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Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It
is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-
elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription
factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation
complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers
within imprinted loci in an allele-specific manner.We identify themolecular regulators involved in the recruitment
of AFF3 to gDMRs and providemechanistic insight into the requirement of AFF3 at an enhancer for the expression of
an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochro-
matic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity
of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of
dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3
between a DMR and an enhancer.
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The vast majority of autosomal genes is expressed from
both the maternal and paternal alleles in higher mam-
mals, while a subset of genes regulated by genomic im-
printing exhibits parental origin-specific monoallelic
expression. Imprinted genes play pivotal roles in reg-
ulating growth and cell fate determination during devel-
opment (Bartolomei and Ferguson-Smith 2011; Barlow
and Bartolomei 2014). The abnormal dosage of imprinted
gene expression is associatedwith various human congen-
ital disorders—including Prader-Willi, Angelman, and
Beckwith-Wiedemann syndromes—as well as with can-
cers (Peters 2014). Recent studies have also demonstrated
that the epigenetic silencing of maternally expressed
genes Meg3, Rian, and Mirg and a cluster of microRNAs
(miRNAs) located in the Dlk1-Dio3 locus during cellular
reprogramming is accompanied by lowered developmen-
tal potential of induced pluripotent stem cells (iPSCs)
(Stadtfeld et al. 2010, 2012).

Imprinted genes are generally clustered in large chroma-
tin domains defined as imprinted loci. Imprinted loci

commonly bear a CpG-rich DNA sequence, which can
be targeted by de novo DNA methyltransferases dur-
ing spermatogenesis and oogenesis to generate gametic
differentially DNA-methylated regions (gDMRs). Some
gDMRs experimentally shown to control the imprinted
expression of these clustered genes are also known as im-
printing control regions (ICRs) (Bartolomei and Ferguson-
Smith 2011; Barlow and Bartolomei 2014). The acquired
parental allele-specific DNA methylation imprints in
oocytes or sperm are maintained after fertilization and
erased in primordial germ cells (PGCs) in the gonads
(Reik 2007). The differential methylation status of an
ICR can lead to the imprinted gene expression pattern
through diverse ways. For example, at some imprinted
loci, such as Igf2r and Kcnq1, ICRs have methylated im-
prints on the maternal alleles, whereas the correspond-
ing unmethylated regions on the paternal alleles are the
promoters of the imprinted noncoding RNA genes. The
transcripts themselves or the process of transcribing
these noncoding genes are involved in the allele-specific
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silencing of genes within the same locus at the chromatin
level through either recruiting chromatin-modifying ma-
chineries or interfering with RNA polymerase II (Pol II)
engagement (Mancini-Dinardo et al. 2006; Nagano et al.
2008; Latos et al. 2012). In contrast, the H19 ICR, with a
paternally methylated imprint, controls the imprinting
status of H19 and Igf2 through coordinating the function
of various cis-regulatory elements, including enhancers,
insulators, and promoters (Hark et al. 2000).
Factors that associate with the methylated ICRs to

protect the imprint marks from genome-wide epigenetic
reprogramming after fertilization and maintain the meth-
ylation status during development have been intensively
investigated. The Krüppel-associated box (KRAB)-con-
taining zinc finger protein (KRAB-ZFP) ZFP57 specifically
binds to themethylated ICRs and interactswithKRAB-as-
sociated protein 1 (KAP1), also known as TRIM28. Subse-
quently, TRIM28 recruits other repressive chromatin-
related factors—such as the histone H3 Lys9methyltrans-
ferase SETDB1; the DNA methyltransferases DNMT1,
DNMT3A, and DNMT3B; and the heterochromatin-as-
sociated protein HP1—to the methylated ICRs to main-
tain a silent chromatin state (Quenneville et al. 2011;
Messerschmidt et al. 2012). However, genomic imprint-
ing is a finely tuned and highly regulated process, and
yet-to-be-identified factors might exist to ensure the prop-
er expression of imprinted genes through functionally in-
teracting with cis-elements within the imprinted loci.
The AF4/FMR2 (AFF) family members are intrinsically

disordered proteins (IDPs) lacking a fixed structure with
versatile functions during development and disease path-
ogenesis (Luo et al. 2012b). AFF proteins can serve as
scaffolds for the positive transcription elongation factor
(P-TEFb)-containing superelongation complex (SEC) fam-
ily (Luo et al. 2012a,b). The SEC family is comprised of
the AFF4-containing SEC, the AFF2-containing SEC-L2,
and the AFF3-containing SEC-L3, with each regulating
different sets of genes (Lin et al. 2010; Luo et al. 2012a,
b). Of these, SEC is the best characterized, being found oc-
cupying highly transcribed genes and regulating rapid
gene activation upon exposure to environmental stimuli
(Lin et al. 2011; Luo et al. 2012b). To investigate the func-
tion of SEC family members in transcriptional regulation,
we performed chromatin immunoprecipitation (ChIP) and
sequencing (ChIP-seq) studies in mouse embryonic stem
cells (mESCs) and found that AFF3 can specifically bind
both ICRs and enhancers in an allele-specific manner
within the imprinted loci. Our studies demonstrate that
AFF3 is recruited to the methylated alleles of ICRs and
that the binding of AFF3 to ICRs depends on the se-
quence-specific DNA-binding factor ZFP57, the corepres-
sor TRIM28, and DNA methyltransferases. We also show
thatAFF3 is bound to the enhancer upstreamof themater-
nally inherited Meg3/Gtl2 gene within the imprinted
Dlk1-Dio3 locus in wild-type ESCs. AFF3 is required for
the activity of the enhancer and the expression of an
∼200-kb polycistron encompassing Meg3, Rian, Mirg,
and numerous miRNA genes from the active allele. Based
on the results, we propose that themethylated ICR-bound
factors and/or the heterochromatic environment created

could maintain the imprinted status partially through
limiting the binding of an active enhancer factor such as
AFF3.

Results

AFF3 binds to both gDMRs and enhancers of imprinted
genes in mESCs

By performing ChIP-seq in differentmESC lines and using
two different antibodies, we were able to identify 973
high-confidence AFF3-binding sites. Functional annota-
tion of genes near AFF3 peaks using Genomic Regions
Enrichment of Annotations Tool (GREAT) found enrich-
ment for mouse phenotypes related to genomic imprint-
ing (Supplemental Fig. S1A; McLean et al. 2010). For
example, AFF3 is enriched at the promoter region of the
long noncoding RNA gene Airn, which resides in the
gDMR/ICRof Igf2r/Airn locus bearing amaternal-specific
methylation imprint. AFF3 binding at the Igf2r/Airn
gDMR correlates with the presence of the known gDMR
marks of TRIM28, SETDB1, andH3K9me3 (Supplemental
Fig. S1B; Quenneville et al. 2011; Latos et al. 2012; Mes-
serschmidt et al. 2012; Zuo et al. 2012). AFF3 is also de-
tected in the intergenic regions within the Dlk1-Dio3
locus, which harbors a paternally methylated gDMR/
ICR (Fig. 1A). Two discrete AFF3-binding sites are located
12 kb (distal AFF3 peak) and 10 kb (proximal AFF3 peak)
upstream of the promoter region of the maternally ex-
pressed gene Meg3 (Fig. 1B). A comparison of our AFF3
ChIP-seq data with ChIP-seq data for the gDMR marks
TRIM28 (Rowe et al. 2013), SETDB1 (Bilodeau et al.
2009), andH3K9me3 (Karimi et al. 2011) and the enhancer
marks ELL3, p300, and H3K27ac (Lin et al. 2013) demon-
strated that the distal AFF3 peak overlaps with the gDMR
marks within the Dlk1-Dio3 locus, while the proximal
AFF3 peak correlates with a potential enhancer element,
referred to here as the “Meg3-distal gDMR” and the
“Meg3-proximal enhancer,” respectively (Fig. 1B). Ex-
panding the analysis to other known imprinted loci, we
observed that AFF3 is enriched at almost all of the known
gDMRs as well as at putative enhancers, including those
near the imprinted genes Cdkn1c, Nespas, and Meg3
(Fig. 1C; Supplemental Fig. S1C). We knocked down
AFF3 in v6.5 ESCs by lentivirus-mediated shRNA and ob-
served reduced AFF3 signal at these regions, confirming
that AFF3 occupies these regulatory regions (Supplemen-
tal Fig. S2).

AFF3 is recruited to the methylated gDMRs

gDMRs are targeted by parent of origin-dependent DNA
methylation (Bartolomei and Ferguson-Smith 2011; Lee
and Bartolomei 2013; Barlow and Bartolomei 2014). To
understand whether the binding of AFF3 to gDMRs is al-
lele-specific, the methylation status of the AFF3-recruit-
ing allele was assayed by bisulfite sequencing analyses
following AFF3 ChIP at the paternally methylated
gDMRof theH19/Igf2 locus and thematernallymethylat-
ed gDMRs for the Peg1 and Snrpn loci. In all cases,
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regardless of parent of origin, AFF3 was exclusively found
at the methylated gDMRs (Fig. 2A). To validate these as-
says, we performed AFF3 ChIP and methylated DNA im-
munoprecipitation (MeDIP) quantitative PCR (qPCR)
assays in the androgenic (AG) and parthenogenetic (PG)
mouse embryonic fibroblast (MEF) cell lines (Hernandez
et al. 2003) and confirmed that AFF3 is recruited to the
methylated alleles of gDMRs (Fig. 2B,C). ChIP-seq of
AFF3 and H3K9me3 in AG and PGMEF cells also demon-
strated that AFF3 tends to colocalize with H3K9me3 at
gDMRs (Supplemental Fig. S3A). To determine whether
DNA methylation is required for the recruitment of
AFF3 to gDMRs, we performedAFF3ChIP in ESCs deplet-
ed of the DNA methyltransferases DNMT1, DNMT3A,
and DNMT3B, which lack DNA methylation genome-
wide, including at gDMRs (Tsumura et al. 2006). AFF3
is enriched at all tested gDMRs in the wild-type cells
but not in the triple-knockout cells (DNMT triple knock-
outs), while the occupancy of AFF3 at the nonmethylated
Prkcsh gene promoter is equally detected in both cell lines
(Fig. 2D). AFF3 is also lost at gDMRs in ESCs null for
TRIM28 or ZFP57, factors known to maintain the hetero-
chromatic environment at gDMRs during early embryon-
ic development (Supplemental Fig. S3B,C). The depletion
of DNMTs, TRIM28, or ZFP57 does not reduce the AFF3
RNA or protein level in mESCs (Supplemental Fig. S3D).
Furthermore, genome-wide analyses demonstrated that
91 AFF3 peaks, including the majority of the AFF3-occu-
pied known gDMRs, are significantly reduced in ZFP57
knockout ESCs, and ∼90% of them are bound by the
ZFP57 cofactor TRIM28 (Fig. 2E; Supplemental Fig.

S3E). Some of the 91 sites that do not overlap the known
ICRs or other gDMRs listed in the Web resource Web At-
las of Murine Genomic Imprinting and Differential
Expression (WAMIDEX) (Schulz et al. 2008) do overlap a
subset of novel gDMRs identified from genome-wide
DNAmethylationmapping, including four experimental-
ly validated maternal gDMRs near Cdh15, Zfp777,
Zfp787, and AK008011/Nhlrc1 loci (Proudhon et al.
2012). These same gDMRswere also found to be occupied
by ZFP57 (Strogantsev et al. 2015). Therefore, many more
ICRs may exist that are regulated by some of the same
factors that regulate the known gDMRs. We also per-
formed ChIP-qPCR to analyze the occupancy of TRIM28
and the histone methyltransferase SETDB1 at gDMRs in
mESCs after AFF3 depletion. The occupancy of TRIM28
and SETDB1 at the gDMRs was not obviously affected af-
ter AFF3 knockdown (Supplemental Fig. S3F,G).

AFF3 regulates the activity of the Meg3 upstream
enhancer in an allele-specific manner

Of all of the AFF3 peaks overlapping an annotated gDMR,
only one peak exhibits a significant increase inAFF3 occu-
pancy in the ZFP57 knockout cells (Fig. 2E; Supplemental
Table 1). This AFF3 peak resides within the intergenic
DMR (IG-DMR) of theDlk1-Dio3 cluster and corresponds
to the Meg3-proximal enhancer peak located just 2.4 kb
from the Meg3-distal gDMR peak (Figs. 1B, 3A). While
bisulfite sequencing of ChIP DNA demonstrated that
AFF3 is on the inactive allele at the Meg3-distal gDMR,
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Figure 1. AFF3 binds to both gDMRs and enhancers
of imprinted genes in mESCs. (A) AFF3 occupies an
intergenic region within the Dlk1-Dio3 locus in
mESCs. ChIP-seq binding profiles of AFF3 at the
Dlk1-Dio3 loci in v6.5, KH2, and TC1 mESCs are
shown. Two different antibodies were generated and
used to chromatin immunoprecipitate AFF3 in v6.5
cells (indicated by Ab1 and Ab2). The two intergenic
AFF3 peakswithin theDlk1-Dio3 locus are highlight-
ed with an orange bar. (B) The distal intergenic peak
to the Meg3 transcription start site (TSS) within the
Dlk1-Dio3 locus is associated with the gDMRmarks
TRIM28 (Rowe et al. 2013), SETDB1 (Bilodeau et al.
2009), and H3K9me3 (Karimi et al. 2011), while the
proximal peak is associated with the enhancer marks
ELL3 (Lin et al. 2013), p300 (official protein symbol
EP300) (Creyghton et al. 2010), H3K27ac, and
H3K4me1 (Creyghton et al. 2010). Shown are ChIP-
seq binding profiles of AFF3, gDMR marks (TRIM28,
SETDB1, and H3K9me3), and enhancer marks
(ELL3, p300, H3K27ac, andH3K4me1) at the genomic
region upstream of the Meg3 TSS. AFF3 ChIP-seq in
v6.5 cells using Ab1 is shown. The gDMR region is
highlighted with a blue bar, and the enhancer region
upstream of the Meg3 TSS is highlighted with a pink
bar. Schematic illustrations of the Dlk1-Dio3 locus
show the maternally and paternally expressed genes
indicated by red and black, respectively. (C ) AFF3

co-occupies the gDMRsof imprinted lociwithTRIM28.Anaverage occupancyplot ofAFF3andTRIM28 is shown for theknown imprinted
loci in Supplemental Figure S1C.
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AFF3 is restricted to the unmethylated allele at theMeg3-
proximal enhancer (Fig. 3B,C; Supplemental Fig. S4).
Knockdown of AFF3 leads to reduced H3K27ac at the

Meg3-proximal enhancer, indicating that AFF3 is required
to maintain its active chromatin state (Fig. 3D; Supple-
mental Table 2). Furthermore, the expression levels of
Meg3 and the downstream maternally expressed noncod-
ing genes within the Dlk1-Dio3 locus are also reduced in
AFF3 knockdown ESCs (Fig. 3E; Supplemental Fig. S5A),
suggesting that an activating function of AFF3 might be
exerted from the nearby Meg3-proximal enhancer. In or-
der to confirm that the reduced expression of these mater-
nally expressed genes is only due to reduced expression of
the maternal allele, we performed gene expression and
single-nucleotide polymorphism (SNP) analyses in TT2

ESCs generated from C57BL/6 × CBA F1 embryos. These
studies demonstrate that all expression comes from the
maternal allele in control and AFF3 knockdown cells
but at reduced levels in AFF3 knockdown cells compared
with control cells (Supplemental Fig. S5B,C).

A model for the methylated IG-DMR limiting AFF3
enhancer function

In ZFP57-null ESCs, H3K9me3 (Quenneville et al. 2011)
and DNA methylation (Li et al. 2008) are diminished
from the IG-DMR on the paternal allele. We found that
AFF3 is also lost from the Meg3-distal gDMR in these
cells, while AFF3 occupancy doubles at the Meg3-proxi-
mal enhancer region (Fig. 3F). AFF3 binding at these
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regions exhibited similar changes after TRIM28 knockout
(Supplemental Figs. S3B, S5D). In ZFP57-null cells, the ac-
tive enhancermarkH3K27ac is also increased nearly two-
fold at this region (Fig. 3G). Furthermore, theMeg3, Rian,
and Mirg transcripts within this locus are up-
regulated approximately twofold relative to wild-type
cells (Supplemental Fig. S6A). Gene expression and SNP
analyses in TT2 ESCs demonstrate that transcription is
originating fromboth alleles in the absence of ZFP57 (Sup-
plemental Fig. S6B–D).

We next depleted AFF3 in ZFP57-null ESCs, where only
enhancer-bound AFF3 is present, and observed reduced
expression of the noncoding RNA genes (Supplemental
Fig. S7). This finding further confirms that an activating
function of AFF3 from the enhancer is regulating the ex-
pression of these genes and also suggests that AFF3 is re-
quired for full derepression of these genes in the ZFP57-

null background. Therefore, AFF3 occupies the enhancer
of the active maternal Meg3 allele, regulating its activity
and downstream gene expression (Fig. 3A–E), while the
methylated IG-DMR,maintained byZFP57 and its associ-
ated heterochromatinmachinery, has an inhibitory role in
the activity of the nearbyMeg3 enhancer, which could be
mediated by limiting the binding of AFF3 at the imprinted
paternal allele (Fig. 3F,G).

AFF3 regulates the expression of a 210-kb Meg3-to-Mirg
transcript within the Dlk1-Dio3 locus

SECs regulate transcription elongation through phosphor-
ylation of the Pol II C-terminal domain (CTD) (Luo et al.
2012a,b). To examine possible elongation functions for
AFF3 at the Dlk1-Dio3 locus, we performed Pol II ChIP-
seq in AFF3 knockdown cells. Pol II appears to be
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continuously transcribing from Meg3 to Mirg, and deple-
tion of AFF3 leads to a reduced level of Pol II throughout
the locus (Fig. 4A). Furthermore, both total and nascent
RNA sequencing (RNA-seq) demonstrate that transcripts
are reduced throughout the entire region in AFF3 knock-
down cells (Fig. 4B; Supplemental Table 3). Global run-
on sequencing (GRO-seq) (Min et al. 2011) and ChIP-seq
for markers of transcription elongation also show contin-
uous coverage over this region (Fig. 4C,D). The only appar-
ent transcription start site (TSS), as indicated by
enrichment for TBP, NELFA, and H3K4me3, overlaps
with the annotatedMeg3 gene TSS (Fig. 4E). The continu-
ous coverage of transcription elongation marks and a sin-
gle start site of transcription for this region can be
observed in different tissues and cell types (Supplemental
Fig. S8). These findings are in line with previous proposals
that these noncoding RNAs might be processed from a
single transcript based on these regions having only one
predicted promoter element (at the Meg3 locus), that
intergenic transcription is detected within thematernally
expressed region of this locus, and that deletion of the

Meg3 promoter disrupts the expression of the downstream
noncoding RNAs (Tierling et al. 2006; Zhou et al. 2010).
Together, these data provide strong evidence that these
maternally expressed noncoding RNA genes are tran-
scribed as a single, >200-kb, polycistronic transcription
unit that requires AFF3 for its expression in mESCs.

Discussion

Regulation of the maternally expressed genes
within the Dlk1-Dio3 locus in pluripotent cells

Our analyses demonstrate that AFF3 binds to the methyl-
ated alleles at gDMRs/ICRs, whereas at the Meg3-proxi-
mal enhancer, it preferentially binds to the unmethylated
allele and promotes target gene transcription. The distinct
functional states of AFF3 at gDMRs and at the Meg3 en-
hancer could be determined by the local chromatin envi-
ronment. The DNA-binding factor ZFP57 recruits the
scaffolding factor TRIM28, the histone H3 Lys9 methyl-
transferase SETDB1, and the DNA methyltransferases
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DNMTs, settinguparepressivechromatinenvironmentat
gDMRs (Quenneville et al. 2011). The open chromatin sig-
natureof thecorresponding regiononthematernal alleleof
the IG-DMR could enable an activating function of AFF3
through this enhancer for regulating expression of the
Dlk1-Dio3 locus, which is transcribed as a single polycis-
tron. Consistent with these findings, a recent study found
that enhancer-like noncoding RNAs emanating from the
Dlk1-Dio3 ICRwere required for the expression of thema-
ternally expressed genes in the cluster (Kota et al. 2014).

Silencing of thematernally expressed genes in theDlk1-
Dio3 locus was linked to “bad” iPSCs that exhibit a com-
promised ability to generate “all-iPSC” mice (Stadtfeld
et al. 2010, 2012). The noncoding transcripts within the
locus, including Meg3, Rian, and Mirg, were demonstrat-
ed to interact with the key epigenetic regulator Poly-
comb-repressive complex 2 (PRC2) in mESCs. Decreased
occupancy of PRC2 and H3K27me3 was observed over
the developmentally regulated genes in MEG3-depleted
cells, suggesting the functional importance of the noncod-
ing transcripts in pluripotency (Kaneko et al. 2014). Clear-
ly, the ICR binding of AFF3 is dependent on ZFP57 and/or
other factors recruited by ZFP57, while AFF3 binding to
the Meg3-proximal enhancer does not require ZFP57.
Therefore, it would be interesting to explore the DNA-
binding factors that start the path for setting up the
open chromatin and recruiting AFF3 to the enhancer re-
gion in ESCs. Manipulating the activity of the Meg3 en-
hancer through its trans-acting factor, AFF3, identified
in this study, and the potential pioneer factors bound to
this enhancer could facilitate cellular reprogramming for
regenerative medicine.

There are only three well-established paternally im-
printed loci in mice: the Dlk1-Dio3 locus, the Rasgrf1 lo-
cus, and the H19-Igf2 locus. The gDMRs within these
paternally imprinted loci are located at intergenic regions,
giving them the potential to have enhancer activities
when unmethylated. However, the Rasgrf1 and H19-Igf2
loci are either silenced or unstably expressed in mESCs.
Only the maternally expressed noncoding RNAs within
the Dlk1-Dio3 locus are highly expressed in mESCs,
allowing us to investigate the function of AFF3 at the
IG-DMR and Meg3-proximal enhancer in these cells.

Sequestration model of AFF3 enhancer function
at the IG-DMR

The IG-DMR at the Dlk1-Dio3 locus not only ensures in-
activation of theMeg3-proximal enhancer on the paternal
allele but also recruits AFF3 to the methylated IG-DMR
locus, which could serve to modulate AFF3 recruitment
to the active enhancer on thematernal allele, thereby reg-
ulating enhancer activity and transcription throughout
the Meg3 polycistron (Fig. 5). The evidence that led us to
propose that the IG-DMR sequesters AFF3 from the active
enhancer is the combination of the following observa-
tions. Bisulfite sequencing shows that AFF3 is normally
bound to the paternally imprinted ICR and the maternal
active Meg3 enhancer located within the IG-DMR. In
ZFP57 knockout ESCs, the increased expression of the

noncoding RNAs in this region, due to loss of imprinting,
is consistentwith higher occupancy of AFF3 andH3K27ac
at the Meg3-proximal enhancer. However, loss of AFF3
leads to loss of expression of these genes in not only
wild-type but also ZFP57 knockout cells, suggesting
that AFF3 is a positive regulator of these genes from its
only remaining binding site in the region; namely, the
Meg3-proximal enhancer. Last, loss of AFF3 in wild-type
ESCs leads to loss of H3K27ac at the enhancer, indicating
that AFF3 has a function in setting up the open chromatin
environment at the enhancer on the active allele, which
provides a rationale for why ICR factors could enforce
the silent enhancer state in part through sequestering
AFF3.

Control of allele-specific expression or silencing of the
Meg3 polycistron by differential methylation of identical
enhancer elements on different alleles under the same cel-
lular context provides direct evidence for a critical role of
enhancer methylation status in gene expression, support-
ing prior correlations of methylation status at enhancers
with altered gene expression profiles, seen not only across
various cancer types but also under physiological develop-
mental processes (Aran and Hellman 2013; Hon et al.
2013). Considering the widespread existence of disease-
and tissue-specific differential methylation, the mecha-
nism proposed here could be more generally applied to
explain the function of DNAmethylation and heterochro-
matin in regulating enhancer activity.

A function of AFF3 in autoimmune diseases

A role for AFF3 in imprinted gene expression in humans
is indicated by the existence of SNPs in AFF3 regulatory
regions that are associated with human autoimmune
diseases, including rheumatoid arthritis, systemic lupus
erythematosus, and type 1 diabetes (Stahl et al. 2010;
Cen et al. 2012; Wallace et al. 2012). These diseases are
themselves linked to changes in imprinted gene expres-
sion (Camprubi and Monk 2011), raising the possibility
that their etiology could result from misregulation of
AFF3 at regulatory regions of imprinted genes. Our

Figure 5. Cartoon model illustrating the locations of IG-DMR-
bound AFF3 and Meg3 upstream enhancer-bound AFF3 at the
Dlk1-Dio3 locus. Methylation of the IG-DMR inhibits the gene-
sis of an active enhancer on the paternal allele through sequester-
ing AFF3, while AFF3 on the active allele is free to bind the active
enhancer on the maternal allele to regulate transcription of the
Meg3 polycistron at the elongation stage.
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proposed mechanism of gDMR-bound silencing factors
sequestering AFF3 from its cis enhancer, while, on the
other allele, AFF3 occupies the active enhancer to stimu-
late transcription elongation by an SEC-like complex pro-
vides new areas of investigation for understanding the
regulation of imprinted gene expression through enhancer
activity and transcriptional elongation control in develop-
ment and disease.

Materials and methods

Cell culture

The mESC lines used in this study were grown on irradiated pri-
mary MEF feeder layers in 0.1% gelatin-coated tissue culture
plates. mESCs, except for DNMT triple-knockout ESCs, were
cultured in Dulbecco’s modified Eagle medium (DMEM) supple-
mentedwith 15%ES-certified fetal bovine serum (FBS) (Hyclone),
recombinant LIF (Millipore), 2 mM L-glutamine, 0.1 mM nones-
sential amino acids, and 0.1 mM β-mercaptoethanol. For experi-
mental analyses, ESCs were grown for one passage without
MEF feeder cells in tissue culture plates for 30 min. The medium
used for DNMT triple-knockout ESC culture was Glasgowmini-
mum essential medium (GMEM) with the above supplements.
The uniparental MEF cell lines were cultured in DMEM supple-
mented with 10% FBS (Sigma).

Lentivirus-based RNAi

Mouse AFF3 (RMM4534-NM_010678) shRNA constructs were
purchased from Open Biosystems. Mouse ZFP57 (SHCLNG-
NM_009559) shRNA and the nontargeting shRNA constructs
(SHC002) were purchased from Sigma. Preparation of lentiviral
particles and viral transduction were carried out as previously
described (Lin et al. 2013). Briefly, 293T cells cultured in
DMEM with 10% FBS were cotransfected 24 h after seeding
with the shRNA construct or the nontargeting control shRNA,
the packaging plasmid PsPAX2, and the envelope plasmid
pMD2.G using xTremeGENE-HP (Roche). The medium was
changed 16 h after transfection. The supernatants containing
lentiviral particles were collected 48 and 72 h after transfection,
filtered through a 0.45-µm filter, and concentrated at 18,000
rpm for 2 h at 4°C. ESCs andMEF cells were transducedwith con-
centrated lentiviral particles and polybrene (Sigma). Twenty-four
hours after transduction, the cells were subjected to 2 µg/mL pu-
romycin selection for an additional 48 h. Seventy-two hours after
transduction, the cells were harvested for the experimental
analyses.

Antibodies

The antibodies to 5-methyl-cytosine (5mC) (Eurogentec,
BI-MECY-0100), H3K9me3 (Abcam, ab8898), H3K27ac (Abcam,
ab4729), ZFP57 (Abcam, ab45341), SETDB1 (Santa Cruz Biotech-
nology, sc-66884), and RNA Pol II (Santa Cruz Biotechnology, sc-
899) are commercially available. Antibodies against AFF3 (Ab#1,
antigen, a mixture of two peptides from amino acids 124–237 and
amino acids 816–982 of human AFF3) were generated in our lab-
oratory and have been described previously (Luo et al. 2012a). A
second antibody against AFF3 (Ab#2, antigen, human AFF3 ami-
no acids 816–982) was also generated in our laboratory. Antigens
were expressed as His tag fusion proteins in pET-16b, purified on
NTA-agarose according to Qiagen’s protocol, and sent to Pocono
Rabbit Farm and Laboratory for immunization into rabbits.

qRT–PCR and total RNA-seq library preparation

Total RNA was isolated with RNeasy kit (Qiagen), treated with
RNase-free DNase I (New England Biolabs), and repurified with
RNeasy. cDNAs were synthesized with the High-Capacity
RNA-to-cDNA kit (Applied Biosystems). The expression levels
were measured on MyIQ (Bio-Rad) using iQ SYBR Green super-
mix (Bio-Rad). For total RNA-seq, ribosomal RNA depletion
and library preparationwere performedwith TruSeq sample prep-
aration kit (Illumina).

Chromatin isolation and nascent RNA-seq library preparation

About 1 × 108 fresh ESCs were washed twice in ice-cold PBS. The
cells were then resuspended in buffer A (10mMHEPES at pH 7.9,
10 mM KCl, 1.5 mM MgCl2, 0.5 mMDTT, proteinase inhibitors
[Roche]) and incubated for 15min on ice. The cell suspensionwas
transferred to a precooled Dounce tissue grinder and homoge-
nized 10 times by using a tight pestle on ice. After centrifugation,
the pellet containing enriched nuclei was washed twice in S1
buffer (0.25 M sucrose, 10 mM MgCl2, 10 mM HEPES at pH
7.9, 1 mM DTT, proteinase inhibitors). To obtain the chromatin
pellet, the nuclear pellet was thenwashed in ice-coldNUNbuffer
(20 mM HEPES at pH 7.9, 7.5 mM MgCl2, 0.2 mM EDTA, 300
mMNaCl, 1 M urea, 1%NP-40, 1 mMDTT, 20 U/mL RNase in-
hibitor [Ambion], proteinase inhibitors) five times. Chromatin-
bound RNA was isolated with RNeasy (Qiagen). The RNA was
poly-A-depleted by using oligo(dT) magnetic beads (Invitrogen),
treated with RNase-free DNase I, and repurified with RNeasy.
Five-hundred nanograms of RNA was used for ribosomal RNA
depletion with Ribo-zero Gold (Epicentre), and library prepara-
tionwas performedwith TruSeq Stranded Total RNA-seq sample
preparation kit.

ChIP and ChIP-seq library preparation

ChIP assays were performed according to the previously de-
scribed protocol (Lee et al. 2006). Briefly, 5 × 107 cells were
cross-linked by using 1% paraformaldehyde for 10 min at room
temperature. Cross-linking was quenched by the addition of gly-
cine. The fixed chromatin was then subjected to sonication and
immunoprecipitation with the specified antibody. ChIP-seq li-
braries were prepared by using ChIP-seq sample preparation kit
(Illumina) or KAPA Biosystems HTP library preparation kit.

MeDIP

MeDIPassayswere performed according to a previously described
protocol (Weber et al. 2007). Briefly, genomic DNA was isolated
and purified with DNeasy kit (Qiagen). One microgram of puri-
fied genomic DNAwas sonicated by using a Diagenode Bioruptor
and heat-denatured for 10 min at 95°C. Two-hundred nanograms
of sonicated DNAwas saved as input. The rest of the fragmented
DNA was immunoprecipitated with the antibody against 5mC
overnight at 4°C.
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