
R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Zang et al. Journal of Translational Medicine          (2024) 22:879 
https://doi.org/10.1186/s12967-024-05490-3

Journal of Translational 
Medicine

†Chunbao Zang, Yu Tian and Yujing Tang contributed equally to this 
work.

*Correspondence:
Yanyang Tu
tufmmu@188.com
Milad Ashrafizadeh
dvm.milad1994@gmail.com
Yan Li
liyan0983@163.com

Full list of author information is available at the end of the article

Abstract
Hydrogels are promising candidates for the delivery of therapeutics in the treatment of human cancers. Regarding 
to the biocomaptiiblity, high drug and encapsulation efficacy and adjustable physico-chemical features, the 
hydrogels have been widely utilized for the delivery of chemotherapy drugs. Doxorubicin (DOX) is one of the most 
common chemotherapy drugs used in cancer therapy through impairing topoisomerase II function and increasing 
oxidative damage. However, the tumor cells have developed resistance into DOX-mediated cytotoxic impacts, 
requiring the delivery systems to increase internalization and anti-cancer activity of this drug. The hydrogels can 
deliver DOX in a sustained manner to maximize its anti-cancer activity, improving cancer elimination and reduction 
in side effects and drug resistance. The natural-based hydrogels such as chitosan, alginate and gelatin hydrogels 
have shown favourable biocompatibility and degradability in DOX delivery for tumor suppression. The hydrogels 
are able to co-deliver DOX with other drugs or genes to enhance drug sensitivity and mediate polychemotherapy, 
synergistically suppressing cancer progression. The incorporation of nanoparticles in the structure of hydrogels can 
improve the sustained release of DOX and enhancing intracellular internalization, accelerating DOX’s cytotoxicity. 
Furthermore, the stimuli-responsive hydrogels including pH-, redox- and thermo-sensitive platforms are able to 
improve the specific release of DOX at the tumor site. The DOX-loaded hydrogels can be further employed in the 
clinic for the treatment of cancer patients and improving efficacy of chemotherapy.

Highlights
	•  Hydrogels are 3-dimensional polymeric networks for therapeutic delivery.
	•  Doxorubicin (DOX) efficacy has been challenged with drug resistance development.
	•  Hydrogels can deliver DOX in a sustained manner to enhance its anti-cancer function.
	•  Hydrogels co-deliver drugs and genes in increasing DOX sensitivity.
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Introduction
The presence of somatic mutations can result in the 
development of tumor and such mutations can be accu-
mulated during the process of tumorigenesis with signifi-
cant changes in both tumor-suppressing and –promoting 
factors [1]. The accumulation of these mutations occurs 
during the time and mutagens can be inherited or hap-
pen randomly. The number of mutations for the neo-
plastic transformation of a normal cell is different and 
according to the mathematical models, it can vary based 
on age and incidence [2]. In addition to understand-
ing the underlying mechanisms involved in tumorigen-
esis and the efforts for cancer diagnosis, the treatment 
of cancer has been followed through the application of 
radiotherapy, chemotherapy and surgical resection. In 
the recent years, immunotherapy has been also intro-
duced as an ideal mainstay for the tumor therapy [3]. 
Moreover, the alternative strategies have been deployed 
for the treatment of cancer by the application of nano-
structures [4–6]. Currently, the gold standard treatment 
for cancer is chemotherapy. However, the chemotherapy 
has two major issues including side effects and resistance. 
Currently, the major focus is on the chemoresistance, 
adverse impacts can be alleviated by a number of strat-
egies. The cancer chemoresistance has been considered 
as a main hurdle towards the appropriate cure of cancer 
patients [7]. In order to solve drug resistance, a strategy 
was the application of combination therapy using drugs 
with various mechanisms of actions, known as polyche-
motherapy that has been applied in the therapy of solid 
and haematological tumors [8–10]. As a result of promise 
provided by combinational therapy, various kinds of che-
motherapy regimens were developed that they utilized 
various approaches in terms of dose intensity such as use 
in short periods or high concentration of chemotherapy 
drugs [11–13]. The resistance to chemotherapy can occur 
in two distinct strategies including intrinsic and acquired 
drug resistance. The intrinsic drug resistance is observed 
before chemotherapy and it is due to the presence of 
oncogenic factors to reduce efficacy of this strategy. On 
the other hand, acquired drug resistance is observed after 
chemotherapy to change the sensitive cancer cells into 
insensitive tumor cells. The acquired drug resistance can 
result from mutations during chemotherapy and upregu-
lation of alternative survival pathways [14]. Furthermore, 
the high degree of molecular heterogeneity in the tumors 
is observed [15] that can cause resistance to therapy. 
Hence, it is a priority to develop novel types of strategies 
for overcoming chemoresistance in human cancers.

Regarding the aggressive nature of cancer, the hetero-
geneity of tumor microenvironment (TME) and the low 
efficacy of current chemotherapeutics, the researchers 
have emphasized on employment of nanostructures to 
reverse cancer drug resistance. The function of nanopar-
ticles in the reversal of chemoresistance is versatile and 
they have demonstrated efficacy in the delivery of che-
motherapeutics with nucleic acids [16], siRNA [17, 
18] and miRNA [19] in boosting tumor suppression. In 
addition to genes, the nanoparticles are able to create a 
scaffold for the co-delivery of drugs in enhancing drug 
sensitivity in human cancers [20, 21]. The mutations in 
the cancer can cause drug insensitivity that one of them 
is mutant p53, while nanoparticles for the co-delivery of 
cisplatin and fluvastatin can mediate mutant p53 degra-
dation to overcome drug resistance [22]. Furthermore, 
the nanoparticles are able to mediate TME remodelling 
such increasing M1 polarization of macrophages [23] 
that may be beneficial in overcoming chemoresistance. 
Other important features of nanoparticles include com-
bination of hyperthermia and chemotherapy [24], stim-
uli-responsive materials [25] and surface-functionalized 
nanostructures [26] in decreasing drug resistance. In 
the recent years, hydrogels as 3-dimenstional materi-
als have been introduced for the cancer therapy. Similar 
to nanoparticles and other kinds of (nano)materials, the 
hydrogels are able to provide sustained release of drugs, 
providing co-delivery with drugs or genes [27, 28], induc-
ing phototherapy [29] and accelerating immunotherapy 
[30–34]. Regarding such importance of nanobiotechnol-
ogy and hydrogels, the current manuscript has been ded-
icated to understanding the function of hydrogels in the 
prolonged delivery of doxorubicin (DOX) as a common 
chemotherapy drug for reducing drug resistance. The 
hydrogels can mediate co-delivery of DOX with genes 
or drugs. The stimuli-responsive hydrogels and natural-
based hydrogels have been also used for DOX delivery in 
tumor inhibition. Such subjects are discussed in the cur-
rent paper to improve the knowledge towards the func-
tion of hydrogels in potentiating cancer chemotherapy. 
Figure 1 schematically depicts the deployment of hydro-
gels in DOX delivery.

Search strategy
The papers used for the discussion were chosen from 
Googlescholar, Pubmed and Sciencedirect with the key-
words of “Hydrogels + Biomedical application”, “Doxoru-
bicin + Resistance”, “Hydrogels + Doxorubicin + Delivery”. 

	•  Natural-based hydrogels, nanocomposite-incorporated hydrogels and stimuli-responsive types improve DOX 
cytotoxicity.

Keywords  Hydrogels, Cancer therapy, Doxorubicin, Chemotherapy, Drug delivery
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We mainly selected the recent publications for discussing 
in the current paper.

Hydrogels: basics, synthetic strategies and 
oncological application
The hydrogels have shown potential in the absorp-
tion of water in large volume to swell because of hydro-
philic groups including -NH2, -COOH, -OH, -CONH2, 
-CONH, and -SO3H. The scaffold of hydrogels can be 
generated by crosslinked polymeric chains that its for-
mation can sometimes happen as a result of crosslinked 
colloidal clusters [35]. The hydrogels display flexibil-
ity and softness due to their ability in water absorption 
[36]. The hydrogels can be developed from the natural 
or synthetic polymer chains [37–41]. The hydrogels have 
similar characteristics to the living tissues due to their 
large water volume, soft structure and porous structure. 
The hydrogels were first developed in 1960 by Wichterle 

and Lim through the synthesis of poly-2-hydroxyethyl 
methacrylate (PHEMA) hydrogel that was utilized as a 
filler for eye enucleation and contact lenses [42]. Since 
then, multiple experiments have investigated the efficacy 
of hydrogels for the drug delivery and release of bioac-
tive molecules [43–46]. The introduction of hydrogels 
for tissue engineering was performed in 1990s [47–50]. 
The unique features of hydrogels including swelling rate, 
stiffness, degradation and mech size can be changed and 
determined by changing the ratio of hydrophilic and 
hydrophobic rations, the concentration of polymers and 
reactions conditions including temperature and con-
tainer, among others [51–54]. The previous years have 
noted the growing deployment of hydrogels as implant-
able, injectable and sprayable structures for the tissues 
and organs [55, 56].

The synthesis of hydrogels is mainly based on utiliza-
tion of hydrophilic monomers to generate a crosslinked 

Fig. 1  The deployment of hydrogels in doxorubicin delivery. The hydrogels are able to co-deliver doxorubicin with other genes or drugs to mediate 
synergistic tumor suppression. Moreover, the stimuli-responsive hydrogels can increase the specific release of doxorubicin at the tumor site to enhance 
cancer suppression. The development of hydrogels from natural polymers including chitosan, gelatin and alginate can improve biocompatibility and bio-
degradability in the cancer therapy and doxorubicin release. Doxorubicin can be loaded on nanoparticles and incorporate into the hydrogels to improve 
sustained release of doxorubicin in cancer chemotherapy (Biorender.com)
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network for water absorbance. There is a phenomenon 
known as sol-gel transition that occurs during the trans-
formation of polymeric mixtures from sol state into 
gel state [57]. There are two major modalities for the 
development of hydrogels such as chemical and physi-
cal crosslinking. The chemically synthesized hydrogels 
can be covalently crosslinked and there are a number 
of methods including grafting, radical polymerization, 
click chemistry, enzymatic reactions, thermo-gelation 
and radiation crosslinking. Furthermore, the addition of 
ions including Ca2+, Mg2+, Zn2+ can mediate the ionic 
bound formation in the polymeric precursors to stimu-
late gelation. On the other hand, natural-based hydrogels 
are mainly developed based on the self-assembly physical 
crosslinking mechanisms including altering the intermo-
lecular interactions through ionic crosslinking, hydro-
phobic interactions and hydrogen bonded gels. All these 
processes are achieved by modifying the temperature of 
the hydrogel precursor, either by increasing it to 37 °C or 
by drastically decreasing it to between − 20 and − 80  °C 
[58]. Notably, the paramters can be altered or adjusted 
during the gelation process to finally obtain an appropri-
ate hydrogel network [59].

In respect to the significant challenged faced in the 
tumor therapy, the experiments have focused on the 
application of alternative structures in tumor suppres-
sion. The thermosensitive hydrogels and ROS-sensitive 
nanogels can be loaded in composites to introduce a 
sequential drug release structure for inducing immuno-
therapy through delivery of LY3200882, increasing ROS 
levels, suppression of epithelial-mesenchymal transition 
(EMT) and reducing immune evasion [60]. The hydro-
gels are able to enhance tumor penetration [61] and in 
addition to prolonged drug delivery, they can induce fer-
roptosis [62]. The hydrogels utilized for the treatment of 
cancer can be isolated from natural sources such as algi-
nate and collagen or guanosine and isoguanosine [63, 
64]. The hydrogels are able to combine therapies such 
as mixing chemotherapy and phototherapy or chemo-
therapy and immunotherapy [65] to enhance tumor abla-
tion [66]. The hydrogels can be also used as vaccines in 
cancer therapy. The CaCO3 biomineralized hydrogel has 
been developed for the encapsulation of DC fusion cells 
(FP) to provide tumor-associated antigens in increasing 
cancer immunotherapy [67]. One of the most common 
uses of hydrogels is delivering chemotherapy drugs, such 
as paclitaxel and epirubicin, to prevent recurrence and 
metastasis [68]. In respect to such features of hydrogels 
in cancer therapy, the next sections will focus on the site-
specific delivery of DOX by hydrogels.

Doxorubicin: an overview resistance
As an anthracycline compound, DOX uses four distinct 
mechanisms for exerting its anti-cancer activity: (A) The 
development of DNA intercalation through binding to 
DNA base pairs in impairing the structure of DNA and 
suppressing replication of cells; (B) Suppressing the func-
tion of topoisomerase II to inhibit the re-ligation of DNA 
strands, causing DNA breacks in enhancing apoptosis 
and errors in DNA synthesis; (C) Increase in the genera-
tion of ROS to mediate damages into the lipids, proteins 
and DNA; (D) The induction of DNA damage and pro-
motion in oxidative damage can cause apoptosis by DOX. 
However, the previous experiments have shown that 
changes the molecular profile of cancer cells can cause 
resistance into DOX chemotherapy. There are differ-
ent factors in each specific cancer for it. For instance, in 
osteosarcoma, the upregulation of METLL1 and WRD4 
is observed to enhance proliferation and metastasis of 
tumor as well as providing the capacity for the emer-
gence of DOX resistance [69]. More importantly, DLX2 
has been shown to upregulate HOXC8 for suppressing 
CDH2, causing EMT and promoting DOX resistance 
[70]. In addition to the molecular pathways, a number of 
cells can participate in the drug resistance such as mes-
enchymal stromal cells that secrete hyaluronan for pro-
moting DOX resistance in breast tumor [71]. Since DOX 
is commonly deployed in the tumor elimination and its 
insensitivity also occurs, the studies have focused on 
applying new strategies to reverse chemoresistance. In 
the recent years, the most popular strategy has been the 
employment of nanostructures for the delivery of DOX. 
Notably, the induction of hyperthermia by the nanopar-
ticles can increase the potential of DOX in glioblastoma 
therapy [72]. Moreover, the dendritic cells can secrete 
extracellular vesicles and loading VEGF-A-siRNA and 
DOX can suppress angiogenesis in the treatment of gli-
oma [73]. The liposomal nanoparticles can co-deliver 
bufalin and DOX to impair malignancy of breast tumor 
stem cells and suppress their self-renewal ability [74]. The 
delivery of ursolic acid and DOX by hyaluronic acid/dex-
tran-based micelles to the mitochondria can enhance the 
potential of chemotherapy in reversing drug resistance 
[75]. Given these facts, using hydrogels for delivering 
DOX in cancer therapy is highly recommended.

Hydrogels in the delivery of doxorubicin
An overview of hydrogel function in doxorubicin 
chemotherapy
Overall, the use of hydrogels for the delivery of DOX can 
increase its accumulation in the tumor site and promotes 
intracellular accumulation. This improved the cyto-
toxic function of DOX. On the other hand, since DOX is 
released in a prolonged manner from hydrogels and low 
concentration of DOX is used, there is low chance for the 
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development of drug resistance. The peptide hydrogels 
have been applied for the delivery of DOX. The hydrogels 
and nanogels can be developed from FY3 peptides. The 
hydrogels were synthesized using solvent-switch strat-
egy, while nanohydrogels were developed from top-down 
strategy using TWEEN®60 and SPAN®60 as stabilizing 
agents. The drug release from hydrogels was based on 
peptide composition. The DOX-loaded nanogels dem-
onstrate low drug release (20–40%) over a period of 72 h. 
The DOX-loaded hydrogels and nanogels can reduce the 
viability of tumor cells up to 57%, while their biocom-
patibility is high [76]. This provides the fact that pep-
tide hydrogels are beneficial for the delivery of DOX in 
cancer therapy. Ade-FFF nucleo-peptide hydrogels can 
deliver DOX to suppress tumor proliferation and medi-
ate apoptosis through caspase-3 upregulation [77]. The 
DOX-loaded hydrogels demonstrate cytotoxicity against 
breast and cervical cancers [78]. The hydrogels can be 
synthesized through cross-linking of 8-arm PEG glyox-
ylic aldehyde and 8-arm PEG hydrazine using glyoxylic 
hydrazone linkages to covalently encapsulate DOX for 
the treatment of cancer. The sustained release of DOX 
was 81.33%, while this release was 42.87% at the physi-
ological conditions. Moreover, such DOX-loaded hydro-
gels can decrease tumor growth up to 40.50% [79]. The 
hydrogels can be developed by the interactions among 
DOX and the peptide in the β-sheet conformation to 
mediate prolonged release of DOX in cancer therapy 
[80]. Notably, the DNA-based nanoparticles have been 
utilized for the delivery of cargo [81, 82]. The function 
of CpG DNA in immune induction can be improved by 
the development of highly branched structures includ-
ing Y-shaped DNA [83] and dendrimer-like DNA [84]. 
Moreover, the ligation of structured DNA units including 
X-shaped DNA can develop DNA hydrogels [85]. In this 
regard, the X-DNA has been used as a building agent and 
by ligation, it can develop DNA hydrogels. These hydro-
gels can mediate the maturation of dendritic cells and 
they can suppress growth of tumor cells [86].

Melanoma is one of the malignant diseases of skin tis-
sue emanated from melanocytes and it is an aggressive 
tumor [87, 88]. In spite of using surgical resection, there 
is relapse of melanoma due to the incomplete resec-
tion [89]. The introduction of immunotherapy includ-
ing PD-1/PD-L1 blockade antibodies can improve the 
melanoma therapy [90–92], but a few of cancer patients 
(20–40%) respond to immunotherapy. Therefore, the 
application of chemotherapy is still promising in mela-
noma suppression. Therefore, the hydrogels have been 
developed based on the Schiff-base linkages between 
N-succinyl chitosan (SC) and oxidized dextran (OD) 
to deliver DOX. The alteration of molar ratio of amino 
groups to aldehyde groups (NH2/CHO) of precursor 
solutions can affect the gelation time and mechanical 

features of the synthesized hydrogels. Regarding the 
injectable shear-shinning feature of the hydrogels, they 
demonstrated self-healing property. The hydrogels 
released DOX in a prolonged manner in response to pH 
and suppressed melanoma progression. Moreover, the 
hydrogels increased M1 polarization of macrophages in 
melanoma immunotherapy (Fig. 2) [93].

Co-delivery of doxorubicin and drugs by hydrogels
Upon the development of drug resistance, one of the 
potential mechanisms for the reversal of this phenom-
enon was the combination therapy. Although the com-
bination therapy and application of drugs with various 
mechanisms of actions have been beneficial in drug sen-
sitivity, the issue of drug resistance has not been solved 
completely due to the poor pharmacokinetic profile of 
the drugs. Therefore, hydrogels have been utilized as 
platforms for the co-delivery of drugs to potentiate can-
cer chemotherapy. The hydrogels have been developed 
from poly (lactide-co- glycolide)-poly (ethylene glycol)-
poly(lactide-co-glycolide) (PLGA-PEG-PLGA) triblock 
copolymer to deliver cisplatin and DOX in osteosarcoma 
therapy. These polymeric hydrogels showed sol-gel tran-
sition at a suitable temperature and their degradation 
occurs in PBS as well as demonstrating favourable bio-
compatibility. The hydrogels can provide the sustained 
release of cisplatin and DOX to promote proliferation 
inhibition. In addition to proliferation suppression, this 
co-delivery by hydrogels induced apoptosis and pro-
moted necrosis [94]. It is suggested to develop hydro-
gels in a way to induce sequential release of cargos. 
The self-assembled hydrogels have been prepared from 
tris(aminoethyl)amine (TREN) and phenylalanine. The 
addition of monovalent anions including H2PO4

− and 
HSO4

− can disrupt the hydrogels, whereas other anions 
including Cl−, HPO4

2−, CO3
2−, HCO3

− or SO4
2− dem-

onstrate no impact on gel stability. H2PO4
− anions can 

mediate a nanofiber-to-nanoglobule morphological 
alterations in the self-assemblies of TREN. There was 
slow reformation of nanofibers upon ageing, showing 
the reversibility of the anion-gelator interaction. These 
hydrogels with sensitivity to anion and pH can provide 
the co-delivery of DOX and propranolol and mediate the 
sequential release to enhance its anti-cancer activity [95]. 
Notably, the hydrogels have been explored for the deliv-
ery of more than two drugs in cancer chemotherapy. In 
this case, PLGA-PEG-PLGA hydrogels have encapsulated 
DOX, cisplatin and methotrexate to synergistically sup-
press osteosarcoma. The peritumoral injection of hydro-
gels in mice showed the tumor inhibition for 16 days and 
enhance apoptosis. On the other hand, the hydrogels 
did not demonstrate toxicity on the other vital organs of 
body, highlighting their biocompatibility [96]. Another 
method is the development of hydrogels according to the 



Page 6 of 20Zang et al. Journal of Translational Medicine          (2024) 22:879 

host-guest interactions among a hyperbranched polyglyc-
erol derivative and α-cyclodextrin to mediate prolonged 
delivery of DOX and camptothecin in cancer therapy 
[97]. The hydrogels have been significantly applied for 
local cancer therapy and such application becomes more 
prominent by the prolonged release of drug from hydro-
gels. The hydrogels comprised of N-isopropylacrylamide, 
cellulose, citric acid, and ceric ammonium nitrate have 
been shown to significantly make delay in the release 
of cargoes, being only % of DOX and 3% of niclosamide 
released after 1 week [98].

Indomethacin (IND) is a non-steroidal anti-inflam-
matory drug which has been significantly used for the 
alleviation of inflammation, pain and fever [99]. The com-
bination of DOX and IDN exerts a synergistic anti-cancer 
impact and IND downregulates MRP1 to promote accu-
mulation of DOX within cells and promote anti-cancer 
function [100, 101]. There have been a number of reports 
using oligosaccharide formulations and dextran micelles, 
highlighting the fact that IND can promote anti-cancer 
potential of DOX [100, 102]. In line with this, hydrogels 

have been prepared from CS-dextran phosphate carba-
mate to co-deliver DOX and IND. This hydrogel system 
can provide the prolonged release of DOX and delayed 
release of IND to improve anti-cancer function of DOX 
[103].

The delivery of DOX along with natural products can 
provide new insights in the treatment of cancer. Celastrol 
is a natural compound that has poor pharmacokinetic 
profile. Therefore, hydrogels have been used for the co-
delivery of DOX and celastrol in enhancing apoptosis and 
decreasing proliferation of cancer cells [104]. Another 
natural compound that can be co-delivered with DOX in 
cancer therapy is curcumin. Notably, the self-assembled 
peptide hydrogels have been shown to co-deliver DOX 
and curcumin in the suppression of head and neck can-
cer through induction of apoptosis and cell cycle arrest 
[105]. It is suggested to first develop DOX-loaded hydro-
gels and then, load another drug on them to promote 
drug loading and encapsulation efficiency. In this regard, 
DOX has been grafted into oxidized pectin (pec-Ald) to 
develop self-healing hydrogels and subsequent loading 

Fig. 2  Evaluating the anti-cancer activity of Dox/SCOD hydrogels. (A and B) The tmor volume is compared in the different groups, showing that treat-
ment can decrease tumor volume that is more evident in Dox/SCOD group compared to Dox or SCOD alone. This treatment decreased tumro volume 
from day 13 onward, exerting better anti-cancer function. (C) The photographs of the excised tumors demonstrate the better potential of Dox compared 
to SCOD in decreasing the size of tumors. However, the highest anti-cancer activity is related to the Dox/SCOD, significantly decreasing the size of tumor. 
(D) Compared to Dox alone, the tumor weight demonstrates significant reduction upon application of Dox/SCOD (decrease in tumor weight from 0.3 g 
to less than 0.2 g). (E) The H&E staining demonstrated the presence of apoptosis and necrosis, highlighted with black dotted lines. Reprinted with permis-
sion from Elsevier [93]
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of limonin. The synthesis of hydrogel was based on the 
P(NIPAM195-co-AH54) cross-linking and the hydrazone 
bond and such hydrogels displayed self-healing prop-
erty. It was shown that these hydrogels can be degraded 
by enzyme due to the pectin composition and they sup-
pressed lung cancer [106].

More importantly, some synthetic complexes have 
been also co-delivered with DOX by hydrogels in cancer 
therapy. The host-guest complexes between pH-respon-
sive micelle derived poly(ethylene glycol) chains and 
α-cyclodextrin can result in the development of hydrogels 
to co-deliver hydrophilic 8-hydroxyquinoline glycoconju-
gate and hydrophobic DOX. These hydrogels showed fast 
drug release profile in the acidic pH and along with pro-
longed release of cargo, the hydrogels are able to suppress 
tumor proliferation in a synergistic manner [107]. Hence, 
the hydrogels are promising structures for the co-delivery 
in cancer suppression [108, 109].

In spite of significant efforts in this field for the co-
delivery of DOX and drugs in cancer therapy, there are a 
number of perspectives that should be considered for the 
future studies:

A)	It is suggested to use other kinds of polymers 
including PLGA and PNIPAM to improve the 
drug loading and encapsulation efficiency of the 
hydrogels. In this case, the natural polymers can be 
also embedded for improving biocompatibility and 
biodegradability.

B)	Other kinds of synthetic methods including 
cryopolymerization, click chemistry, and photo-
crosslinking to improve structural integrity and 
encapsulation potential of hydrogels.

C)	The stimuli-responsive hydrogel for the co-delivery 
have been investigated only in a few experiments 
and more studies are required that can be obtained 
through application of polymers including 
polyacrylic acid (PAA).

D)	It is encouraged to use layer-by-layer techniques 
for improving the sequential drug release by multi-
layered hydrogels.

E)	 It is suggested to utilize the biodegradable polymers 
including PCL, PLGA and gelatin to monitor 
degradation rate of hydrogels.

F)	 The gold nanoparticles, silver nanoparticles and 
silica nanostructures loaded with different drugs can 
be embedded in the hydrogels for improving their 
potential in cancer therapy.

G)	The application of electrospinning technique can 
lead to the development of nanofibrous hydrogel 
scaffolds for improving drug loading and adjusted 
release of DOX.

H)	The microfluidic synthesis and 3D printing can be 
utilized as continuous production techniques for the 
development of scalable hydrogels in DOX delivery.

I)	 The green chemistry methods can be utilized for 
the development of hydrogels to improve their 
biocompatibility and increase potential in DOX 
delivery.

Co-delivery of doxorubicin and genes by hydrogels
In respect to the development of drug resistance, the cur-
rent strategies have focused on the application of hydro-
gels for the delivery of DOX as chemotherapy drug with 
other genes. The genes can be targeted for a specific 
pathway in the treatment of cancer. This pathway may 
be responsible for the development of drug resistance in 
human cancers. Therefore, it is suggested to use hydro-
gels for the co-delivery of genes and DOX in cancer che-
motherapy. Moreover, the application of hydrogels allows 
the encapsulation of gene not only for improving its accu-
mulation at the tumor site, but also protection against the 
enzymatic degradation. Therefore, this can significantly 
improve the potential of genes in cancer therapy and 
sensitizing them to the function of DOX in cancer che-
motherapy. In this regard, the hydrogels have been devel-
oped from methacrylated glycol chitosan (MGC) and 
then, they have been loaded with DNA and DOX. These 
hydrogels are able to provide prolonged release of the 
cargo and deliver them into the tumor site for the induc-
tion of immune cells in cancer immunotherapy [110].

One of the oncogenic factors responsible for the pro-
gression of tumor cells is PLK1. Therefore, the down-
regulation of PLK1 can increase response of tumor 
cells to DOX chemotherapy. In this way, shRNA can be 
used to suppress PLK1. However, shRNA has sensitiv-
ity to enzymatic degradation and there is a need for the 
development of nano-scale delivery systems. Therefore, 
thermosensitive PLGA-PEG-PLGA hydrogels have been 
developed to co-deliver PLK1-shRNA and DOX for the 
complete inhibition of tumor within 16 days and it can 
mediate apoptosis [111].

In spite of the development of hydrogels for the deliv-
ery of genes, there is still a long way for the co-delivery 
with DOX. First of all, siRNA is significantly applied for 
the downregulation of oncogenic factors. In spite of the 
importance of siRNA in the cancer therapy, this genetic 
tool is sensitive to the degradation. On the other hand, 
siRNA has been used along with DOX for the treatment 
of cancer [112–114]. Therefore, the co-loading of siRNA 
with hydrogels can significantly improve the potential of 
these structures in cancer therapy. Moreover, CRISPR/
Cas9 has been utilized in the treatment of human can-
cers [115–118]. Loading CRISPR along with DOX on 
the hydrogels can significantly improve the response 
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of cancer cells to chemotherapy. More attention should 
be paid into the regulation of cell death mechanisms by 
genetic tools delivered by hydrogels to enhance DOX 
sensitivity.

Nanoparticle-embedded hydrogels
One of the notable advances in the application of hydro-
gels in cancer therapy is loading other kinds of nano-
structures in the hydrogel networks to maximize the 
process of delivery and promote tumor suppression. This 
strategy has been also widely used for the DOX delivery 
to improve cancer removal. Moreover, the hydrogels can 
be developed based nanoparticles, known as nanocom-
posite hydrogels. In this way, injectable hydrogels have 
been synthesized from cellulose nanocrystals (CNCs) 
using amphiphilic copolymers, poly(ε-caprolactone-co-
lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-
co-lactide (PCLA). The mechanical features and 
physicochemical properties of hydrogels have been 
improved through incorporating CNCs with amphi-
philic PCLA copolymers. CNCs) played a unique role 
in physically reinforcing the PCLA copolymers’ micelle 
network by forming intermicellar bridges. The rod-like 
CNCs embedded PLCA micelles at low temperature were 
able to transform into a stable viscoelastic hydrogel net-
work at physiological temperature. DOX was loaded into 
hydrogels through hydrophobic and hydrogen bonding 
interaction. The injection of these self-healing hydrogels 
into mice led to the adjusted biodegradation with high 
biocompatibility lacking toxic impact on the implantation 
site or surrounding tissues. These hydrogels suppressed 
tumor growth through delivery of DOX [119]. Another 
method for the development of hydrogels from CNCs 
is that poly (acrylic acid) (PAA) is grafted onto CNCs 
and then, their doping with magnesium oxide (MgO) is 
followed. The nanocomposites demonstrated loading 
efficineyc of 79% for DOX and they were able to sup-
press cancer progression through the release of DOX in 
response to pH that was 53.7% in 24 h [120]. The incor-
poration of nanoparticles into hydrogels can improve 
the potential of DOX in cancer therapy. An example is 
loading DOX and ginsenoside Rg3 on chitosan (CS) and 
cell-penetrating peptide (R6F3)-based nanostructures to 
load into thermosensitive hydrogels. The Rg3-embedded 
nanostructures facilitated DOX-mediated immunogenic 
cell death. Such hydrogels demonstrated high potential 
in cancer immunotherapy in breast tumor and their com-
bination with PD-L1 blockage, enhanced the number of 
memory T cells and reduced PD-L1 enrichment [121].

Until now, multiple kinds of radiosensitizers have 
been developed [122–125] and among them, a signifi-
cant interest has been made towards gold nanostructures 
that can absorb X-rays and provide the concentration of 
radiation absorption. The experimental evidences have 

highlighted the role of gold nanostructures as radiosen-
sitizier [126, 127]. Regarding this, thermosensitive hydro-
gels have been developed from Pluronic F127 for the 
delivery of gold nanostructures and DOX. This hydrogel 
has been comprised of 22% F127 and hydrogels released 
gold nanoparticles and DOX in a prolonged manner. 
These hydrogels were able to suppress progression of 
melanoma and hepatocellular carcinoma. Moreover, 
they caused chemotherapy through DOX delivery and 
function of gold nanostructures upon irradiation. These 
hydrogels reduced tumor size and suppressed prolifera-
tion of cancer [128].

The nanocomposite hydrogels are promising candi-
dates for the development of several therapeutic strate-
gies. Notably, the NIR- and pH-sensitive nanocomposite 
hydrogels with injectable feature have been developed 
based on sodium alginate-graft-dopamine (SD) and 
biomimetic polydopamine-Fe(III)-doxorubicin nano-
structures. These hydrogels are able to exert anti-cancer 
activity and decrease the adverse impacts of DOX. More-
over, the nanoparticles can change light into hear for the 
elimination of tumor cells (melanoma). The hypoxia in 
the TME can be ameliorated by the hydrogels through 
degradation of endogenous hydrogen peroxide (H2O2) 
into oxygen (O2) [129]. In another method, the combi-
nation of agarose hydrogel with DOX-loaded iron-gallic 
acid nanostructures has been performed to treat osteo-
sarcoma. These hydrogels are able to enhance local tem-
perature due to the response to NIR irradiation. Hence, 
they cased photothermal therapy and the degradation of 
agarose hydrogels released the DOX-embedded nano-
structures. Then, DOX enhances hydrogen peroxide 
generation in promoting ROS levels via Fenton reaction, 
mediating apoptosis [130].

The current studies provided valuable insights regard-
ing the application of nanocomposite-loaded hydrogels 
in DOX delivery and cancer removal. The synthesis of 
such hydrogels is complex and it maybe challenging for 
the precise control of their properties for future applica-
tion in clinical studies. Hence, the scalability of the nano-
composite-incorporated hydrogels should be considered. 
There is also additional concern regarding the storage 
and transportation of the nanocomposite-embedded 
hydrogels. The physico-chemical features of hydrogels 
can be affected by the factors including temperature, 
pH and humidity. The experiments are also suggested to 
load other kinds of nanostructures including graphene 
oxide, carbon nanotubes, and metal-organic frameworks 
(MOFs) to improve the features of hydrogels including 
drug loading, release profiles, and therapeutic efficacy. 
One aspect that has been ignored in the present stud-
ies is the functionalization of nanoparticles, especially 
functionalization with ligands to improve their targeting 
ability. Moreover, it is encouraged to load genes on the 
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nanoparticles loaded in the hydrogels to improve their 
anti-cancer activity.

Natural-based hydrogels in doxorubicin delivery
As a natural polymer, alginate has been widely utilized 
for the synthesis of hydrogels because of biocompatibility 
and affordability [131]. Alginate has a anionic feature and 
I can be derived from marine brown algae, Pseudomo-
nas, and Azotobacter bacteria [132], comprised of α-L-
guluronic acid and β-D-mannuronic acid repeats. The 
ionic hydrogels can be synthesized from alginate con-
taining divalent cations, i.e. Zn2+, Ca2+, and Ba2+, since 
alginate is enriched in -COOH group [133]. However, a 
drawback to the ionically cross-linked alginate hydro-
gels is the poor drug loading capacity and low mechani-
cal strength, restricting their application in drug delivery 
[134–137]. Hence, it is suggested to use covalent cross-
linking strategy to improve the properties of alginate-
based hydrogels [138]. The injectable and redox-sensitive 
hydrogels have been developed through inverse electron 
demand Diels-Alder reaction between alginate-norborn-
ene and a water-soluble PEG based disulfide cross-linker. 
The cross-linker possessed PEG chain containing two 
disulfide bonds along with two terminal tetrazine groups. 
The developed hydrogels demonstrated favourable swell-
ing rations, porous network and high drug loading (92%) 
along with favourable mechanical features. The pres-
ence of glutathione (10 mM) led to the release of 90% of 
DOX, while the release at physiological condition was 
low (less than 25%). In spite of high anti-cancer activity 
against tumor cells, their toxicity on fibroblast cells was 
partial (Fig. 3) [138]. Notably, the alginate-based hydro-
gels have demonstrated the potential for the delivery of 
DOX-loaded nanostructures (detailed description can 

be found in Sect. 4.4). The alginate-based hydrogels were 
prepared through ionic cross-linking at room-tempera-
ture that demonstrated favourable solid-like elastic fea-
tures. These hydrogels were able to deliveer DOX-loaded 
PLGA nanoparticles and magnetite nanostructures along 
with a slow initial burst release, they delivered DOX in 
a prolonged manner to mediate thermo-chemotherapy of 
tumor due to the function of magnetite nanoparticles in 
the heat generation [139].

Another natural material is nanocellulose that has been 
comprised of the highly structured cellulose chains. The 
cellulose nanofibrils (CNFs) are elongated and flexible 
nanocelluloses with a width of 3–5 nm up to 20–50 nm 
and length of 500 nm to a few microns [140]. The inten-
sive mechanical disintegration strategy is usually used 
for the synthesis of CNFs that is followed by chemical 
pretreatment to decrease the consumption of energy. 
The polyion complex hydrogels can be developed from 
CNFs. The dissolving pulp via subsequent periodate 
oxidation, chemical modification and microfluidiza-
tion were used to develop CNFs. Upon the development 
of aldehyde contents, the chemical modifications were 
performed to react with aldehydes, finally generating 
anionic CNFs with carboxylic acid groups (DCC) and 
another one is the cationic CNF possessing quaternary 
ammonium groups (CDAC) through imination with 
Girard’s reagent T. Increasing the time of periodate oxi-
dation decreases the length of fibrils. The self-standing 
hydrogels can be developed from the combination of 
DCC and CDAC dispersions at pH 4 and 5. These hydro-
gels were able to deliver DOX and released the cargo in 
response to pH with high biocompatibility [141]. More-
over, the development of cellulose hydrogels for the deliv-
ery of DOX in cancer therapy can be mediated through 

Fig. 3  Left side) The development of water-soluble disulfide cross-linker and alginate-based injectable and reduction-responsive hydrogels., Right side) 
Confocal laser scanning micrographs showing cytocompatibility of empty hydrogels in HeLa cells, and in vitro anti-cancer activity of free-DOX (40 µg) and 
DOX loaded-hydrogels (40 µg equi. of free-DOX). Cell viabilities were determined by calcein-AM/ethidium homodimer-1 assay (live/dead assay). Green 
color represents live cells, whereas, red color represents dead cells. Scale bars showing 100 μm. Reprinted with permission from Elsevier [138]
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eversible ketoester-type acylhydrazone linkages, provid-
ing the hydrogels with self-healing feature and the ability 
to release cargo in response to pH and high biocompat-
ibility [142].

The most common natural product for the synthesis of 
hydrogels in DOX delivery is chitosan (CS) [143]. CS has 
been widely used because of its biocompatibility, biode-
gradability and pH-responsive feature [144, 145]. In order 
to improve the mechanical strength of the hydrogels, it 
is suggested to load PEG into the hydrogels and moni-
tor their degradation rate [146]. Therefore, the PEG-CS 
hydrogels have been developed for the co-delivery of 
DOX and sodium bicarbonate to improve drug delivery 
and mediate alkaline buffering of extracellular acidity. 
The low pH enhances the release of DOX from the hydro-
gels to suppress breast cancer (Fig. 4) [147]. Notably, the 
surface modification of CS-based hydrogels by a layer of 
alginate can improve the DOX release feature of hydro-
gels for 12 days [148]. Therefore, after the preparation of 
hydrogels from green sources, it is suggested to modify 
them with other green polymers to improve the property 

for the release of DOX in cancer therapy. A combination 
of CS and HA can be used for the development of hydro-
gels to co-deliver DOX and cisplatin. The hydrogels were 
synthesized from CS and then, modification with nitro-
salicyl aldehyde and aldehyde HA was performed. These 
hydrogels delivered the drugs for lung cancer therapy and 
released the drug in response to pH [149].

A derivative of CS is glycol CS that possesses biocom-
patibility and biodegradability, and the water solubility 
can be improved by glycol groups, making it promising 
for drug delivery [150–153]. Moreover, glycol CS has 
been explored for the development of self-healing hydro-
gels. The self-healing hydrogels are able to recover their 
structure even upon damage. The self-healing hydrogels 
have been extensively investigated in terms of their syn-
thesis method, the mechanism involved in self-healing 
and encapsulation of cells [154–158]. In this line, the 
studies have focused on the development of hydro-
gels based on glycol CS and telechelic difunctional 
poly(ethylene glycol) (DF-PEG). These self-healing 
hydrogels showed high drug loading for gemcitabine 

Fig. 4  Left side) (A, B) Evaluating the internalization of free doxorubicin (0–5 µM) and doxorubicin upon release from sodium bicarbonate-loaded 
chitosan-PEG hydrogels at low pH (6.5) for 48 h. The development of hydrogels was based using a sodium bicarbonate concentration of 100 mM and a 
doxorubicin concentration of 50 µM. This gives a doxorubicin concentration of 0.47 ± 0.05 µM in the cell solution over a 48 h period. This is afluorescence 
microscopy images of MDA-MB-231 and MCF-7 cells. Right side) (A and B) pH-dependent localization of doxorubicin in the nucleus and related confocal 
fluorescence images. (C, D) The tumor cells were treated with free doxorubicin (0–5 µM) and the fluorescent intensity of drug was evaluated in the nu-
cleus. There was an increase in the nuclear accumulation of doxorubicin. Each value represents the mean ± SE (n = 29–237, MDA-MB-231) and mean ± SE 
(n = 28–192, MCF-7) with significance defined as * p < 0.5; *** p < 0.001, **** p < 0.0001. Reprinted with permission from ACS [147]
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and DOX in the different concentration levels includ-
ing 10%, 40% and 80%. The interaction of hydrogels and 
gemcitabine was based on van der Waals adsorption, 
while the interaction of hydrogels and DOX was based 
on hydrogen bonds and van der Waals adsorption [159]. 
Regarding this, such hydrogels can be utilized as poten-
tial structures for the drug delivery in cancer treatment.

Another natural biomaterial is gelatin with a number 
of benefits including biocompatibility, biodegradability, 
low immunogenicity, affordability, availability and the 
presence of functional groups providing the opportunity 
for its surface modification [160]. However, one of the 
problems of gelatin is its sensitivity into enzymatic degra-
dation. Therefore, SMCM as a polysaccharide with chem-
ical modification has been extensively utilized for the 
drug delivery. SMC has also shown biocompatibility, bio-
degradability and low immunogenicity [161]. Regarding 
this, the hydrogels have been synthesized from gelatin, 
sodium carboxymethyl cellulose, and gelatin/sodium car-
boxymethyl cellulose through a lyophilization technique 
to deliver DOX in the suppression of lung cancer [162].

Overall, the current studies provide significant find-
ings regarding the development of hydrogels from green 
sources. However, there are a number of limitations that 
should be considered. In case of hydrogel synthesis from 
alginate, the ionically cross-linked alginate hydrogels may 
suffer from poor drug loading ability and low mechani-
cal strength, decreasing their application in DOX deliv-
ery. Moreover, alginate-based hydrogel biocompatibility 
should be improved, as they demonstrated a little toxicity 
on fibroblasts. Regarding the development of hydrogels 
from nanocellulose, it should be noted that CNFs require 
extensive mechanical disintegration and chemical pre-
treatment that may be energy-consuming. In spite of PEG 
addition to CS hydrogels for improving their mechanical 
features, their inherent mechanical strength may be still 
a restriction. Furthermore, despite the function of algi-
nate layer on CS hydrogels for improving their release 
profile, the overall control of DOX release and consis-
tency require more evaluation. The glycol CS-based 
hydrogels possess favourable self-healing ability, but their 
long-term stability requires investigation. Regarding the 
gelatin-based hydrogels, the sensitivity to enzymatic deg-
radation is a limitation. Although the combination of 
gelatin with sodium carboxymethyl cellulose can improve 
the features in DOX delivery, further changes in the deg-
radation rate and release profile should be investigated. 
Finally, the biocompatibility of nature-based hydrogels 
should be evaluated in long-term.

Stimuli-responsive hydrogels
The TME has unique characteristics including alterations 
in temperature, pH, redox status and enzymatic activ-
ity. Therefore, the development of stimuli-responsive 

hydrogels can enhance tumor suppression. The most 
common type of hydrogels used for the DOX delivery is 
thermosensitive hydrogels. The thermosensitive hydro-
gels can be developed from poloxamer 407 (P407) and 
then, combined with DOX. The 25% of P407 demon-
strated desirable gelation feature and the pore sizes were 
at the range of 30–180  μm. The release of DOX from 
hydrogels occurred within 120  h and they significantly 
improved the anti-cancer activity of DOX [163]. Another 
method for the development of hydrogels is combining 
DOX-CS conjugates, acrylated Pluronic and DOX at 37 
degrees C. The presence of chitooligosaccharide-DOX 
conjugates diminishes the burst release of DOX from the 
hydrogels and 37 degrees C, it was shown that CS-DOX 
conjugates can be degraded into hydrophilic oligomers 
through reversed-phase chromatography. The intratu-
moral injection of these hydrogels suppresses the tumor 
growth and increases DOX activity against lung tumor 
[164].

In the recent years, an emphasis has been directed 
towards the development of multi-stimuli-respon-
sive hydrogels. One of them is the development of 
hydrogels sensitive to light and temperature that 
can be synthesized from amphiphilic triblock copo-
lymers, poly(N-isopropylacrylamide)-b-poly(4-
acryloylmorpholine)-b-poly(2-((((2-nitrobenzyl)oxy)
carbonyl) amino)ethyl methacrylate) (PNIPAM-b-
PNAM-b-PNBOC) and they can deliver gemcitabine 
and DOX. The self-assembly of PNIPAM-b-PNAM-
b-PNBOC triblock copolymers into polymers was 
performed and they comprised of hydrophobic photo-
sensitive PNBOC cores, while the inner shel contained 
hydrophilic PNAM along with thermoresponsive PNI-
PAM coronas. The critical gelation temperature (CGT) 
relies on the composition and concentration of polymer 
that longer hydrophobic PNBOC block or a higher poly-
mer concentration can diminish the CGT. The exposure 
to UV irradiation enhances CGT because of the PNBOC 
core. The reduction in temperature or UV irradiation can 
mediate gel-to-sol transition. The delivery of both DOX 
and gemcitabine by hydrogels can impair tumorigenesis 
and these hydrogels demonstrated response to tempera-
ture and irradiation (Fig. 5) [165].

Due to the competition in the TME for the prolifera-
tion and increased metabolism of tumor cells, the acidic 
byproducts are continuously produced that can reduce 
the pH of TME. As a result, the studies have focused 
on the development of pH-sensitive hydrogels in DOX 
delivery. The solid-phase synthesis method can be uti-
lized for the development of pH-sensitive hydrogels 
based on P1 peptide that has affinity to surfactant-like 
peptides because of its hydrophobic tail and hydrophilic 
head. The biodegradable hydrogels can be self-assembled 
in neutral conditions from P1 peptide. These injectable 
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hydrogels displayed favourable biocompatibility and 
their release profile is higher in pH 5.8 compared to pH 
7.4. These hydrogels increase the accumulation of DOX 
at the tumor site and boost anti-cancer activity [166]. 
Notably, the hydrogels can be developed in a way to 
respond to both pH and temperature for the delivery of 
DOX. The hydrogels were developed from thiolated chi-
tosan (CSSH) and their gelation degree was estimated to 
be 37  °C. The release of cargo from hydrogels occurred 
at the acidic pH of TME due to the presence of disulfide 
bonds. The hydrogels delivered DOX and curcumin-
embedded liposomal nanocarriers to promote therapeu-
tic index and diminish adverse impacts. The gelation time 
of hydrogels was 8–12 min in normal conditions and the 
hydrogels released cargo in pH 5.5 compared to pH 7.4 in 
first 24 h that approximately 10% of DOX was released, 
while the release of curcumin was at 24–120  h that is 
maybe due to encapsulation by liposomes. These hydro-
gels can effectively reduce the progression of tumor cells 
[167]. The hydrogels derived from poly(N-isopropylacryl-
amide-co-itaconic acid) (PNIAAm-co-IA) and CS via 
ionic crosslinking using glycerophosphate (GP) also dis-
play thermo- and pH-responsive features in the DOX 
delivery for breast cancer therapy [168].

The NIR has shown high potential for the deepen pen-
etration into the biological tissues (up to 3.2 cm) and it 
is a non-invasive manner with less scattering in the tis-
sues [169]. The NIR-sensitive coumarin-based nano-
scale delivery systems are promising due to the impact 
of coumarin on the high single/two-photon absorp-
tion [170]. The exposure of coumarin into the irradia-
tion at the wavelengths of 310–800  nm can lead to the 

photo-dimerization [171]. In this regard, the NIR-sensi-
tive hydrogels have been developed from hyaluronic acid 
and coumarin to deliver DOX. The cross-linking of cou-
marin and hyaluronic acid was performed by processing 
terminal tetrazine (Tz) groups. The hydrogels can be gen-
erated at the physiological conditions by the inverse elec-
tron demand Diels–Alder cross-linking reaction between 
Nb and Tz functionalities, while the hydrogels would 
be porous networks due to the release of N2 gas. The 
hydrogels were injectable and NIR irradiation induced 
the release of DOX from hydrogels due to the presence 
of NIR-sensitive coumarin-ester cleavage and suppressed 
the tumorigenesis (Fig. 6) [172].

In spite of the development of thermosensitive hydro-
gels, there is still challenge regarding the precise and pre-
dictable release kinetics. The alterations in physiological 
temperature can change the drug release profile. It is also 
challenging to optimize the gelation temperature align 
with preserving stability and functionality. There is also 
initial burst release from thermosensitive hydrogels that 
may reduce the therapeutic index of DOX. The multi-
functional hydrogel synthesis is complicated and it may 
be challenging in the clinical level. It should be ensured 
and investigated that how multi-functional hydrogels can 
be still stable in the physiological conditions with the var-
ious changes in the pH, temperature and light exposure. 
In case of light-responsive hydrogels, the penetration 
depth of the light should be evaluated. The pH-sensitive 
hydrogels may respond to pH alterations in the non-can-
cerous tissues or body fluids, affecting their release rate. 
Similarly, there is risk of initial burst release in pH-sensi-
tive hydrogels that may endanger their therapeutic index. 

Fig. 5  The development of thermos- and light-responsive hydrogels for delivery of DOX and gemcitabine. Left side) A schematic representation for the 
design of thermo- and light-sensitive hydrogels in the co-delivery of doxorubicin and gemcitabine. Right side) (a) The presence of UV-triggered gel-to-
sol transition and release of cargo in response to temperature. (b, c) The release profile of gemcitabine (b) and doxorubicin (c) from the hydrogels. (e, f) 
Cumulative release of gemcitabine and doxorubicin. (d) Release profile of cargo in presence or lack of 10 min UV irradiation. (g) The cumulative release 
in response to temperature for doxorubicin and gemcitabine within the first 10 h from the non-treated and UV-irradiated (10 min) hydrogels. Reprinted 
with permission from Elsevier [165]
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In spite of the potential of NIR light in the biological 
tissue penetration higher than visible light, the penetra-
tion is still poor that may reduce the therapeutic index of 
DOX-loaded NIR-responsive hydrogels. Table 1 summa-
rizes the recent advances in the application of hydrogels 
for DOX delivery.

Conclusion, perspectives and challenges
The treatment of cancer is mainly dependent on the 
application of chemotherapeutics. However, the fre-
quent application of chemotherapy drugs can lead to the 
changes in the molecular profile of cancer cells to trigger 
drug resistance. Moreover, a number of cancer cells are 
aggressive enough and demonstrate significant altera-
tions in the molecular profile causing resistance before 
exposure to any chemotherapy drug. Therefore, there is 
high risk of chemoresistance and most of the tumor cells 
are able to trigger resistance into therapeutics. In spite 
of the application of polychemotherapy, the challenge is 
still available and therefore, gene therapy developed for 
combination therapy. Moreover, the immunotherapy 
or radiotherapy combination with chemotherapy were 
introduced for the suppression of tumors. However, 
there is still a need for the development of novel and 
more effective therapeutics for drug resistance. DOX is 
among the most common chemotherapeutics in tumor 
suppression. The solid and haematological tumors have 
demonstrated the resistance into DOX chemotherapy. 
Therefore, the materials and nanostructures have been 

developed for the delivery of DOX to not only improve 
the cytotoxicity of DOX, but also minimize drug resis-
tance and side effects. Among the different kinds of plat-
forms, materials and structures utilized in drug delivery, 
hydrogels have been significantly deployed in tumor sup-
pression. Therefore, the present review focused on the 
role of hydrogels in DOX delivery. Noteworthy, hydrogels 
can encapsulate the DOX and release in the tumor site. 
The prolonged release of DOX by the hydrogels can sig-
nificantly increase the anti-cancer activity. The nanocom-
posite-incorporated hydrogels provide better insights 
regarding the delivery of DOX, since the DOX-loaded 
nanoparticles can be released by hydrogels in the cancer 
site and then, the nanoparticles mediate the internaliza-
tion of DOX in the tumor cells to trigger endosomal/
lysosomal escape for increasing nuclear transfer of DOX 
in the intercalation with DNA and suppressing prolifera-
tion and mediating cell cycle arrest. In order to improve 
the biocompatibility and biodegradability of hydrogels, 
the hydrogels have been prepared from natural sources 
including CS. The hydrogels can provide a platform to 
co-deliver DOX with other drugs or genes to mediate 
chemotherapy/phototherapy or chemotherapy/immuno-
therapy in the suppression of tumors. A progress in the 
field of DOX delivery of the application stimuli-respon-
sive hydrogels including thermo-, pH- and redox-sen-
sitive hydrogels. Since there are several enzymes in the 
TME, a special attention should be also directed to the 
enzyme-responsive hydrogels in cancer therapy.

Fig. 6  Left side) A schematic design for the development of hydrogels and their potetnail in the cargo release in response to light. Right side) (a) The 
anti-cancer activity of doxorubicin-loaded hydrogels in vitro against BT-20 cells in the presence and lack of irradiation (4-watt, 5 min). Based on the figure, 
the application of irradiation causes more decrease in the viability of cells compared to the lack of irradiation. Moreover, DOX-loaded HACOUM-50 dem-
onstrates better anti-cancer activity compared to DOX-loaded HACOUM-100, decreasing viability of cells to less than 60%. (b) FOBI images of hydrogels 
achieved after excitation at different wavelengths of light, and (c) fluorescence spectrophotometer curves of COUM-OH intermediate and DCOUM-PEG-
DTz obtained after excitation at various wavelengths of light. Upon excitation at 400 nm, the hydrogels showed a favourable fluorescent emission peak at 
473 nm. Upon excitation at 600 nm, there were two emission peaks including 303 and 401 nm. Reprinted with permission from Elsevier [172]
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Vehicle Cargo Remark Reference
Multi-sensitive 
hydrogels

Doxorubicin
Indocyanine 
green

Development of hydrogels from hyaluronic acid and diselenide based cross-linker
The generation of hydrogels according to the inverse electron demand Diels-Alder click 
chemistry
Loading cargo in the porous structure of hydrogels
High biocompatibility and release of cargo in response to pH and NIR irradiation

 [173]

HPMA hydrogels Doxorubicin The linkages in the structure of hydrogels are sensitive to hydrolytic cleavage
Suppression of tumor growth and increasing survival of animal model

 [174]

HA-based 
hydrogels

Doxorubicin
Urotensin II (hUII)

Reduction in the viability of tumor cells to less than 80%  [175]

Alginate and chi-
tosan hydrogels

Doxorubicin
Ciprofloxacin

The development of hydrogels from aldehyde-alginate (aAlg) and acrylic acid-chitosan (aCS) 
using Schiff base and ionic interactions
Injectable hydrogel with self-healing features
Elimination of tumor cells

 [176]

Nanocomposite-
incorporated 
hydrogels

Doxorubicin The development of hydrogels from nitrogen-doped carbon quantum dots, docotubicin and 
hydroxyapatite
Inhibition of breast cancer

 [177]

Silk fibroin 
hydrogel

Doxorubicin
Cy7

Co-delivery to exert synergistic impact
Induction of chemotherapy and phototherapy
Synthesis of hydrogels from silk fibroin

 [178]

Cellulose-based 
hydrogels

Doxorubicin The cellulose grafted hydrogel were loaded with doped calcium oxide nanocomposites to 
increase the potential for the adjusted release of doxorubicin in cancer therapy

 [179]

GelMA hydrogels Doxorubicin The hydrogels were developed from GelMA and the ZIF-8@CeO2 nanosturctures were loaded to 
deliver and release doxorubicin for the removal of tumor cells and suppressing cancer relapse

 [180]

Starch/PVA/g-
C3N4 hydrogel

Doxorubicin The release of cargo in a pH-sensitive manner and induction of apoptosis in breast cancer  [181]

Hydrogel 
microparticles

Doxorubicin The development of hydrogels from carboxymethyl cellulose
Prolonged release of cargo
Biocomaptibility
Tumor growth suppression

 [182]

Cellulose 
hydrogels

Doxorubicin Prolonged release of doxorubicin
The injectable hydrogels demonstrated self-healing feature
pH-sensitive release of cargo and suppression of tumorigenesis in vivo

 [183]

Polypeptide 
hydrogels

Anti-PD-L1
Doxorubicin

The injectable hydrogels are able to co-deliver cargo for the induction of immunogenic cell 
death

 [184]

Lipopeptide-
based hydrogels

Doxorubicin Permeable hydrogels capable of 80% of drug encapsulation
The release of drug in the acidic pH

 [185]

MXene-DNA 
hydrogel

Doxorubicin Loading MXene sheets in the hydrogels can provide their photothermal impact
Release of DOX for cancer chemotherapy
High biocompatibility and injectable feature

 [186]

Sodium deoxy-
cholate hydrogel

Doxorubicin
Resveratrol

pH-responsive feature
The first rapid release of resveratrol and then release of doxorubicin
Injectable feature
Tumor growth suppression

 [187]

Magnetic natural 
hydrogel

Doxorubicin The development of hydrogels from alginate and gelatin
Loading Fe3O4 nanostructures in the hydrogels with the size of 25 nm
pH-responsive feature

 [188]

Chitosan 
hydrogels

Doxorubicin Porous and pH-sensitive hydrogels
Reduction in the proliferation of breast cancer cells

 [189]

Nanocomposite 
hydrogels

Doxorubicin
Nox4 inhibitor

The development of hydrogels from carboxymethyl chitosan and tetrabasic polyethylene glycol
Induction of immunogenic celkl death
Suppression of cancer-associated fibroblasts by Nox4 inhibitor
Preventing T cell exahaustion

 [190]

PLGA-PEG-PLGA 
hydrogels

Doxorubicin Loading doxorubicin and arginine-terminated nanoparticles containing KIAA1199 specific shRNA 
inside the hydrogels
Synergistic cancer therapy
Doxorubicin creates intercalation with DNA
ShRNA reduces KIAA1199 levels to prevent tumor malignancy

 [191]

Table 1  A summary of the application of hydrogels in doxorubicin delivery
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In the recent years, drug resistance has been the major 
reason for the therapy failure in clinical setting. There-
fore, the patients would benefit from development of 
novel strategies. The DOX-loaded hydrogels are promis-
ing candidates in this case capable of site-specific deliv-
ery of DOX to the tumor site in improving its nuclear 
accumulation in cancer therapy and preventing drug 
resistance. However, the large-scale production of hydro-
gels should be considered. Moreover, the long-term bio-
compatibility of these hydrogels should be evaluated. 
The development of hydrogels from natural sources in 
improving their mechanical behaviour and strength 
should be improved. Both chemical and physical cross-
linking can be utilized for the development of hydrogels 
in DOX delivery. For chemical cross-linking, the agents 
including glutaraldehyde, genipin, and carbodiimides can 
be used, while physical cross-linking based on hydrogen 
bonding, hydrophobic interactions, and ionic interac-
tions are used and polymers such as chitosan, alginate 
and gelatin are utilized for this purpose.
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Vehicle Cargo Remark Reference
3D printed 
hydrogels

Copper-doxorubi-
cin complexes

The development of hydrogel from Pluronic F127 and sodium alginate
Copper ions and doxorubicin
Burst release of doxorubicin and sustained release after that
Induction of apoptosis and ferroptosis

 [192]

PSBMA hydrogels Doxorubicin
STING agonist 
2’,3’-cGAMP

The PSBMA hydrogels were loaded with doxorubicin-embedded copper peroxide 
nanostructures
Loading STING agonist 2’,3’-cGAMP into hydrogels
Induction of STING axis to promote IFN-related gene expression in the inhibition of immunosup-
pressive TME

 [193]

Natural and poly-
meric hydrogels

Doxorubicin The synthesis of hydrogels from benzylaldehyde functionalized polyethylene glycol, poly(N-
isopropylacrylamide) functionalized chitosan and {Mo154 }
Self-healing and injectable features
Drug release in response to pH and NIR irradiation
Combination of chemotherapy and phototheraml therapy

 [194]

Thermosensitive 
hydrogels

Doxorubicin
Imiquimod

The exposure to NIR can cause heat generation to release doxorubicin
Immunogenic cell death induction to impair progression of metastatic tumors

 [195]

Thermo/pH-sensi-
tive hydrogels

Doxorubicin The synthesis of hydrogels from tempo-oxidized cellulose nanofiber (TOCN), polyvinyl alcohol 
(PVA) and a polydopamine (PDA)
Stimulation of chemotherapy and phototherapy
Suppression of breast cancer

 [196]

Heparin-based 
hydrogels

Doxorubicin The development of hydrogels from heparin-β-cyclodextrin derivatives (Hep-β-CD), 
α-cyclodextrin (α-CD) and pluronic F-127
Self-healing feature
The electrostatic interaction between heparin and doxorubicin

 [197]

MOF-based 
hydrogels

Doxorubicin pH- and ATP-sensitive release of cargo
Elimination of tumor cells
Prolonged release of cargo
Suppressing cancer growth

 [198]

Thermosensitive 
hydrogels

Doxorubicin The development of injectable polypseudorotaxane-based supramolecular hydrogel using α-CD 
and the PEG chains of the pseudo-block copolymer
Prolonged delivery of doxorubicin
Uptake by tumor cells
Exerting anti-cancer activity against the tumor cells that are resistant to chemotherapy

 [199]

Table 1  (continued) 
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