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Abstract: We report four allelic variants (three novel) in three genes previously established as
causal for hypopituitarism or related disorders. A novel homozygous variant in the growth hor-
mone gene, GH1 c.171delT (p.Phe 57Leufs*43), was found in a male patient with severe isolated
growth hormone deficiency (IGHD) born to consanguineous parents. A hemizygous SOX3 allelic
variant (p.Met304Ile) was found in a male patient with IGHD and hypoplastic anterior pituitary.
YASARA, a tool to evaluate protein stability, suggests that p.Met304Ile destabilizes the SOX3 protein
(∆∆G = 2.49 kcal/mol). A rare, heterozygous missense variant in the TALE homeobox protein gene,
TGIF1 (c.268C>T:p.Arg90Cys) was found in a patient with combined pituitary hormone deficiency
(CPHD), diabetes insipidus, and syndromic features of holoprosencephaly (HPE). This variant was
previously reported in a patient with severe holoprosencephaly and shown to affect TGIF1 function.
A novel heterozygous TGIF1 variant (c.82T>C:p.Ser28Pro) was identified in a patient with CPHD,
pituitary aplasia and ectopic posterior lobe. Both TGIF1 variants have an autosomal dominant pattern
of inheritance with incomplete penetrance. In conclusion, we have found allelic variants in three
genes in hypopituitarism patients. We discuss these variants and associated patient phenotypes in
relation to previously reported variants in these genes, expanding our knowledge of the phenotypic
spectrum in patient populations.

Keywords: GH1; SOX3; TGIF1; hypopituitarism; allelic variants

1. Introduction

Congenital hypopituitarism is a rare disorder with a prevalence of 1/3000 to 1/4000
births, characterized by deficient production of one or more pituitary hormones [1]. Clinical
manifestations are variable. Pituitary hormone deficiency can occur with or without
syndromic features, manifest early at birth or during infancy, and progress with age [2–4].
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Genetic investigation is fundamental to understand pituitary development and to
allow early diagnosis, predict disease progression, and offer genetic counseling. Early
patient studies used Sanger sequencing of candidate genes, such as transcription factors
that were critical for pituitary development during embryogenesis in mice [3].

In the last three decades, pathogenic allelic variants in more than 30 genes were
recognized as a cause of congenital hypopituitarism [3]. The application of massively
parallel sequencing, in targeted gene panels, exomes or whole genomes, has made it
possible to identify new genes and rare variants involved in pituitary development and
disease and to expand the phenotype associated with previously known genes [5–14].
Genotype–phenotype correlations are still difficult to discern, given the variability of
features among patients with lesions in the same gene.

In this paper we describe variants in GH1, SOX3 and TGIF1, three genes that are
already associated with hypopituitarism. These variants were identified by exome se-
quencing or by the sequencing a panel of selected genes in a large cohort of patients with
combined pituitary hormone deficiency ascertained in a single Brazilian medical center.

2. Materials and Methods
2.1. Ethical Procedures

All patients or their parents gave their permission to take part in the present study,
which was approved by the Brazilian national ethical committee under the number CAAE
0642812.4.0000.0068

2.2. Patients

The patients described here in detail are under the care of the endocrinology clinic at
the Hospital das Clinicas, University of São Paulo Medical School.

2.3. DNA Extraction

DNA was extracted from peripheral blood samples using salting out method [15]. The
panel for capturing exonic regions of known hypopituitarism genes was designed using
SureDesign tool (Agilent, Santa Clara, CA, USA), and DNA was sequenced using Illumina
platform NextSeq 550 at SELA (Sao Paulo, SP, Brazil). Libraries for exome sequencing
were prepared using either NimbleGen v3 (Roche, Basel, Switzerland) or SureSelect v6
(Agilent, Santa Clara, CA, USA). Sequencing was performed at the Sequencing Core at
Michigan University (Ann Arbor, MI, USA) or SELA, respectively, using the Illumina
platform HiSeq 2000.

Sequencing quality was checked using FASTQC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed on date 31 May 2019), and BWA-MEM was used to assemble
the sequence to the reference genome hg19 (http://bio-bwa.sourceforge.net/bwa.shtml,
accessed on date 31 May 2019). Variants were called with either GATK [16] or FreeBayes [17]
and annotated with Annovar [18].

2.4. Filtering Process and Sequencing Analysis

Exome and panel variant sequencing analysis were similar, as they were performed
on genomic DNA samples from individual patients. The filtering pipeline took into con-
sideration variants identified in exonic and splice site regions that were present with a
Minor Allele Frequency (MAF) of less than 1% in international and national population
databases: gnomAD v3.1.1 (gnomad.broadinstitute.org, accessed on date 6 March 2021),
1000 Genomes, ABraOM (abraom.ib.usp.br, accessed on date 6 March 2021) [19] and inter-
nal database SELAdb (intranet.fm.usp.br/sela, accessed on date 6 March 2021) [20]. First,
homozygous or compound heterozygous variants were considered assuming an autosomal
recessive disorder. If no variants of interest were evident, the search was expanded to
consider heterozygous variants. Algorithms such as MutationTaster v2., MutationAssessor,
SIFT, PolyPhen2, and Human Splicing Finder were used to predict which variants would
be deleterious. Variants were then classified according to recommendations of the Ameri-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bio-bwa.sourceforge.net/bwa.shtml
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can College of Medical Genetics (ACMG/AMP) with the help of Varsome (varsome.org,
accessed on date 8 March 2021).

2.5. Bioinformatics Tools to Check Allelic Variant Impact

We used the RNAfold server from ViennaRNA Web Services to predict mRNA
secondary structure (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi, ac-
cessed on date 15 August 2020). We determined RNA base pair probability and opti-
mal folding for SOX3 wild type mRNA (Met304), a rare variant reported in gnomAD
(Met304Val), and the candidate variant (Met304Ile).

Protein stability was calculated using YASARA (http://yasara.org, accessed on date
15 August 2020) via the FoldX plugin (http://foldxsuite.crg.eu/, accessed on date 15 August
2020). A variant was considered destabilizing when ∆∆G was positive, taking into consider-
ation the tool’s error margin of ∆∆G = ±0.5 kcal/mol.

3. Results
3.1. Patient 1 with Allelic Variant GH1 c.171delT, p.Phe 57Leufs*43, chr17:61995706:delA
3.1.1. Clinical, Laboratory, and Image Features

A male patient, age 9.5 years, presented at his first visit with a height of 87 cm
(−7.65 SD) and delayed bone age by 4.6 years (Table 1). A clonidine stimulation test
confirmed growth hormone (GH) deficiency with a GH peak < 0.25 ng/dL which, for the
radioimmunoassay method, was considered unresponsive in cases where GH < 7 ng/dL. A
good response was obtained in the first year of treatment with somatotropin, with a growth
rate of 16.9 cm/year and a delta Z-score of 2.18 (height at the end of first year −5.47 SD)
(Table 1).

Table 1. Phenotype and endocrine investigations of patients.

Patient
Age at
Testing
in Years

Initial
Height

SDS

Puberty
I/S

(Years)

Final
Height

SDS

Target
Height

SDS

GH
Peak
µg/L

Cortisol
Peak

n·mol/L
(NR > 550)

FT4
p·mol/L

(NR)

TSH
mU/L
(NR)

IGF1
ng/mL
(NR)

IGFBP3
mg/L
(NR)

PRL
mU/L
(NR)

1 9.5 −7.65 S (14) −0.63 −0.63 <0.25 NA NA 6.0
(0.5–4.4) NA NA 54

2 6 −4.67 S (13) −3.2 −0.7 0.9 552 0.97
(0.7–1.5)

2.37
(0.5–4.4)

200
(227–964)

4.2
(3.3–5.7)

340
(<450)

3 0.66 −4.8 - Still
growing +0.55 0.15 * 39 ** 6.3

(0–20)
25

(48-313) NA 278
(57–717)

4 4.9 −4.55 I (15) −0.93 0.34 0.4 NA *** 3.11
(0.5–4.2)

<18
(25–68)

0.4
(1.5–3.4)

42.5
(42-170)

Induced—I, Spontaneous—S, SDS—standard deviation score, NR—normal range, NA—not available. * Basal during hypoglycemia of
27 mg/dL, ** Total T4–6.68 RV 4.5–22.2, *** Total T4 10.2 (7.7–49.8), GH cut off > 3.3 mcg/L (IFMA).

Magnetic resonance imaging (MRI) revealed a normal anterior pituitary lobe, a visual-
izable stalk, and appropriately positioned neurohypophysis (Table 2).

Puberty occurred spontaneously at age 14 years, and a pubertal block was adminis-
tered from 14 years and 8 months to 16 years and 7 months. His final height was 170.5 cm
(−0.63 SD) (Table 1). The patient had bilateral cryptorchidism, which was surgically cor-
rected at age 12. At the age of 14, he developed hypergonadotrophic hypogonadism. As an
adult he underwent unsuccessful assisted reproduction.

3.1.2. Molecular Results

The parents of the proband, II.3, were first cousins and were unaffected (Figure 1).
The male proband had two older sisters and a younger sister. He was homozygous for the
allelic variant GH1 c.171delT; p.Phe 57Leufs*43;chr17:61995706:delA. Both his sister (II.4)
and mother (I.1) were heterozygous for the variant, and they had no abnormal features.
Another sister (II.2) died at 5 years of age and had a phenotype suggestive of growth
hormone deficiency (GHD), including a saddle nose, frontal bossing, and short stature, but
no DNA was available for testing.

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://yasara.org
http://foldxsuite.crg.eu/
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Table 2. Molecular diagnosis and patients’ clinical and image features.

Patient M/F Gene Allelic Variant Inheritance Hormone Deficiencies MRI (CA)

1 M GH1 p.Phe57Leufs*43 AR IGHD HyperHypogon TPP normal AP
7.5 year

2 M SOX3 p.Met304Ile X-linked IGHD EPP AP aplasia
8 year

3 F TGIF1 p.Arg90Cys AD–IC GH, TSH, ACTH, PRL
and ADH

HPE
40 days

4 M TGIF1 p.Ser28Pro AD–IC GH, TSH, ACTH,
LH/FSH, PRL

EPP AP aplasia
5.1 year

M/F, male/female; MRI, magnetic resonance imaging; AR, autosomal recessive; AD, autosomal dominant; IC, Incomplete penetrance;
IGHD, Isolated growth hormone deficiency; HyperHypogon, hypergonadotropic hypogonadism; DI, diabetes insipidus; AP, anterior
pituitary; EPP, ectopic posterior pituitary; TPP, topic posterior pituitary; holoprosencephaly (HPE).
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Figure 1. Pedigree and inheritance of the GH1 c.171delT (p.Phe 57Leufs*43) allelic variant (A). Pedigree of the proband II.3
indicating recessive inheritance of p.Phe57Leufs*43 (B). Photographs (obtained with permission) of the proband (II.3, far
right) and his sister (II.2) with features of growth hormone deficiency.

The GH1 variant c.171delT (p.Phe57Leufs*43) has never been described in association
with hypopituitarism, either in OMIM or in Genecards. This variant is absent in popu-
lation databases, including Exome Aggregation Consortium (EXAC), gnomAD, and the
Brazilian population databases (SELA and ABraOM) (Table 3). The variant GH1 c.171delT
(p.Phe57Leufs*43) was visually confirmed using integrated genome viewer (IGV), and it is
classified as pathogenic by Varsome [21].

3.2. Patient 2 with Allelic Variant in SOX3 (c.912G>A;p.Met304Ile; chrX:139586314:C>T)
3.2.1. Clinical, Laboratory and Image Features

A male patient, the son of non-consanguineous parents, was born at term, with
appropriate weight: 3300 g (−0.73 SDS). There were no perinatal complications, and his
neurological development was normal. Short stature was noticed at 2 years of age, and at
6 years of age he was diagnosed with growth hormone deficiency. Somatotropin treatment
began at age 7 with an initial height of 95 cm (−4.67 SDS) and was continued to age 15.

Spontaneous puberty occurred at age 13 and was blocked from 13 years and 9 months
to 14 years and 8 months. At 16 years and 6 months, his bone age was 16 years, and his
final height was 153 cm (−2.9 SDS) (Table 1). IGF1 was 200 ng/mL (NV −227–964 ng/mL)
and in the insulin tolerance stimulation test (ITT), glycemia trough was 32 mg/dL and
maximum peak of GH 0.9 ng/mL. Only growth hormone deficiency was confirmed, and
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somatotropin 1 U/day was reintroduced. MRI revealed pituitary hypoplasia and ectopic
neurohypophysis located at the level of the optic chiasm (Table 2).

Table 3. Allelic variant classification according to ACMG.

Gene Variant OMIM/Genecards gnomAD ABraOM SELAdb ACMG CADD REVEL

GH1

NM_000515.5:c.171delT;
p.Phe57Leufs*43
(chr17:61995706:

delA)

Never related to
hypopituitarism Absent Absent Absent Pathogenic 22.4 No data

SOX3

NM_005634.3:c.912G>A;
p.Met304Ile

(chrX:139586314:
C>T)

Never related to
hypopituitarism Absent Absent Absent VUS 23.4 0.670

TGIF1
NM_173208.1 c.268C>T: p.Arg90Cys

(chr18:3457387:
C>T)

Never related to
hypopituitarism Absent Absent Absent Likely

pathogenic 28.8 0.9729

TGIF1
NM_173208.1 c.82T>C; p.Ser28Pro

(chr18:3456417:
T>C)

Never related to
hypopituitarism Absent Absent Absent VUS 22.8 0.279

VUS variant of unknown significance.

3.2.2. Molecular Results

Using targeted gene panel sequencing, a hemizygous variant in the SOX3 gene was
found in a male patient: c.912G>A;p.Met304Ile; chrX:139586314:C>T. This variant has been
reported in gnomAD in two hemizygotes, with a population frequency of 0.07e3, and it
is predicted to be deleterious by SIFT, MutationTaster, MutationAssessor and PolyPhen2
(Table 3). The patient’s mother, father, brother, sister and maternal uncle were all pheno-
typically normal and were screened for the variant. Both the unaffected mother and sister
were carriers. In many X-linked diseases, female carriers are unaffected due to preferential
inactivation of the mutant X-chromosome. The father, brother and uncle were negative for
the variant. (Figure 2A).

The p.Met304Ile variant is located just outside the SOXp region, which is a highly
conserved region in the SOX family of proteins (Figure 2B,C). Two in silico studies were
conducted to assess variant pathogenicity. The c.912G>A substitution is predicted to cause
loss of a hairpin in the mRNA secondary structure, although the significance of such
a change is unclear (Figure 3). The p.Met304Ile variant is predicted to be destabilizing
(∆∆G = 2.49 kcal/mol) for the protein based on in silico analysis with the YASARA tool.
For comparison, the previously reported missense variants p.Ser150Tyr and p.Pro142T
were tested with the same tool and found to be destabilizing also (∆∆G = 5.75 kcal/mol
and 5.85 kcal/mol, respectively). By contrast, the variant alleles p.Arg5Gln (196 hemizy-
gotes, allele frequency 0.003194 in gnomAD) and p.Met304Val (1 hemizygote, allele fre-
quency 0.00004660 in gnomAD) are predicted to be tolerated as the ∆∆G values (p.Arg5Gln
∆∆G = 0.83 kcal/mol and p.Met304Val 0.47 kcal/mol) are within the tool’s error margin of
∆∆G = ±0.5 kcal/mol.

3.3. Patient 3 with Allelic Allelic Variant TGIF1 (c.268C>T;p.Arg90Cys; chr18:3457387:C>T)
3.3.1. Clinical Features and Test Results

A female patient, II.2, was born to non-consanguineous parents and delivered by
caesarean section at 37 weeks. Her twin sister was diagnosed with holoprosencephaly
(HPE) and died at birth, II.3.
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WT p.Met304Val p.Met304Ile

Figure 3. SOX3 mRNA structure change. While the p.Met304Val variant maintains the same structure as the wild type (WT)
variant, the p.Met304Ile, present in the patient, loses a hairpin formation in the mRNA.

The patient was born small for gestational age: 2505 g (−0.75 SDS), 46 cm (−0.63 SDS)
and head circumference 32 cm (−0.65). The patient presented with serious complications
at birth, including prolonged jaundice, hypothermia, hyponatremia and seizures (Table 1).
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She also had syndromic features that included craniofacial malformation, hypertelorism,
and nystagmus. She underwent surgical correction of her cleft palate on her fifthday
of life. She was severely affected with significant neuropsychomotor developmental
delay and required enteral feeding. At her second month of life, she was diagnosed
with congenital hypopituitarism and started replacement therapy with prednisolone at
0.6 mg per day, levothyroxine at 12.5 mcg per day, and desmopressin at 0.012 mg per day.
Recombinant growth hormone replacement was started when she was 2 years old, and
spontaneous menarche occurred when she was 12 years old. Magnetic resonance imaging
(MRI) (40 days) revealed absence of septum pellucidum, semilobar holoprosencephaly
with partial fusion of thalamus and basal ganglia, dysgenesis of the corpus callosum,
small third ventricle, fusion of frontal lobe, wide communication of the lateral ventricle,
rudimentary horns and ectopic posterior pituitary (Table 2).

3.3.2. Molecular Results

Using whole exome sequencing, we identified an allelic variant in TGIF1 (c.268C>T;
p.Arg90Cys; chr18:3457387:C>T) (Figure 4A) classified by the American College of Medical
Genetics (ACMG) and Association for Molecular Pathology (AMP) as likely pathogenic.
This variant is absent in ExAC and gnomAD, as well as in the Brazilian population (SELA
and ABRAOM) (Table 3). The presence of this variant was confirmed in the patient and in
her unaffected father and sister (Figure 4C). The arginine at position 90 is well conserved
among species (Figure 4E).

3.4. Patient 4 with Allelic Variant TGIF1 (c.82T>C;p.Ser28Pro; chr18:3456417:T>C)
3.4.1. Clinical Features and Test Results

A male patient was born at term to non-consanguineous parents. He weighed 3850 g
(+1.79 SDS) and was 48 cm long (−0.55 SDS). His neuropsychomotor development was
normal. He presented at 4.9 years with a height of 86.7 cm (−4.5 SDS) and a bone age of
2.5 years. A clonidine stimulation test was performed, and the maximum GH response was
0.4 ng/mL. He was given an insulin tolerance stimulation test (ITT) at 8.6 years, and the
GH peak was 0.1 ng/mL and cortisol was 7.2 µg/dL (basal of 8.0 µg/dL). This confirmed
the presence of GH and ACTH deficiencies (Table 1). He received rGH replacement from
5 to 19 years. His growth velocity was 12 cm/year in the first year of treatment, and his
final height was 168.5 cm (SDS-0.62). He presented a baseline cortisol of 6.0 µg/dL at
9.1 years and started treatment with hydrocortisone acetate. Puberty was induced with
testosterone cypionate when he was 14.4 years of age (Table 1). MRI (5 year) revealed
pituitary aplasia, interrupted pituitary stalk, and ectopic posterior lobe (Table 2).

3.4.2. Molecular Results

A heterozygous TGIF1 c.82T>C;p.Ser28Pro; chr18:3456417:T>C variant was identified
with targeted gene panel sequencing. This is classified as a variant of uncertain significance
according to ACMG/AMP. The variant is absent in ExAC, gnomAD, and the Brazilian
population databases (SELA and ABraOM) (Table 3). His unaffected mother and half-
brother also are heterozygous for this variant (Figure 4B). The serine at position 28 is well
conserved among species (Figure 4D).
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Figure 4. Segregation of TGIF1 variants and evolutionary conservation. (A) Human missense variants in TGIF1 are indicated
in the protein diagram. Two variants are in the CtBP domain of TGIF1 which normally interacts with the carboxy terminus
binding protein to repress expression of target genes. TGIF1 is a member of the three amino acid loop extension (TALE)
homeodomain family of genes, and two variants are in this DNA binding domain. The variants in bold are from the present
study, and the other two variants were previously shown to be deleterious in functional studies. The histone deacetylase
(HDAC) interaction domain and Sin3a domains of TGIF1 are also important for repression. (B) Family pedigree showing
segregation of TGIF1 p.Arg90Cys variant present in the heterozygous state in the proband, II.2, and her unaffected father
and sister, I.1 and II.1, respectively. Her mother and sister, I.2 and II.4, are homozygous for the normal allele. (C) Family
pedigree showing segregation of TGIF1 p.Ser28Pro variant present in a heterozygous state in the proband, II.2 and his
unaffected mother and half-brother. The father, I.2, and the siblings, II.3, II.4 and II.5 are homozygous for the normal allele.
(D) TGIF1 protein (left) and cDNA (right) are evolutionarily conserved in the region around Ser28. The amino acid and
nucleotide mutated in p.Ser28Pro are in bold. (E) TGIF1 protein (left) and cDNA (right) are evolutionarily conserved in the
region around Arg90. The amino acid and nucleotide mutated in p.Arg90Cys are in bold.

4. Discussion

We identified variants in three hypopituitarism genes in four Brazilian patients using
next generation sequencing.

4.1. GH1 Gene

GH1 was the first gene recognized as a monogenic cause of isolated growth hormone
deficiency (IGHD) in 1981 [22]. The gene encoding GH1 is located on the long arm of
chromosome 17 (17q22–24) in a cluster of five related genes, including two chorionic
somatotropin genes CHS1 and CHS2, the CSHP1 pseudogene and GH2, which is a variant
of growth hormone expressed in the placenta. GH1 consists of five exons and four introns,
and the primary protein product is 22 kDa [23]. IGHD is classified in four subcategories:
autosomal recessive (type IA and IB), autosomal dominant (type II) and X-linked (type III).
Type IB is a rare form of IGHD (2%), featuring short stature, low serum GH concentrations
and good response to treatment with rhGH, without formation of antibodies. It is more
frequent in consanguineous families, and GH1 mutations can be frameshift, missense,
homozygous nonsense, or splice site mutations in GH1 [24]. This patient was classified as
type IB (MIM # 612781) due to his clinical characteristics, good response to treatment with
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recombinant human GH (rhGH), and the likelihood that the early frameshift creates a loss
of function. Therefore, the allelic variant that we report GH1 c.171delT (p.Phe 57Leufs*43)
is a new, pathogenic variant.

4.2. SOX3 Gene

A variety of gain and loss of function mutations have been identified in SOX3, in-
cluding gene duplication, deletion, alanine tract expansion, and missense variants. The
patient phenotypes are variable, and they can include intellectual disability (MIM # 300123),
midline and forebrain abnormalities, isolated growth hormone deficiency, or combined
pituitary hormone deficiencies (MIM # 312000) [25].

Two previously reported missense variants in SOX3, p.Ser150Tyr [26] and p.Pro142Thr [27],
are located in the N-terminal tail of the HMG (High Mobility Group) domain, and the pa-
tients presented with a complex phenotype of syndromic, combined pituitary hormone defi-
ciency. Cell culture studies demonstrated that the p.Pro142T variant increases SOX3-mediated
transcriptional activation of HESX1 and diminishes repression of β-catenin-mediated tran-
scription [27]. Although no functional studies are reported for the p.Ser150Tyr variant, the
inheritance pattern is consistent with pathogenicity, as three affected brothers were hemizygous
and multiple carrier females were unaffected. The lack of effect in females may be explained
by preferential inactivation of the abnormal X chromosome [28].

The SOX3 p.Met304Ile variant that we identified is located just outside the SOXp
domain, which is a highly conserved domain ending in codon 302. Variant segregation in
the family conforms to expectations, as only the patient carried the variant in a hemizygous
state. His mother and sister were unaffected carriers. Protein stability prediction tools are
consistent with a destabilizing effect of this variant and two reported missense variants.
According to ACMG, the p.Met304Ile variant is classified as a VUS as there is insufficient
evidence in favor of pathogenicity. Recently, this variant was reported in two hemizygotes
in TOPMed (ss3623368805) and the newest version of gnomAD, with a frequency of 0.07e3.
Based on the conflicting data about pathogenicity of the SOX3 change (p.Met304Ile), the
clinical relevance of the variant remains still unclea. Since molecular diagnosis has been
reached out by sequencing of a target gene panel only WES or WGS approaches are required
to exclude alternative molecular events underlying the disorder

4.3. TGIF1 Gene

We identified two TGIF1 variants that were absent in ExAC and gnomAD, as well as
in the Brazilian population databases (SELA and ABraOM). TGIF1 (c.268C>T:p.Arg90Cys)
was identified in the present study by whole exome sequencing in a patient with features
of HPE (MIM # 142946) and combined pituitary hormone deficiency. The p.Arg90Cys
variant was previously reported as a de novo mutation in a 22 wk fetus with alobar
HPE, brachycephaly, hypotelorism, median orofacial cleft and nasal hypoplasia [29]. The
pituitary hormone status of this fetus was not reported, but pituitary hormone deficiencies
are present in 63% of non-chromosomal, non-syndromic HPE patients [30]. Later, functional
studies confirmed that the p.Arg90Cys variant abolishes binding to the TGIF consensus
site, reduces the repressive properties of TGIF1 by affecting interaction with SMAD3 and
RXR [31]. Thus, this variant is pathogenic.

We identified a new TGIF1 variant (c.82T>C:p.Ser28Pro) in a patient evaluated by our
targeted gene panel. The patient had LH, GH and ACTH deficiencies, pituitary aplasia,
interrupted pituitary stalk, and ectopic posterior lobe but no major cerebral malforma-
tions or features of HPE. This variant affects the same codon as a previously reported
missense mutation (c.83C>T:pSer28Cys) found in a patient with hypotelorism, congenital
nasal pyriform aperture stenosis, single central incisor, agenesis of the corpus callosum,
microcephaly and developmental delay [32,33]. This TGIF region contains a conserved
motif (PLDLS) with an important transcriptional repression activity. Previous functional
studies demonstrated that p.Ser28Cys results in decreased RXR and TGFβ dependent
transcriptional repression and loss of CtBP interaction [31]. This variant is reported in
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TOPMed (rs1171035105, MAF = 1/125568) as a VUS, and although this variant is classified
as variant of uncertain significance (ACMG/AMP), it seems plausible that it is pathogenic.

Both The p.Arg90Cys and p.Ser28Pro TGF1 variants were identified in healthy mem-
bers of the families. However, it is common for variants in genes that cause HPE to exhibit
incomplete penetrance and variable expressivity.

Tatsi et al. reported a female patient with solitary central incisor, low GH, TSH and
gonadotropins, adenohypophysis hypoplasia, absence of the pituitary stalk and ectopic
posterior pituitary lobe but no HPE brain defects. The patient and her asymptomatic father
carried a heterozygous c.799C>T, p.Q267X TGIF1 variant, predicting truncation of TGIF1
and loss of the last 5 amino acids [34].

To the best of our knowledge, the patient reported here is the first one with CPHD
and a TGIF1 variant without HPE or craniofacial midline defects.

5. Conclusions

In conclusion, we have found four allelic variants in three genes in hypopituitarism
patients. It is clear that variants in SOX3 and TGIF1 produce variable and incompletely
penetrant features.
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