enhanced van der Waals hydropho-
bic interactions are observed between the phenyl rings of Nepalensinol B and the TNF
bulky hydrophobic residues of the cavity throughout the trajectory simulation (Figure 6A,
Supporting Information Figure S1A), while the polar interactions with Ser60 and Gln61
identified in the docking pose are also present. After ~150–200 ns and until the end of
the simulation, the Tyr110 pi–pi interactions are no longer present, but they preserve the
hydrophobic environment, and they contribute indirectly to the further establishment of
the hydrogen bond network, while also maintaining the local hydrophobicity. Additionally,
interactions with the ligand and the side chains of Gln61, Gln209 and Tyr299, start gradually
to be developed between the compound and the receptor. The strongest hydrogen bond
interactions are observed after ~550 ns simulation, when the ligand changes orientation and
enters even deeper inside the groove between the two dimers. There, Tyr299 tends towards
the Gln209 side chain and opens space for the ligand to enter, facilitating interactions with
the backbone of the latter. This change further stabilizes the interaction with the Tyr299 and
Gly269 backbone and locks the ligand in this deeper position, causing further stabilization
of the complex. The interactions described above, in combination with the hydrophobic
interactions between the phenyl moieties of the ligand and the bulky phenyl groups of an
array of tyrosines (Tyr59, Tyr119, Tyr299, Tyr207, Tyr267) as well as the aliphatic chains
of Leu57, Ile 303 and Leu 205, act like a flexible hydrophobic horseshoe that covers the
planar hydrophobic core of Nepalensinol B, providing the chemical environment for the
ligand. Last but not least, the Tyr119 and Tyr267 also seem to further contribute to the
ligand binding via pi–pi stacking interactions.

In summary, Nepalensinol B seems to develop a complex hydrogen bond interactions
pattern, while simultaneously maintaining the hydrophobic van der Waals interactions
with Leu305, Val271, and Ile155 and almost all the adjacent tyrosine residues. The hydrogen
bond interactions network is developed between the hydroxyl groups of the ligand and
Tyr151, Leu120 (backbone NH-) and Leu268 (backbone NH-group) of TNF. The latter can
also further contribute to the Nepalensinol B binding stability via the isopropyl group of
its side chain (Figure 6A, Supporting Information Figure S1A). The interaction pattern,
which is formed especially after the second half of the 1µs MD, where the ligand slightly
enters even deeper inside the cavity, suggests a strong affinity of Nepalensinol B, further
refining the protein–ligand interactions. This provides an explanation of the ligand potency
observed in our pharmacological data and mainly in the TNF-TNFR1 assay, despite its
planar core.

For Miyabenol A, the main hydrogen bond interactions network can be observed
between the ligand and the Tyr151 side chain hydroxyl group as well as the backbone
amino group of Gly121 of TNF. Van der Waals hydrophobic interactions—especially pi–
pi stacking—between the ligand and the Tyr59, Tyr119 and possibly the Tyr207 further
contribute to the stability of the interactions between the ligand and the side chains of Leu57,
Ile303, Leu205, Val271, Ile155 and Leu205 (Figure 6B, Supporting Information Figure S1B).
Initially Gln61 amide forms hydrogen bonds towards the outer part of the cavity, but
after ~200 ns of simulation, the ligand slightly shifts again towards the inner part of the
cavity. As a result, the van der Waals hydrophobic network is enriched by additional
interactions with the backbone amino groups of Gly121 and its adjacent Gly122. Even
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though Miyabenol A showed some relative instability during the first ~200–250 ns, by
moving deeper inside the cavity, its hydrophobic interactions were eventually increased,
due to gaining proximity towards Leu205, Ile303 and Leu57. Comparing the cores of
Miyabenol A with Nepalensinol B, the former is much more flexible, thus allowing some
significant mobility in the receptor’s cavity. As a result, the ligand moves further from
the Gln61, a fact that does not seem to happen in the case of Nepalensinol B (Figure 6A),
where the core is more rigid, and its dimensions fit much better within the cavity. In
the case of Miyabenol A, the hydrogen bonds interaction network is less rich, but the
core’s dimensions, despite its flexibility, allow optimal fitting inside the cavity, forming
significant van der Waals interactions. Moreover, this flexibility allows Miyabenol A to
form some noteworthy contacts with the Val13 side chain of TNF. Thus, the high potency
of Miyabenol A can be attributed mainly to the formation of a rich hydrophobic network
composed of strong and robust interactions. Thus, Miyabenol A can serve as an example
of the importance of hydrophobic interactions in ligand binding; however, it can be argued
that the two additional H bonds forming in Nepalensinol B exhibit their superiority when
comparing the experimental TNF-TNFR1 binding results.
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Flexuosol A, on the other hand, presents a less developed hydrogen bond interactions
network, compared to Miyabenol A and Nepalensinol B (Figure 6D, Supporting Information
Figure S2A). Compared to them, Flexuosol A’s core is the least planar. Nonetheless, the
binding inside the cavity throughout the trajectory remains stable, due to the van der Waals
hydrophobic interactions between the bulky Tyrosines of the binding cavity and the phenol
groups of the ligand. In the docking pose and the initial steps of the MD trajectory, the main
interactions are the one hydrogen bond between the phenolic fragments of Flexuosol A and
the amide of Gln61 as well as the noteworthy hydrophobic interactions between the Leu205,
Ile303 and the side chain of Leu57. The pi–pi stacking interactions between the ligand and
Tyr59 are also possible, due to the latter’s adjacency.

However, the ligand does not seem to move deeper in the cavity as the simulation
progresses, but it forms noteworthy interactions with Tyr151, Tyr59 and Tyr207 on the one
side, and Tyr119 and Tyr267 on the other, causing some ligand’s packing, and thus, forcing
it to create strong hydrogen bonds with the most adjacent Gln61. In addition, Flexuosol
A does not seem to move deeper in the cavity, limiting its hydrophobic network to some
interactions with the backbone carbonyl group of Leu268 and in a further proximity to
some possible hydrophobic and polar interactions with Leu242 side chain and its backbone
amino group, respectively (Figure 6C, Supporting Information Figure S2A). This binding
profile provides a probable explanation for the inferred efficacy of Flexuosol A against
TNF activation, despite the noteworthy binding stability throughout the trajectory. The
ligand possibly can bind strongly, but it may not be enough to abolish TNF-TNFR1 binding,
compared to Nepalensinol B.

Regarding Kobophenol A, the core structure of the ligand is much more flexible
than Nepalensinol B. However, docking and molecular dynamics simulations showed
that this is not enough for even more successful binding and potency. More specifically,
this flexibility drives the ligand to adopt a more packed conformation within the cavity,
forming hydrophobic interactions of a lower quality that prevent the formation of the
interaction’s network observed in the cases of Miyabenol A or Nepalensinol B. However,
some hydrogen bonds are formed between the resorcinyl group of the ligand and the
Tyr59, Tyr267 as well as the backbone of Ala304. Although this hydrogen bond pattern
with the above residues was also observed in Nepalensinol B (representing a fraction of
its rich hydrogen bond network), the hydrogen bonds formed by Kobophenol A were
weaker and not as robust throughout the simulation. Interestingly, the hydrogen bonds’
formation takes place after a close contact of Kobophenol A with His15, forming a pi–
pi stacking interaction that provides an initial stabilization of the ligand, necessary for
the latter to begin forming gradually the hydrogen interactions, starting with the Tyr59.
Hydrophobic interactions are formed between the ligand and an array of bulky aliphatic
side chains, including Leu36, Leu57, Val271, Ile303, Leu305, Ile155, Ile294 and Val13, but
despite their number, they contribute only slightly to the hydrophobic stabilization of the
ligand after ~750 ns of simulation. Secondary hydrophobic interactions, with even lesser
effect, that seem to surround the ligands’ phenol moieties can be observed in Figure 6D,
Supporting Information Figure S2B. It is, therefore, shown that the SAR of Kobophenol A
is in agreement with its pharmacological profile, with a higher IC50 when compared to
Miyabenol A, Nepalensinol B, and Flexuosol A in the L929 TNF-induced death assay.

In summary, only one significant hydrogen bond was identified between TNF and
Flexuosol A; two hydrogen bond interactions were observed in the cases of Miyabenol A
and Kobophenol A; and four in the case of Nepalensinol B. Interestingly, the compounds
seem to bind slightly closer to the TNF subunit A than subunit B. The lack of extended
hydrogen bond interactions network is noteworthy, and the hydrophobic character of
binding was also experimentally observed in the case of SPD304 ligand [3]. In conclusion,
the MD results confirmed the pharmacological experimental data, which highlighted
Nepalensinol B and Miyabenol A as the most effective compounds, ex vivo and in vitro.
The two ligands presented stable complexes when bound to TNF, adhering to both a more
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enhanced network of hydrophobic interactions and a higher number of hydrogen bonds
than the other compounds (Figure 6).

As analyzed above, our model suggests that the stronger binding of Miyabenol A
and Nepalensinol B could be explained by the respective SAR. However, a formidable
lead compound should not only exhibit optimal SAR (which, ideally, have the potential
to be further advanced in next generations of compounds), but should also render a
promising binding energy profile based on prominent enthalpic interactions. Therefore,
we performed a series of free energy calculations (MM-GBSA calculations Table 1; absolute
free energy calculations, Figure 7) to further evaluate the binding thermodynamics of the
aforementioned compounds.

Table 1. Energetic analysis for TNF in complex with Miyabenol A, Nepalensinol B, Flexuosol A, Kobophenol A and
Ampelopsin H, as obtained by MM-GBSA calculations.

Average
kcal/mol Std.Dev

Average
kcal/mol Std.Dev

Average
kcal/mol Std.Dev

Average
kcal/mol Std.Dev

Average
kcal/mol Std.Dev

Average
kcal/mol Std.Dev

Miyabenol A Nepalensinol B Flexuosol A Kobophenol A Ampelopsin H SPD304

EvDW −44.514 6.56 −62.4408 3.1846 −31.391 6.848 −46.87 3.6866 −45.9798 3.461 −43.9821 2.5799

EEL −15.963 6.307 −22.2184 5.5841 −19.287 10.104 −18.6796 6.4461 −13.0541 4.7604 −111.752 5.2156

EGB 45.629 6.965 56.5623 4.9438 39.683 9.983 50.9639 6.0277 45.0963 6.6032 144.1032 5.9402

∆GGAS −60.484 9.413 −84.712 6.0403 −50.661 11.583 −65.5466 7.5489 −59.0364 6.6642 −155.734 6.5496

∆GSOLV 39.698 6.587 49.2238 4.8589 35.445 9.584 44.7208 5.8006 39.3336 6.47 139.36 5.8403

∆GTOTAL −20.786 4.184 −35.4882 3.3524 −15.216 7.09 −20.8258 3.7012 −19.7027 2.6903 −16.3744 2.8002
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B is characterized by the best binding affinity (~−35 kcal/mol), 10 kcal/mol approximately higher
than the other ligands. Noteworthy is the |∆G| value of the Ampelopsin H, which is characterized
by the lowest binding affinity.

Initially, free energy calculations were conducted fully automatically with the Enalos
Asclepios KNIME workflow for each complex, employing MM-GBSA on the previously
conducted 1 µs MD simulations (Table 1, Figure 7). In MM-PB/GBSA, we compute the
difference between the free energies of the targeted state and a reference one, avoiding the
energy calculation of the interactions between the solvent molecules. With this method,
the free energy of binding (∆G) is calculated, but the entropy has a large margin of error,
causing significant uncertainty [91]. Moreover, in most cases, the entropy calculation is
skipped to reduce the computational cost. This analysis suggested the higher potency of
Nepalensinol B in comparison to Ampelopsin H since it demonstrated that it is character-
ized by a stronger and superior network of both polar (especially hydrogen bonds) and
hydrophobic interactions, suggesting the better fitting and binding of the ligand within
the cavity of TNF. This was not observed from molecular docking calculations, as can
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be depicted by their respective docking scores (Nepalensinol B: −35.722; Ampelopsin
H: −45.140, Supporting Information Figure S3).

The decomposition of ∆Gtotal, obtained from MM-GBSA in the terms presented on
Table 1, suggests stronger van der Waals interactions (EvdW = −62.44 kcal/mol) and note-
worthy electrostatic/polar interactions (EEL = −22.21 kcal/mol) for Nepalensinol B, with
the specific term for the other ligands being considerably more positive. The aforemen-
tioned terms in combination with the highly negative ∆Ggas term implies the best fitting
within the cavity, due to its planarity and the rich interaction network with the residues
of the binding site, confirming the experimental data for possible potency, despite the
high desolvation penalty (∆Gsolv). Flexuosol A and Kobophenol A ligands exhibited a
reduced binding affinity, compared to the others, in accordance with the experimental IC50
values. The ∆Gtotal decomposition into its terms showed average electrostatic and van
der Waals energy for these ligands, but the desolvation penalty term was relatively high,
causing this reduction in their estimated binding affinity. On the contrary, Miyabenol A and
Ampelopsin H, which were characterized by a less broad polar interactions pattern but rich
hydrophobic van der Waals network with a considerable number of bulky hydrophobic
amino acids from the MD simulations, did not seem to confirm the experimental data, as
their ∆Gtotal values were disproportionally more positive, compared to Nepalensinol B.

However, in the MM-GBSA free energy profiling of our ligands, we should consider
both the fact that the level of SD (2.7–7.1 kcal/mol, cf. Table 1) is relatively high as well as the
inherent limitations of the method, concerning its sensitivity. In addition, the big difference
in the calculated ∆G of binding values (reaching to ∆∆G in the range of 10–15 kcal/mol)
should yield a tremendously stronger binding, which, in turn, is expected to be depicted in
the biological activity of the ligands. This does not happen, as the experimental IC50 values
in the L929 TNF–induced death assay suggest a difference of 1–2 orders of magnitude
between all the active ligands, which does not comply with such large differences in the
free energy of binding. This becomes even more concerning since the compounds with
highest and lowest |∆G|, Nepalensinol B and Ampelopsin H experimentally are in the
same IC50 range. In general, MM-PB/GBSA is a method most appropriate for free energy
calculations in screening procedures, and such disadvantages are expected. Nonetheless,
these results show a trend and provide insights to the thermodynamic profiling of ligand
binding. The aforementioned methodological drawbacks can be addressed with more
sensitive and accurate calculations of the absolute free energy of binding becoming feasible
and being included in the computer-aided drug design (CADD) routine [92,93].

In an effort to further refine the thermodynamic profile of binding, the absolute bind-
ing free energies of the compounds were calculated, using the MBAR [94] method and
the YANK 0.25.2 software [95]. For absolute free energy of binding (∆Go) calculations,
the method used applies several intermediate states between the initial and final states
and simultaneously calculates the free energy differences between adjacent states. In this
approach, several intermediate states are used between the initial and final states, and
simultaneously calculates the free energy differences between adjacent states. The resulting
final snapshots from the previously conducted MD simulations were selected as input for
the ∆Go calculations, and the respective values are presented in Figure 8. Comparing the re-
sults with the MM-GBSA histogram (Figure 7), we can observe that Nepalensinol B remains
the best binding ligand (−11.851 ± 0.367) but there is a significant improvement in the
results of Miyabenol A (−10.334 ± 0.465 kcal/mol) and Ampelopsin H (−11.591 ± 0.443).
Kobophenol A remains the weakest binder (−7.754 ± 0.497), in accordance with the exper-
imental results. Flexuosol A attributed a low ∆Go (−11.582 ± 0.572) that supports its low
in vitro IC50 in the TNF-TNFR1 assay. Its low biological effect ex vivo can be possibly due
to properties of the compound that cause lowering of its efficacy in the cells, but not in the
binding to its biological target (TNF) itself.
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Figure 8. YANK-calculated values confirm the experimental observations for almost all ligands.
Nepalensinol B remains the most active with the strongest estimated binding. Similar values are also
observed in the case of Ampelopsin H. Miyabenol A is characterized by a moderate binding affinity,
and finally, Kobophenol A shows the weakest binding. Flexuosol A shows a high binding affinity;
however, its lower biological effect can be possibly due to further biological interactions or properties
of the compound.

In the case of Miyabenol A (∆Go = −10.334 ± 0.465 kcal/mol), it can be observed
that despite its relative core flexibility, it seems to develop not only some hydrogen bond
interactions but also the richest hydrophobic network among all the ligands tested, as can
be suggested from our MD simulations. The nature of its interactions could explain the
observed increase in the estimated activity closer to the most potent ligands (Nepalensinol B
and Ampelopsin H) and in agreement with the pharmacological results, compared to MM-
GBSA, where we observe high deviation (Table 1). Similarly, focusing on Ampelopsin H,
the hydrophobic interactions in combination with the rigid core that allows better fitting
within the cavity support the improvement of the absolute binding calculation.

Interestingly, the 2D structure of Nepalensinol B and Ampelopsin H vary only in three
atoms, as can be observed in Figure 9. A phenolic hydroxyl group and a furan oxygen atom
are enough to convert Nepalensinol B into Ampelopsin H. YANK offers the possibility
of ∆Go calculation after mutations of the ligands, allowing us to compare the fitting of
such similar compounds with different binding modes. Hence, after a 1 µs MD simulation,
conversion of Nepalensinol B into Ampelopsin H was conducted in the final snapshot of
the MD. The two mutations, i.e., the addition of the -OH group and the substitution of
the methylene group into oxygen, were conducted to form Ampelopsin H, and the new
complex underwent a ∆Go calculation accompanied by an energy minimization and a
number of short molecular dynamics to reach equilibration. The resulting extremely low
absolute free energy of binding (∆Go = −2.471 ± 0.790) showed that the binding mode of
Nepalensinol B would not be preferred by Ampelopsin H, possibly due to the polar -OH
group presence that causes steric clash with the Tyr209, resulting in lack of free space within
the cavity. Eventually, the hydroxyl group addition is abolished by the tyrosine, causing
binding instability. Additionally, Ile303 can possibly contribute towards this instability,
due to its adjacence to the hydroxyl group.
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Surprisingly, the respective conversion of Ampelopsin H final snapshot pose into
Nepalensinol B via mutating the oxygen of the furan ring to a methylene group and
the -OH group with a −H, presented highly similar ∆Go with Nepalensinol B after 1 µs
MD simulation (−12.268 ± 0.534 and −11.851 ± 0.367, respectively). This suggests that
Nepalensinol B may adopt both binding conformations within the cavity, with appropriate
fitting in both cases. Possibly this is because its phenyl group can be adjacent to Leu242
and Ala244. This causes further stabilization and better fitting within the cavity via van der
Waals interactions between the phenyl group and the side chains of these two residues. At
the same time, all the remaining interactions are maintained, causing this slight tension to
become an even more stable complex (Figure 9). Ile 155, Leu57, Ile 303 and Leu205 provide
a hydrophobic environment for ligand binding. Additionally, the interactions include
pi–pi of the phenol group with Tyr59, but also a hydrogen bond interaction between the
phenol group of the ligand and the amide group of Gln61, the carbonyl group of the Gly121
backbone, and the amino group of the Leu268 backbone.

The hydrophobic core of Nepalensinol B, due to the lack of the oxygen atom, cannot
create neither the hydrogen bond interactions between the compound’s core and the Leu268
NH group of the backbone, nor any water-mediated hydrogen bond. Hence, the absence
of hydrogen bonds could prevent the ligand’s core to slide perpendicularly, and it could
maximize the fitting via moving even deeper inside the groove between the two subunits,
exploiting the free space of the Gly121 and Gly122. As a result, a new stronger van der
Waals hydrophobic pattern and more pi–pi contacts are created, which contribute to the
stabilization of the ligand. This stronger hydrophobic contribution is combined with the
flexible phenol groups that create hydrophilic interactions of higher quality and lower
energy—as expected from both the MM-GBSA and the YANK calculation—possibly due
to their adjacence with the Gln61, Ser60, the Gly269 amino group of the backbone, the
backbone of both Tyr299 and the Tyr207 (which also may contribute with a pi–pi stacking
contact). Furthermore, we should note that Ampelopsin H is a symmetric molecule,
a feature which facilitates it entering the binding pocket with the optimal direction to
achieve the described SAR. Although Nepalensinol B lacks symmetry, it reverses this
appearing disadvantage to an advantage since—as analyzed above—it can adopt both the
binding mode of Ampelopsin H and another one of lower free energy, resulting in richer
overall SAR.

As presented above, Nepalensinol B exhibits an excellent thermodynamic profile,
achieving a significantly lower free energy of binding, predominately due to enthalpic
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parameters and low desolvation penalties. This fact, in combination with the advantageous
SAR observed in docking and MD simulations, leading to a richer H bond network and
a highly stable binding, renders Nepalensinol B a more promising lead compound for
TNF drug discovery. Although both Nepalensinol B and Miyabenol A show efficient
pharmacological properties combined with low toxicity, the former has a higher prospect
as a lead structure since there are more features on the molecule that can be employed to
further optimize next generations of ligand candidates.

4. Material and Methods
4.1. Cheminformatics Modeling—Computer Aided Drug Design (CADD)
4.1.1. Enalos+ Similarity KNIME Node

Protocol/Parameters for Ampelopsin H similarity search.
Using Ampelopsin H as a reference compound within Enalos+ (Novamechanics,

Nicosia, Cyprus), the Tanimoto similarity [51] was set at 85%, and a search was conducted
in PubChem.

4.1.2. Molecular Modeling

The homology model of the TNF receptor and the addition of missing TNF residues
was conducted, using Modeller 9.16 [96]. The crystal structure 2AZ5 of the TNF dimer com-
plex with SPD304 was utilized as the template for the homology modeling. All the protein
complexes were prepared using PDBFixer (Stanford University, Stanford, CA, USA) [97].
The three-dimensional structures of the ligands were prepared by adding hydrogens,
followed by energy minimization to obtain a low energy conformation necessary for the
docking calculations, using the OpenBabel Toolbox (University of Pittsburgh, PA, USA) [98].
Hydrogen atoms were added also by OpenBabel, and the ligand’s geometry was further
optimized using 6–31 Basis with GAMESS-US (Iowa State University, IA, USA) [99,100].

4.1.3. Enalos Asclepios KNIME Workflow

Ligand minimization, hydrogen treatment, protonation, including the receptor prepa-
ration for docking, MD and MM-GBSA, were performed with our in-house developed
Enalos Asclepios KNIME suite of programs (University of Konstanz, Zurich, Switzerland).
Enalos Asclepios is an automated pipeline that includes all the major steps of ligand and
receptor preparation docking, MD runs, and relative ∆G of the ligand binding: (a) initial
model structures were constructed with AmberTools19 [101]. Missing TNF residues were
added with PDBFixer [97]. The ff14SB force field [102] was used for the receptor, while the
generalized AMBER force field (GAFF) [103] was used for the compounds’ representation.
Geometry optimization and AM1-BCC [104] partial charges assignment for the ligands
were conducted, using ANTECHAMBER [105]. The complexes’ topology and coordinate
files were then run for 1000 ns, all-atom, unrestrained MD simulations with the GPU
version of OpenMM 7.5 (Stanford University, Stanford, CA, USA) [106]. (b) Simulations
were performed for (i) Miyabenol A–TNF, (ii) Nepalensinol B–TNF, (iii) Flexuosol A–TNF,
(iv) Ampelopsin H–TNF, (v) Kobophenol A–TNF and (vi) Vitisin–TNF complexes in an
explicit TIP3P water model [107] (Jorgensen et al., 1983) as the solvent at 300 K temperature,
with the Langevin Thermostat, with the collision frequency set at 2.0 ps−1 [108], with
1 atm pressure with the GPU version of OpenMM. Periodic boundary conditions were
applied with a 10 Å distance cutoff, using the particle mesh ewald (PME) method [109] for
long-range interaction treatment. (c) Analysis of the results (RMSD, atomic fluctuations,
and hydrogen bond calculations) was performed with the cpptraj version of AmberTools19
as part of the Enalos Asclepios workflow platform. The computational workflow, including
its possible alternative options and settings, is represented schematically below (Figure 10).
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4.1.4. Molecular Docking with Enalos Asclepios KNIME Workflow

The Enalos Asclepios workflow of our method is presented in Figure 7, and it is further
described in the following paragraphs. The ligand preparation nodes for docking and
MD include a combination of MM and QM methods (DFT option was selected) for ligand
geometry optimization to further refine the ligands before docking. The TNF receptor
was prepared, protonated and hydrogen treated with PDBFixer, which was included in
Asclepios as an automated part of the workflow. The same node was used also for filling the
missing heavy atom. SPD304 was defined as a reference ligand. Docking calculations were
conducted, using rDock (University of York, York, UK) molecular docking software [52]
as part of workflow nodes. To define the active site of TNF the “reference ligand method”
was employed with a radius of 6 Å around the bound SPD304; this area of the cavity was
defined as the grid. The radius of the small and large probes used for mapping the TNF
binding site was set to 1.5 Å and 4.0 Å, respectively. The integer for the maximum number
of acceptable cavities was set to 1 with a minimum acceptable cavity volume of 100 Å3.
A “cavity restrain function” with a weight of 1 was employed to prevent the ligand from
exiting the docking site. Once the active site of TNF was defined and generated, each ligand
was docked, using a 50 runs per ligand rDock job. The highest-scored docking solution of
each ligand was selected, and the AMBER14SB force field option and ANTECHAMBER
were used for the complexes’ formation as input for the MD simulations.

4.1.5. Molecular Dynamics

Molecular dynamics simulations were performed with all-atom, unrestrained MD
simulations with both the CPU and the GPU version of OpenMM 7.5 [106] of the Enalos
Asclepios KNIME workflow node. The geometry optimization of the compounds was
obtained with GAMESS-US [100] at the HF/6–31G*, using the DFT option of the QM
refinement node of Enalos Asclepios workflow. AMBER topology and coordinates files
were produced for each of the complexes for 1000 ns MD. The workflow included the
following steps of the systems’ preparation, MD simulations and MD trajectory analysis
procedures. Initial model structures were constructed with AmberTools19 [101]. The ff14SB
force field [110] was used for the protein atoms, and the generalized AMBER force field
(GAFF) [103] was used for parameterization of the SPD304, Miyabenol A, Flexuosol A and
Nepalensinol B ligands. Geometry optimization and AM1-BCC partial charges [104] and
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formal charges were assigned by the ANTECHAMBER program. The AM1-BCC approach
is based on a fast and effective parameterization method that reproduces particularly
precise RESP charges [111]. Simulations were performed for each of the ligands in complex
with the TNF homology model in the explicit TIP3P water model [107] solvent in a periodic
boundary box of 10 Å cutoff. The particle mesh ewald (PME) method [109] was used for the
long-range interactions treatment; periodic boundary conditions with a cutoff distance of
1 nm and a Langevin thermostat with collision frequency set at 2.0 ps−1 for the temperature
regulation were used [108]. NPT ensemble, with a Monte Carlo barostat to keep constant
pressure throughout the simulations, was used. The TNF complexes were neutralized
by adding 4 Na+ counterions. Each minimization stage was carried out in 5000 cycles
with a 1 nm cutoff. Hydrogen atoms were constrained using the SHAKE algorithm,
and the AMBER14SB force field was selected for all of our complexes’ MD simulations.
Equilibration and production runs were carried out, using the OpenMM 7.5 program. Our
systems were minimized for 5000 steps, using the steepest descent method, followed by 5 ns
equilibration with an NVT (constant particle number, volume, and temperature) setting.
During the equilibration, the ligands were positionally restrained, whereas the proteins
were allowed to relax. Restraints were removed for subsequent production runs that were
carried out at 300 K and 1 atm pressure with an integration time step of 2 fs. CPPTRAJ [112]
of AmberTools19 (University of California, San Francisco, CA, USA) was used for the
data analysis of the MD output results: RMSD, atomic fluctuations, and hydrogen bond
calculations. For the binding stability of our ligands within the TNF protein, for each
snapshot, we then applied the MM-GBSA method as a method for more sensitive rescoring
of our ligands’ binding after docking.

4.1.6. MM-GBSA Method

The Molecular Mechanics Generalized Born (MM-GBSA) method can generally be
used for the estimation of the relative ligand binding affinity and the calculation of the desol-
vation penalty. All analyses by MM/GBSA were implemented, using the MMPBSA.py [113]
of AmberTools19, using the nodes of the Enalos Asclepios KNIME workflow. In the MM-
GB/PBSA methods, the free energy (∆Gbind) between the ligand (L) and the receptor (R)
form a complex L-R, which is calculated as follows:

L + R→ L-R

The binding free energy can be decomposed into enthalpy and entropy contributions:

∆Gbind = ∆H − T∆S (1)

The enthalpy (∆H) is given by the following equation:

∆H = ∆EMM + ∆Gsol (2)

where ∆Gsol describes the change in the free energy of solvation due to ligand binding;
∆EMM stands for the molecular mechanics energy (in gas phase), including the terms of
bond stretching (∆Ebond), angle bending (∆Eangle), torsion rotation (∆εtors ), van der Waals
∆EvdW and electrostatic enegies (∆Eelec), as follows:

∆EMM = ∆Ebond + ∆Eangle + ∆Etors + ∆Evdw + ∆Eelec (3)

No cutoff was applied for the calculation of ∆evdw and ∆Eelec. Further decomposing
the ∆Gbind for a ligand L and a receptor R to form the L-R complex, according to (3), we
obtain finally Equation (4) as follows:

∆Gbind = ∆Ebond + ∆Eangle + ∆Etors + ∆Evdw + ∆Eelec + ∆Gpol + ∆Gnp − T∆S (4)
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where the ∆Gpol term is the polar interaction, and ∆Gnp stands for the non-polar contribu-
tion. ∆S is the system’s conformational entropy; the conformational entropy contribution
to the binding free energy was neglected for computational cost reduction.

The MM-GBSA analysis was conducted for the 1400 last snapshots of the 1 µs MD
simulation trajectories between 750 and 1000 ns. For MM/GBSA, the ∆Gpol term was
calculated, using the atomic radii igb = 2 [114], and the salt molar concentration was set
to 0.1 M. The ∆Gnp term was determined based on the solvent accessible surface area
(SASA), where the SURFTEN value was set to 0.005 kcal mol−1 Å−2. The solvent and
solute dielectric constant values applied were 80.0 and 1.0, respectively.

4.1.7. Absolute Binding Free Energies Calculation

For the binding free energy of a receptor (R)–ligand (L) complex (R-L), two calculations
are conducted.

The first one is for the solvated complex and the second one is for the solvated
ligand [115]. The ligand intramolecular contacts are kept, and there is an annihilation of
the intermolecular ligand interactions to other molecules, provided that the temperature
and pressure are steady.

R-L (solvated)→ R (solvated) + L (gas) = ∆Go
complex (5)

L (solvated)→ L (gas) = ∆Go
ligand (6)

R-L (solvated)→ R (solvated) + L (solvated) = ∆Go
binding = ∆Go

complex − ∆Go
ligand (7)

The (5) and (6) in combination give Equation (7). Our receptor–ligand complexes
used as input for absolute free energy calculations are the final snapshots of the 1 µs
MD simulations. These well-equilibrated structures were selected, and the free energy
calculations and the analysis was conducted, using YANK v0.25.2 (University of Virginia,
Charlottesville, VA, USA) [95,116], using its absolute binding calculation default protocol
for runs with implicit solvent. The method combines the MD simulations with the absolute
free energy calculations of the well-equilibrated structures. The last frame of the MD
trajectory is used for ∆Gbinding calculation with the Multistate Bennet Acceptance Ratio
(MBAR)116 method. The strategy of the method includes some similarities to the well-
established method for absolute free energy calculation method of MP-CAFEE. [117]

The λ = 0 state implies full interactions between the ligand and its surrounding atoms.
The λ = 1 state implies the lack of these interactions. The free energy differences are
calculated between the two states for the protein–ligand complexes (∆Go

complex) and the
ligand-only systems (∆Go

ligand). In our case, 16 states between λ = 0 and λ = 1 were used
in order to make the two states close enough, between which the free energy difference
would be feasible to be calculated. For each of these states, the simulation was 1 ns. The
input structures before the calculation were minimized for 500 iterations to further refine
the receptor–ligand interactions, and 1000 iterations were selected with 500 steps for each
iteration (steps 500,000 in total) for the simulations between each state. The parameters for
the protein were the FF14SB force field and GAFF2 for ligand parameterization. The MD
simulations for each state were conducted under the NVT ensemble at 300 K temperature;
the charge method applied was BCC-AM1 and implicit solvent (OBC2 method) [114] was
used for lower computational cost. No cutoff was selected as a non-bonded method. For the
default harmonic restraints applied to keep the ligand near the protein, Langevin dynamics
were run with a time step of 2 fs. We first switched off the electrostatic interactions
(λelectrostatics = 0 τo λelectrostatics = 1), and then the van der Waals (λsterics = 0 to λsterics = 1).
We used 22 points: 11 λelectrostatics (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) and 11 λsteric
(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0). Then, the free energy was then analyzed
for each of all the trajectory snapshots via the (MBAR) [94] for the least biased free energy
estimation between the two states.
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4.2. Pharmacological Testing
4.2.1. Cell Lines

The L929 cell line (NCTC clone) was obtained from ATCC (Manassas, VA, USA) and
it was used for no more than 15 passages. The L929 TNF–induced cytotoxicity assay was
performed as previously described [9,36].

In short, 3× 104 cells/well of cells were cultured on a 96-well plate, and next day com-
pounds at different concentrations were added after being pre-incubated with 0.3 ng/mL
recombinant human TNF-α (Peprotech, Rocky Hill, CT, USA) and 2 µg/mL Actinomycin D
for 30 min at RT. The culturing medium alone, the medium with the respective Actinomycin
D as well as the medium with both TNF and Actinomycin D were used as controls. After
18–22 h, supernatants were removed, and the plate was stained using a Crystal violet assay.
The quantification was performed spectrophotometrically, and the values were calculated
using the following equation:

(100* [(OD570 of sample) − (OD570 of TNF and ActD)])/((OD570 of ActD) − (OD570 of TNF and ActD))

For survival curves, 3 × 104 cells/well of L929 cells were cultured for 24 h and treated
with different concentrations of the compounds in medium. After 18–22 h, a crystal violet
assay was performed, and the stained viable cells were measured, using a non-treated
sample as a control.

4.2.2. Mice

Primary mouse SFs were isolated from the ankle joints of mice with the indicated
genotypes and cultured for three to four passages as previously described [53]. All mice
were maintained in CBA;C57BL/6J genetic background under specific pathogen-free con-
ditions in conventional, temperature-controlled, air-conditioned animal house facilities of
BSRC Al. Fleming with 12 h light/12 h dark cycle was used, and the mice received food
and water ad libitum.

4.2.3. Chemokine Level Assay

For supernatants collection of SFs, cells were seeded at 2 × 104 cells/ well of a 96-well
plate in 1× DMEM (41966–029, Gibco, Thermo fischer Scientific, Austin, Texas, USA)
supplemented with 100 U/mL Penicillin Streptomycin (P/S) and 10% Fetal Bovine Serum
(FBS). The next day, the cells were starved in 1×DMEM, 0.5% FBS, 50 U/mL P/S, overnight
(O/N). After O/N starvation, supernatants were gathered and stored in −80 ◦C. CBA/C57
WT cells were stimulated with hTNF 10 ng/mL (Peprotech, Rocky Hill, USA) or hTNF
pre-incubated with different compound concentrations for 30 min. Supernatants were
collected after 48 h of culture.

Supernatants were used for quantification of CCL5/ Rantes (DY478, DuoSet, R&D
Systems, Minneapolis, MN, USA) by Elisa, which was performed according to the manu-
facturer’s protocol.

4.2.4. Natural Products

All NPs alphabetically named cis-Diptoindonesin B (CFN93706- Pubchem CID 643710),
cis-Miyabenol C (CFN93332, Pubchem CID 5388319), Flexuosol A (CFN 93650, Pubchem
CID 71308201), Kobophenol A (CFN92530, Pubchem CID 484758), Miyabenol A (CFN93701,
Pubchem CID 16129868), Nepalensinol B (CFN93851, Pubchem CID 46890012), Vitisin B
(CFN93805, Pubchem CID 74947464) and trans-diptoindonesin B (CFN93770, Pubchem
CID 641676) and trans-Miyabenol C (CFN93716, Pubchem CID 6475924) were purchased
from Wuhan ChemFaces Biochemical Co., Ltd., Wuhan, China.
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4.2.5. Statistical Analysis

Plotting, the estimation of the half maximal inhibitory concentration (IC50) and half
maximal lethal concentration (LC50) values was performed, using GraphPad Prism 6
(GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

In summary, we have identified, experimentally studied and further elucidated the
mode of action of new plant-derived TNF inhibitors, following up the work previously
conducted by our groups [9]. These NPs block PPI by directly preventing the formation
of the TNF trimer, while they exhibit low cytotoxicity levels and promising potency. The
binding modes of the most efficient commercially available compounds were studied via
docking and MD simulations, yielding valuable SAR information and providing insight
into topological characteristics, which promoted the stronger binding of Nepalensinol B
and Miyabenol A. The combination of MM-GBSA and absolute free energy of binding
calculation also helped explain the stronger binding of Nepalensinol B and Miyabenol A,
compared with the other less potent compounds tested. These compounds were further
supported by either the strong hydrogen bond network (Nepalensinol B) or the rich van der
Waals hydrophobic contacts (Miyabenol A) via the lower desolvation penalty and the lower
∆G, when compared with the other tested compounds. The MM-GBSA gave relatively
poor correlation with the experimental results, the ∆G values differed disproportionately,
and the standard deviation values were high. However, with the supplement of ∆Go

calculations, the results were significantly improved, providing an overall confirmation
of the pharmacological data and also illustrating that Nepalensinol B can accommodate
a second binding mode. Overall, Nepalensinol B and Miyabenol A were more potent
in eliminating the TNF effect on L929 and primary murine joint fibroblasts, while the
former interrupted more efficiently TNF-TNFR1 binding. Finally, the EnalosMD pipeline
was advanced by adding the necessary modules to further refine our toolset; thus, it can
successfully be used to identify new small molecules.
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