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Abstract
Adult-onset ataxias are a genetically and clinically heterogeneous group of movement disorders. In addition to nuclear gene 
mutations, sequence changes have also been described in the mitochondrial genome. Here, we present findings of muta-
tion analysis of the mitochondrial gene MT-ATP6. We analyzed 94 patients with adult-onset spinocerebellar ataxia (SCA), 
including 34 sporadic cases. In all patients, common sequence changes found in SCAs such as repeat expansions and point 
mutations had been excluded previously. We found pathogenic MT-ATP variants in five of these patients (5.32%), two of 
whom were sporadic. Four of the five mutations have not previously been described in ataxias. All but one of these mutations 
affect transmembrane helices of subunit-α of ATP synthase. Two mutations (p.G16S, and p.P18S) disrupt transmembrane 
helix 1 (TMH1), one mutation (p.G167D) affects TMH5, and another one (p.L217P) TMH6. The fifth mutation (p.T96A) 
describes an amino acid change in close proximity to transmembrane helix 3 (TMH3). The level of heteroplasmy was either 
complete or very high ranging from 87 to 99%. The high prevalence of pathogenic MT-ATP6 variants suggests that analysis 
of this gene should be included in the routine workup of both hereditary and sporadic ataxias.
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Introduction

Hereditary adult-onset ataxias are a phenotypically and 
genetically heterogeneous group of movement disorders. 
They can be transmitted as autosomal-dominant, autosomal-
recessive, X-linked, or mitochondrial traits. Autosomal-dom-
inant spinocerebellar ataxias (SCA) are characterized by gait 
and limb ataxia, associated with dysarthria and abnormal eye 
movements in most patients. Additional signs and symptoms 

may comprise aberrant reflexes, seizures, dystonia, tremor, 
myoclonus, and cognitive impairment. Mutations have been 
described in various genes in SCAs. The types of mutations 
observed are repeat expansions, point mutations, deletions, 
and insertions in nuclear genes [1]. No obvious genotype/
phenotype correlations can be established in most cases. 
Exceptions include SCA7 characterized by ataxia concur-
ring with retinopathy, and SCA34 that frequently presents 
with erythrokeratodermia in addition to ataxia [1].

Mutations of mitochondrial DNA frequently underlie 
ataxia-associated syndromes, even if ataxia is not the major 
sign [2–4]. One of the genes affected, mitochondrial ATP 
synthase 6 (MT-ATP6), codes for ATP synthase subunit-α 
which is a subunit of the F1F0ATP-synthase complex respon-
sible for mitochondrial energy production [5].

MT-ATP6 mutations including point mutations, deletions 
and truncations have also been described in adult-onset 
ataxia patients. The phenotype of ataxia caused by muta-
tions in MT-ATP6 can frequently not be distinguished from 
ataxias caused by nuclear gene mutations [6]. In other cases, 
however, ataxia is associated with various symptoms such 
as combinations of ataxia with spastic paraplegia [7], motor 
neuron disease [8], neuropathy [9], myeloneuropathy [10], 
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white matter abnormalities, kidney disease and cognitive 
decline [11], peripheral neuropathy, diabetes and hypergon-
adotropic hypogonadism [12], and episodic weakness com-
bined with inherited axonal neuropathy [13]. Of these syn-
dromes, only the complex ataxia-related syndrome described 
by Kytövouri is caused by a unique mutation of MT-ATP6, 
m.8561C>G (p.P12S) [12], which was formerly not associ-
ated with maternally inherited Leigh syndrome (MILS), or 
neuropathy, ataxia, and retinitis pigmentosa (NARP) syn-
drome [3].

The degree of heteroplasmy of the mutated gene MT-
ATP6 facilitates classification of some mitochondrial 
syndromes. Thus, a mutation load of > 90% is frequently 
found in MILS syndrome [3, 14] and MT-ATP6 mutations 
in 70–90% of mitochondrial DNA often cause NARP syn-
drome [2, 3, 15, 16].

The following study was performed to determine the rela-
tive frequency and possible specificity of MT-ATP6 muta-
tions in patients clinically classified as adult-onset spinocer-
ebellar ataxia.

Patients and methods

Genetic analysis

Ninety-four unrelated spinocerebellar ataxia patients were 
tested for mutations in MT-ATP6 (ENSG00000198899). 
Eighty-six patients were of German origin, three were Rus-
sians, two Polish, and one patient each came from Turkey, 
Spain, and Italy. The study was approved by the Ethics Com-
mittee of the University of Giessen. Patients gave written 
informed consent according to the guidelines of the Ger-
man Genetics Diagnostics Act. All patients were examined 
and diagnosed at specialized German movement disorder 
centers. Other causes of ataxic movement disorders such as 
neoplasia, stroke, CNS infection, multiple sclerosis, vitamin 
deficiency, and alcohol abuse were excluded in all patients. 
Sixty patients had a positive family history consistent with 
autosomal-dominant or mitochondrial inheritance. Thirty-
four patients were classified as sporadic.

DNA was extracted from peripheral blood. Repeat expan-
sions at loci SCA1-3, SCA6-8, SCA10, SCA12, and SCA17 
were excluded. Similarly, no pathogenic variants were 
detected at loci SCA11 (TTBK2), SCA13 (KCNC3), SCA14 
(PRKCG), SCA19 (KCND3), SCA23 (PDYN), SCA27 
(FGF14), SCA28 (AGF3L2), and SCA38 (ELOVL5). Large 
deletions at SCA15/16 (ITPR1/SUMF1) were excluded by 
quantitative PCR.

A 953-bp fragment of MT-ATP6 was amplified by PCR 
using primers mtATP6_F: 5′-GCC​CAC​CAT​AAT​TAC​CCC​

-3′, and mtATP6_R: 5′-GCC​TAG​TAT​GAG​GAG​CGT​TATG-
3′. PCR fragments were sequenced in both directions.

Analysis of degree of heteroplasmy

Heteroplasmy levels for m.8572G > A (p.G16S), 
m.8578C > T (p.P18S), m.8812A > G (p.T96A), 
m.9026G > A (p.G167D), and m.9176 T > C (p.L217P) 
were determined by pyrosequencing as described earlier 
[6]. DNA of the five patients was amplified by PCR to gen-
erate short products. One of the primers was biotinylated 
to facilitate isolation of the template strand via streptavi-
din. For pyrosequencing, a sequencing primer was used in 
close proximity to the mutation. Pyromark Assay Design 
Software v.2.0 (Qiagen/Hilden) was used for design of the 
variant-specific assays. Pyrosequencing was done on a 
Pyromark Q24 sequencer according to the manufacturer’s 
instructions. Assays were repeated at least twice.

A single PCR product was generated for closely adja-
cent variants m.8572G > A (p.G16S) and m.8578C > T 
(p.P18S). Primers were Pyro_G16S_P18S_F: 5′-TCT​
GTT​CGC​TTC​ATT​CAT​TGC-3 ′ and 5 ′-biotinylated 
reverse primer Pyro_G16S_P18S_R: 5′-GAG​GGG​GAA​
ATA​GAA​TGA​TCA​GTA​-3′. Both variants were quanti-
fied in DNA of patient #960 (m.8572G > A), or patient 
#982 (m.8578C > T) using primer PyroSeq_G16_P18_F: 
5′-TGC​CCC​CAC​AAT​CCT-3′.

Variant m.8812A > G (p.T96A) was analyzed with 
5′-biotinylated forward primer Pyro_T96A_F: 5′-CTC​
GGA​CTC​CTG​CCT​CAC​T-3′, and Pyro_T96A_R: 5′-CTG​
TGC​CCG​CTC​ATA​AGG​-3′. Reverse primer used for quan-
tification was PyroSeq_T96A_R: 5′-GGC​TAG​GTT​TAT​
AGA​TAG​TT-3′.

Primers for variant m.9026G > A (p.G167D) were 
Pyro_G167D_F: 5′-AAC​CAA​TAG​CCC​TGG​CCG​TAC-
3′ and 5′-biotinylated Pyro_G167D_R: 5′-CGC​TTC​CAA​
TTA​GGT​GCA​TGA-3′. Primer used for quantification was 
PyroSeq_G167D_F: 5′-CTA​ACC​GCT​AAC​ATT​ACT​G-3′.

Variant m.9176T > C (p.L217P) was analyzed using 
primers Pyro_L217P_F: 5′- TCG​CCT​TAA​TCC​AAG​CCT​
AC-3′, and 5′-biotinylated Pyro_L217P_R: 5′- ATT​ATG​
TGT​TGT​CGT​GCA​GGT​AGA​-3′. Quantification was per-
formed with primer PyroSeq_L217P_F: 5′-CCT​ACG​TTT​
TCA​CAC​TTC​-3′.

Prediction of pathogenicity

Pathogenicity of observed variants was analyzed in silico 
(Table 1). Programs used were MutationTaster2 (http://​
www.​mutat​ionta​ster.​org) [17], Polyphen-2 (http://​genet​ics.​
bwh.​harva​rd.​edu/​pph2/) [18], PROVEAN (http://​prove​an.​
jcvi.​org) [19], SIFT (https://​sift.​bii.a-​star.​edu.​sg) [20, 21], 

http://www.mutationtaster.org
http://www.mutationtaster.org
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org
http://provean.jcvi.org
https://sift.bii.a-star.edu.sg
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Table 1   Prediction, MitoMap frequency, and ACMG classification of MT-ATP6 missense variants detected in a cohort of 94 SCA patients

SCA spinocerebellar ataxia, MAF minor allele frequency, underline: likely pathogenic variants; ALFA database: (https://​www.​ncbi.​nlm.​nih.​gov/​
snp/​docs/​gsr/​alfa) [36]; ACMG classification, detailed information is given in [24]

mDNA/cDNA/
protein change/ 
cases in cohort

SNV number
MAF (ALFA 
database)

MutationTaster
(Score)

Polyphen-2 
(Score)

PROVEAN 
(Score)

SIFT (Score) VEP/ 
Ensembl
SIFT / Poly-
phen (Score)

MitoMap 
frequency

ACMG Classifi-
cation criteria

m.8572G > A
c.46 G > A, 

p.G16S,
1

rs28502681
A = 0.0009

Disease causing
(0.9961)

Probably dam-
aging

(0.895)

Deleterious
(− 4.623)

not tolerated
(0.02)

0.03 0.498 0.344% Class 3 (variant 
of uncertain 
significance) 
PM1, PP3

m.8578C > T
c.52C > T,
p.P18S,
1

rs1556423492
T = 0.0004

Polymorphism
(0.9517)

Probably dam-
aging

(0,999)

Deleterious
(− 6.594)

Tolerated
(0.17)

0.03 0.996 0.058% Class 4 (likely 
pathogenic)

PS4, PM1, PP3

m.8584G > A
c.58G > A,
p.A20T,
2

rs3135028
A = 0.0067

Polymorphism
(0.9999)

Benign
(0.004)

Neutral
(− 0.404)

Tolerated
(0.21)

0.24 0.012 5.558% Class 1 (benign)
BA1

m.8701A > G
c.175A > G,
p.T59A,
3

rs2000975
G = 0.06433

Polymorphism
(0.9999)

Benign
(0.002)

Neutral
(− 0.935)

Tolerated
(0.66)

0.51 0.005 32.975% Class 1 (benign)
BA1

m.8705 T > C
c.179 T > C,
p.M60T,
2

rs878959404
C = 0.0043

Polymorphism
(0,9999)

benign
(0.000)

Neutral
(0.320)

tolerated
(0.30)

0.68 0.0 0.383% Class 2 (likely 
benign)

BP4, BP6

m.8723G > A
c.197G > A,
p.R66Q,
1

rs unknown Polymorphism
(0.9997)

Benign
(0.021)

Neutral
(− 0.523)

Tolerated
(0.51)

0.55 0.012 0.159% Class 2 (likely 
benign)

BP4, BP6

m.8764G > A
c.238G > A,
p.A80T
1

rs1556423534
A = 0.0018

Polymorphism
(0.9999)

Benign
(0.001)

Neutral
(− 1.221)

Tolerated
(0.26)

0.12 0.007 0.207% Class 2 (likely 
benign)

BP4, BP6

m.8812A > G
c.286A > G,
p.T96A,
1

rs1556423543
G = 0.0018

Polymorphism
(0.9266)

Probably dam-
aging

(0.994)

Deleterious
(− 3.891)

Not tolerated
(0.03)

0.05 0.988 0.118% Class 3 (variant 
of uncertain 
significance) 
PM1, PP3

m.8950G > A
c.424G > A,
p.V142I,
1

rs1556423574
A = 0.0008

Polymorphism
(0.9999)

Benign
(0.0)

Neutral
(0.118)

Tolerated
(1.0)

1.0 0.0 0.151% Class 2 (likely 
benign)

BP4, BP6

m.9026G > A
c.500G > A,
p.G167D,
1

COSV62293160 Disease causing
(0.9999)

Probably dam-
aging

(1.0)

Deleterious
(− 6.275)

Not tolerated
(0.00)

0.0 0.999 0.006% Class 5 (patho-
genic)

PS1, PM1, PM2, 
PM5

m.9055G > A
c.529G > A,
p.A177T,
7

rs193303045
A = 0.1556

Polymorphism
(0.9988)

Probably dam-
aging

(0.845)

Deleterious
(− 2.606)

Tolerated 
(0.16)

0.1 0.399 4.244% Class 1 (benign)
BS1, BS4

m.9067A > G
c.541A > G,
p.M181V,
2

rs unknown Polymorphism
(0.9999)

Benign
(0.003)

Neutral
(− 0.967)

Not tolerated
(0.01)

0.01 0.007 0.070% Class 2 (likely 
benign)

BP4, BP6

m.9070 T > G
c.544 T > G,
p.S182A,
1

rs879190502
G = 0.0020

Polymorphism
(0.9999)

Benign
(0.225)

Neutral
(− 0.122)

Tolerated
(0.57)

0.12 0.182 0.126% Class 2 (likely 
benign)

BP4, BP6

m.9176 T  C
c.650 T> C, 
p.L217P
1

rs199476135
C = MAF unknown

Disease causing
(0.9999)

Probably dam-
aging

(0.999)

Deleterious
(− 6.258)

Not tolerated
(0.00)

0.0 0.998 0.006% Class 5 (patho-
genic)

PS1, PS3, PS4

https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa
https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa
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and Variant Effect Predictor (VEP, https://​www.​ensem​bl.​
org/​info/​docs/​tools/​vep/​index.​html) [22], which is a modi-
fied version of a combination of SIFT and Polyphen-2 pre-
diction programs.

Frequency of each variant detected (Table 1) was ana-
lyzed by searching the database MitoMap (https://​www.​
mitom​ap.​org) [23]. Variants were classified according to 
the ACMG guidelines [24] (Table 1).

Clinical findings

Patient 1

Disease onset in male patient 1 (#982, family 1, II-2, 
Fig. 1a, Table 2) was at age 53 when he presented with gait 

instability and frequent falls. At age 56, comprehensive neu-
rological examination revealed mild and slowly progressive 
gait ataxia, postural instability, dysdiadochokinesia, moder-
ate horizontal nystagmus and mild dysarthria. Fine motor 
movements were not impaired. While psychiatric symptoms 
were excluded, the patient complained of moderate lack of 
concentration and forgetfulness. His older brother who had 
perinatal asphyxia presented with generalized dystonia 
and mild ataxic gait. His younger brother died at age 50 of 
unknown causes. However, a psychiatric disorder and tremor 
had been excluded. The patient´s sister was healthy at her 
last examination at age 48.

Fig. 1   a Pedigrees of the German adult-onset SCA cases. Black sym-
bols indicate affected probands. Index patients are marked by arrow. 
Probands for whom no clinical information was available are high-
lighted by an asterisk. b Electropherograms of sequences of index 
patients and controls. The relevant base changes are indicated by 
arrow. c Amino acid sequence alignments of ATP synthase subunit-α 

orthologs. Name of species and protein identifier numbers are given 
on the left. Amino acids mutated in patients are evolutionarily highly 
conserved and are highlighted in green. Non-conserved amino acid 
residues are given in red. H., Homo; P., Pan; M., Macaca; R., Rattus; 
M., Mus; G., Gallus; X., Xenopus; T., Takifugu

https://www.ensembl.org/info/docs/tools/vep/index.html
https://www.ensembl.org/info/docs/tools/vep/index.html
https://www.mitomap.org
https://www.mitomap.org
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Patient 2

Male patient 2 (#873, family 2, III-1, Fig. 1a, Table 2) came 
to clinical attention at age 62 because of ataxic gait, frequent 
falls, and tremor. Dysmetria was diagnosed by finger-to-nose 
and knee-heel test. The patient reported first occurrence of 
postural and action tremor of the hands at age 46. At the 
time of investigation, lifted saccades and abnormal executive 
function were diagnosed. Brain MRI revealed a colliquative 
necrosis of the temporal lobe. At age 73, ataxic wide-based 
gait had worsened. Tremor that was initially confined to the 
hands, now also affected the head and had become the major 
sign. SCA-loci that are associated with tremor (SCA12, and 
SCA15/16) have been excluded in this patient. The patient´s 
younger brother, his deceased mother, and maternal grand-
mother had had similar signs and symptoms, of which 
tremor and mild ataxic gait were most striking.

Patient 3

Female patient 3 (#960, II-1, Fig. 1a, Table 2) was sporadic 
with none of her parents affected. In the patient, a mild spi-
nocerebellar ataxia was diagnosed at age 65. The ataxia was 
progressive but did not affect the ability to walk without a 
cane for at least short distances at age 75.

Patient 4

At age 56, sporadic male patient 4 (#1115, II-1, Fig. 1a, 
Table 2) came to clinical attention due to a pure, progressive 
ataxic syndrome. MRI revealed distinct cerebellar atrophy. 
No health problems, in particular no movement disorders 
have been reported in his parents. His mother died at age 85. 
His father was killed in World War II.

Patient 5

Abnormal gait and frequent falls first occurred in female 
patient 5 (#1174, I-1, Fig. 1a, Table 2) at age 46. At age 
75, a comprehensive neurological examination revealed 
pronounced dysarthria and a saccadic gaze sequence. Per-
formance of directed movements and abnormal gait had 
severely worsened. Walking distance was only a few meters 
even when using a walker. MRI revealed distinct cerebellar 
atrophy. Her son suffered from similar symptoms that were 
diagnosed in his thirties.

Results and discussion

In 94 adult-onset SCA cases, we detected 14 variants of 
MT-ATP6 that result in non-synonymous amino acid (aa) 
changes (Table 1). Five of these variants were predicted 

to be deleterious by at least three of the five in silico 
tools applied (Table 1). These variants are m.8572G > A 
(c.46G > A; p.G16S) detected in sporadic patient 3 (II-1, 
Table 2, Fig. 1b), m.8578C > T (c.52C > T; p.P18S) (patients 
II-1 and II-2 of family 1, Table 2, Fig. 1b), m.8812A > G 
(c.286A > G; p.T96A) (sporadic patient 4, II-1, Table 2, 
Fig.  1b), m.9026G > A (c.500G > A; p.G167D) (fam-
ily 2, patient III-1, Table 2, Fig. 1b), and m.9176T > C 
(c.650T > C; p.L217P) (patient 5, I-1, Table 2, Fig. 1b). An 
additional variant, m.9055G > A (c.529G > A; p.A177T), 
was classified as deleterious by two programs, but could be 
excluded, because it occurred multiple times in our collec-
tive and is also frequent in controls as reflected by the high 
MitoMap frequency of 4.24% (Table 1).

All deleterious variants but variant m.9176T > C 
(c.650T > C; p.L217P) have not been associated with mito-
chondrial disease before. These variants were classified as 
class 5/pathogenic (m.9026G > A, m.9176T > C), class 4/
likely pathogenic (m.8578C > T), and class 3/variant of 
uncertain significance (m.8572G > A, m.8812A > G) accord-
ing to the ACMG guidelines [24]. Pathogenicity of these 
variants is further supported by phylogenetic conservation 
of the affected aa residues (Fig. 1c), a finding that indicates 
an important role of these aa’s in normal protein function.

Of the aa changes observed, all but one affect the helix 
structure of transmembrane domains of subunit-α of ATP 
synthase.

The two most proximal variants were detected in spo-
radic patient 3 (II-1), and in patients II-1, and II-2 of family 
1. Of these, m.8572G > A (c.46G > A) results in a glycine 
to serine change at aa position 16 (p.G16S). The mutation 
m.8578C > T (c.52C > T) of family 1 is located adjacent to 
m.8572 and results in the substitution of a proline by a serine 
at aa position 18 (p.P18S). The pyrograms revealed homo-
plasmy for both m.8572G > A (p.G16S), and m.8578C > T 
(p.P18S) (Suppl. Figure 1). Both mutations affect the first 
transmembrane helix (TMH1) of subunit-α of ATP syn-
thase and appear to disturb proton translocation. However, 
most disease-causing alterations of ATP synthase subunit-α 
appear to be located in the three distal transmembrane heli-
ces (TMH4-6) independent of the patient´s phenotype [4, 
13, 25, 26].

The mutation m.8561C > G (p.P12R) of subunit-α in a 
patient with adult-onset ataxia, neuropathy, diabetes, and 
hypergonadotropic hypogonadism was shown to interfere 
with assembly of complex V of the mitochondrial respira-
tory chain by the alteration of two ATP synthase subunits. 
This results in impaired ATP synthesis [12].

In sporadic patient 4 (II-1), two non-synonymous aa 
changes were detected. Variant m.8723G > A (c.197G > A; 
p.R66Q) was predicted to be likely benign (Table 1). In con-
trast, variant m.8812A > G (c.286A > G) shows a mutation 
load of 97% (Suppl. Figure 1) and results in replacement of 
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threonine by alanine at aa position 96 (p.T96A). This vari-
ant is located adjacent to TMH3, which spans aa 97–117 
as shown in UniProtKB (http://​www.​unipr​ot.​org/​unipr​ot/​
P00846).

Two variants were found in patient III-1 of family 2. 
Of these sequence changes, m.8950G > A (c.424G > A; 
p.V142I) was classified as likely benign (Table 1). In con-
trast, m.9026G > A (c.500G > A) is predicted to be patho-
genic (Table 1). This mutation has a heteroplasmic load of 
about 87% (Suppl. Figure 1) and results in the replacement 
of a glycine by an aspartate at aa position 167 (p.G167D) 
of TMH5. A previous finding of an aa change at the same 
position (p.G167S) in patients with NARP-MILS syndrome 
[27] supports a possible impairment of the ATP synthase 
subunit α. Recently, m.9026G > A was also described in a 
child with intellectual disability, headaches, myalgias, and 
fatigue. However, a low mutation load of 16–23% in vari-
ous tissues makes a correlation with the child’s symptoms 
difficult [26].

Other deleterious aa changes associated with reduced 
ATP synthase activity have been described in close proxim-
ity to p.G167D. Among these, p.L170P was described in 
patients with cognitive delay, and early-onset ataxia [28]. 
p.L170P was also the first MT-ATP6 mutation associated 
with pure adult-onset ataxia [6]. Both our patient III-1 of 
family 2 carrying the p.G167D mutation and the patient 
described by Pfeffer [6] did not have cerebellar atrophy. 
In contrast to Pfeffer´s and Sikorska´s cases, the patient 
described here displayed a severe dystonic tremor. This find-
ing shows that—similar to autosomal-dominant ataxia cases 
[1]—a strict genotype–phenotype correlation can also not be 
established in mitochondrial ataxia [3, 26, 29, 30].

Variant m.9176T > C (c.650T > C) was almost homoplas-
mic with a 99% mutation load (Suppl. Figure 1) in patient 5 
(I-1). The deduced amino acid change of leucine to proline at 
position 217 (p.L217P) is located in TMH6. Unlike the novel 
mutations described above, m.9176T > C has been reported 
at least 30 times in several disorders with highly variable 
disease duration and age of onset [4, 23, 30, 31]. These dis-
orders include a late-onset hereditary spastic paraplegia-like 
syndrome [7], MILS [32, 33], and ataxia in combination 
with familial bilateral striatal necrosis [34].

The five pathogenic variants of MT-ATP6 described here 
result in a prevalence of 5.32% in our group of adult-onset 
SCA patients. Two of these mutations occurred in the 34 
patients with negative family histories, this amounts to 
5.88% that is even higher than the overall prevalence in 
the cohort. The overall prevalence of 5.32% is significantly 
higher than the 3.13%, that were reported by Pfeffer et al. 
in a study of 64 ataxia cases [6]. Our findings are in agree-
ment with Pulkes’ conjecture [35] of an important role and 
comparatively frequent occurrence of MT-ATP6 mutations 
in adult-onset ataxia patients.

In conclusion, MT-ATP6 mutations mainly affect the 
transmembrane helical domains of subunit-α of ATP syn-
thase. Given the relatively frequent finding of MT-ATP6 
mutations in SCA patients, this gene should be routinely 
analyzed in SCA patients, even in the absence of positive 
family history, once repeat expansions have been excluded.
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