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Abstract Wet‐bulb globe temperature (WBGT)—a standardmeasure for workplace heat stress regulation—
incorporates the complex, nonlinear interaction among temperature, humidity, wind and radiation. This
complexity requires WBGT to be calculated iteratively following the recommended approach developed by
Liljegren and colleagues. The need for iteration has limited the wide application of Liljegren's approach, and
stimulated various simplified WBGT approximations that do not require iteration but are potentially seriously
biased. By carefully examining the self‐nonlinearities in Liljegren's model, we develop a zero‐iteration analytic
approximation ofWBGTwhile maintaining sufficient accuracy and the physical basis of the original model. The
new approximation slightly deviates from Liljegren's full model—by less than 1°C in 99% cases over 93% of
global land area. The annual mean and 75%–99% percentiles of WBGT are also well represented with biases
within ±0.5°C globally. This approximation is clearly more accurate than other commonly used WBGT
approximations. Physical intuition can be developed on the processes controlling WBGT variations from an
energy balance perspective. This may provide a basis for applying WBGT to understanding the physical control
of heat stress.

Plain Language Summary Wet‐bulb globe temperature (WBGT) is a standard way to measure heat
stress in the workplace. It incorporates the complex, nonlinear interactive effects of temperature, humidity, wind
and radiation. This complexity requires WBGT to be calculated iteratively which is computationally intensive
and less straightforward to implement algorithmically. To address these issues, we came up with a simplified
version of WBGT that obviates the need for iteration. This simplified approach is computationally
straightforward and also highly accurate.

1. Introduction
Heat stress presents significant threats to human health (Buzan & Huber, 2020; Ebi et al., 2021; Kjellstrom
et al., 2016) with wide‐ranging social (Burke et al., 2018; Hsiang et al., 2013) and economic consequences (Burke
et al., 2015; Saeed et al., 2022). Metrics that accurately represent the physiological impact of heat stress are crucial
for the monitoring, early warning, and impact assessment of heat stress (Havenith & Fiala, 2015; Simpson
et al., 2023).

Over the last century, numerous heat stress metrics have been formulated (de Freitas & Grigorieva, 2015), among
which the wet‐bulb globe temperature (WBGT) emerges as a notably comprehensive measure, encapsulating the
interplay of temperature, humidity, wind speed and radiation effects (Yaglou & Minard, 1957). Rooted in
physiology principles and fortified by empirical calibration, WBGT is as good or better than most other metrics in
predicting human heat stress compensability (Vecellio et al., 2022), assessing the physiological influences of heat
stress (Ioannou et al., 2022), and capturing the interactive effects of multiple meteorological factors on human
physical work capacity (Foster et al., 2022a, 2022b; Havenith et al., 2024). It has been incorporated into several
heat stress regulatory standards across various domains including occupational health (ISO, 2017; NIOSH, 2016;
OSHA, 2017), military operations (Army, 2003) and athletic activities (ACSM, 1984). Nevertheless, WBGT has
limitations, especially in its differing response to wind speed compared to humans (Budd, 2008; Foster
et al., 2022a, 2022b; Havenith et al., 2024; Havenith & Fiala, 2015).

WBGT is defined as

WBGT = 0.7Tnw + 0.2Tg + 0.1Ta (1)
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under outdoor conditions where Tnw, Tg and Ta refer to natural wet‐bulb temperature, black globe temperature and
dry‐bulb temperature respectively. The WBGT model developed by Liljegren et al. (2008) is the recommended
approach forWBGT calculation due to its foundation on heat and mass transfer principles, careful treatment of the
geometry of WBGT sensors, and extensive validation (RMSE <1°C) (Clark & Konrad, 2023; Lemke & Kjell-
strom, 2012; Liljegren et al., 2008; Patel et al., 2013). It derives Tnw and Tg by solving the nonlinear energy
balance equations of the wet wick and black globe sensors. However, this process requires iterative calculations
which have limited the widespread adoption of Liljegren's approach. Even in recent work, a preference for simpler
WBGT approximations that avoid iteration persists within the scientific community (e.g., Brimicombe
et al., 2023; Kamal et al., 2024; Orlov et al., 2023; Tuholske et al., 2021; Zhu et al., 2021). However, these
simplified approximations are so diverse in formulation that they generate substantially different estimates
making the results from different studies challenging to meaningfully compare (Kong & Huber, 2022; Lemke &
Kjellstrom, 2012). Some approximations are based on statistical relationship rather than physics (Australian
Bureau of Meteorology, 2010; Kamal et al., 2024; Moran et al., 2001). The Australian Bureau of Meteorology
WBGT formulation (hereafter referred as sWBGT) (Australian Bureau of Meteorology, 2010) has been
demonstrated to be systematically biased, but remain widely used because of their simplicity (Kong &
Huber, 2022). The generated heat stress estimates have been fed into impact models for assessing downstream
social‐economic consequences (Chavaillaz et al., 2019; de Lima et al., 2021; Matsumoto et al., 2021; Sun
et al., 2024; Zhang & Shindell, 2021; Zhu et al., 2021). The propagation of biases stemming from these WBGT
approximations through the chain of climate change impact assessment could potentially mislead policy‐making
pertaining to heat stress mitigation and adaptation.

We aim to address this issue by developing a simplified WBGT model that does not require iteration while
maintaining sufficient accuracy and physics of heat and mass transfer. This is achieved with an analytic
approximation of Liljegren's WBGT through substituting reasonable first‐guess values of Tnw and Tg into the
energy balance equations of the wet bulb and black globe sensors. The analytic approximation will be evaluated
against Liljegren's full model which, although subject to biases compared to field observations (Clark & Kon-
rad, 2023; Lemke & Kjellstrom, 2012; Liljegren et al., 2008; Patel et al., 2013), is treated as ground truth in this
paper.

The remainder of this paper is structured as follows. Section 2 provides a concise overview of Liljegren's WBGT
model focusing on the nonlinear energy balance equations. Section 3 introduces the analytic approximation of
WBGT the accuracy of which is evaluated in Section 4. This evaluation is first conducted with synthetic data to
understand the bias structure across the multidimensional parameter space encompassing temperature, humidity,
solar radiation and wind speed (Section 4.1). We then explore the magnitude and spatial distribution of biases
within a more realistic context (Section 4.2). This is primarily done with ERA5 reanalysis (Hersbach et al., 2018)
for a historical period, supplemented by the ACCESS‐CM2 model (Dix et al., 2019) for a warmer climate. Af-
terward, we compare this analytic approximation against other commonly used approximations of WBGT
(Section 4.3). Section 5 contains a brief summary and implications on applying WBGT to understanding physical
processes controlling heat stress.

2. Liljegren WBGT Model
Here we briefly review the Tg and Tnw formulations in Liljegren's WBGTmodel while directing interested readers
to Liljegren et al. (2008) and Kong and Huber (2022) for details.

2.1. Black Globe Temperature

The energy balance equation for the black globe is given by

σϵgT4
g + hcg (Tg − Ta) = LRg + SRg (2)

where energy gain from long‐wave (LRg) and short‐wave radiation (SRg) reaching the globe is balanced by long‐
wave cooling and energy loss through convective heat transfer between the globe and ambient air corresponding
respectively to the two terms on the left side of Equation 2. hcg signifies convective heat transfer coefficient
associated with the globe; σ and ϵg stand for the Stefan‐Boltzmann constant and emissivity of the globe. LRg
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encompasses both downward (LRdown) and upwelling thermal radiation (LRup) ; SRg also integrates heating from
both downward (SRdown) and ground surface reflected solar radiation (SRup) .

LRg =
1
2
ϵg (LRdown + LRup)

SRg =
1
2
(1 − αg) [(1 − fdir) SRdown +

fdirSdown

2cos(θ)
+ SRup]

where fdir denotes the fraction of the total horizontal solar irradiance due to the direct beam of the sun; αg and θ
represent globe albedo and solar zenith angle. Note that Liljegren et al. (2008)'s original model only includes
SRdown as input with other radiation components approximated from air temperature, humidity, ground albedo,
etc. However, all radiation components are taken directly from model output in this study (unless otherwise
mentioned) as in Kong and Huber (2022).

Equation 2 can be rearranged into

Tg = Ta +
SRg + LRg − σϵgT4

a

hcg + hrg
(3)

where hrg can be interpreted as a thermal radiative heat transfer coefficient

hrg = σϵg (T2
g + T2

a) (Tg + Ta)

LRg − σϵgT4
a is typically small and actually approaches zero when the downward and upward thermal radiation

can be represented by a mean radiant temperature of Ta in absence of solar radiation. With this term being
neglected, we have

Tg − Ta =
SRg

hcg + hrg
(4)

The physical interpretation of Equation 4 is that the efficiency of energy loss through long‐wave cooling (hrg) and
convection (hcg) modulates the required temperature gradient between the globe and ambient air in order to
balance the energy gain from solar radiation. Note that the simplification in Equation 4 is only meant to aid
physical interpretation. Equation 3 will still be used for developing the analytical approximation for the sake of
accuracy.

Equation 3 cannot be solved analytically since both hcg and hrg depend nonlinearly on Tg (i.e., Equation 3 is self‐
nonlinear in Tg). hcg is derived from the empirical correlation for heat transfer from a sphere in cross flow
(NIOSH, 1986) (see Eq. 16 in Liljegren et al. (2008) for its formulation). It is mainly affected by wind speed but
also depends on air density which is a function of film temperature (T f ) and surface pressure. T f is the tem-
perature of the air within the convective boundary layer proximate to the surface of the globe, and is calculated as
the arithmetic mean between the temperatures of the globe surface and ambient air (T f = (Tg + Ta)/2) .
Consequently, Equation 3 needs to be solved by iteration to obtain the equilibrium Tg. In Section 3.1, we will
provide an analytic solution to Tg which does not require iteration.

2.2. Natural Wet‐Bulb Temperature

The energy balance equation for the wick is

kx
ew − ea
P − ew

MH2OΔH + hcw (Tnw − Ta) + σϵwT4
nw = LRw + SRw (5)

where the radiative energy gain on the right side of the equation is balanced by energy loss through evaporating
water, convection, and thermal radiation corresponding respectively to the three terms on the left side of the
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equation. The convective heat transfer coefficient hcw is obtained from the empirical correlation for heat transfer
from a cylinder (Bedingfield & Drew, 1950). kx denotes convective mass transfer coefficient which are inter-
connected with hcw via the Chilton‐Colburn analogy (Chilton & Colburn, 1934). They are both predominantly
affected by wind speed with weak dependence on film temperature (T f = (Ta + Tnw)/2) and surface pressure
(see Eq. 8 and 10 in Liljegren et al. (2008) for their formulations). ea and ew represent ambient vapor pressure and
the saturation vapor pressure at the temperature of the wick (ew = esat (Tnw)) ; P is surface pressure; MH2O is the
molecular weight of water vapor; ΔH stands for the heat of vaporization; ϵw is the emissivity of the wick. Similar
to the case of Tg, SRw (LRw) encompasses both downward and upwelling short‐wave (long‐wave) radiation.

LRw =
1
2
ϵw (LRdown + LRup)

SRw = (1 − αw) [(1 +
D
4L
) (1 − fdir) SRdown + (

tan θ
π

+
D
4L
) fdirSRdown + SRup]

where αw, D and L represent the albedo, diameter and length of the wick cylinder.

Equation 5 can be rearranged into

Tnw = Ta +
SRw − β(esat (Ta) − ea) + LRw − σϵwT4

a
hew + hcw + hrw

(6)

where β is defined as

β =
kxMH2OΔH
P − ew

≈
kxMH2OΔH

P

hew and hrw can be interpreted as evaporative and thermal radiative heat transfer coefficients for the wick cylinder,
and are defined as

hew = β
ew − esat (Ta)

Tnw − Ta
≈ β

∂esat(T)
∂T

⃒
⃒
⃒
⃒
T=Tnw+Ta

2

(7)

hrw = σϵw (T2
nw + T2

a) (Tnw + Ta)

Note that hew, by definition, measures the efficiency of evaporative heat transfer between the wet wick and a
saturated air. The fact that air can be under‐saturated creates a cooling term from vapor pressure deficit (VPD)
(β(esat (Ta) − ea) in Equation 6).

With LRw − σϵwT4
a being typically small and neglected, we have

Tnw − Ta =
SRw − β(esat (Ta) − ea)

hew + hcw + hrw
(8)

Namely, the temperature gradient between the wick and ambient air is driven by net energy input from solar
radiation and VPD, regulated by the efficiency of energy loss via evaporation (hew) , convection (hcw) and long‐
wave cooling (hrw) . Equation 8 is only for interpretation purpose and the analytical approximation of Tnw is based
on Equation 6.

Similar to the case of Tg, Equation 6 needs to be solved by iteration because both the mass transfer (kx) and three
heat transfer coefficients (hew, hcw and hrw) depend nonlinearly on Tnw. An analytic approximation to Tnw will be
provided in Section 3.2 by removing the self‐nonlinearity.
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3. Analytic Approximation of WBGT
In the previous section, we established that both Tg and Tnw cannot be solved analytically because they are
embedded nonlinearly within the mass and heat transfer coefficients. Numerical solutions can be pursued through
iterative methods: starting with an initial guess, inserting it into the transfer coefficients within Equation 3 or 6,
obtaining an updated value, and iteratively repeating this process until consecutive updates deviate by less than a
specified tolerance. However, we argue that employing a judicious initial guess might yield a result that is
sufficiently accurate, thereby eliminating the need for iterations. By employing this approach, Equations 3 and 6
become analytic formulations of Tg and Tnw, and the ensuing solutions are henceforth referred to as analytic
approximations.

3.1. Black Globe Temperature

An analytic approximation of Tg can be obtained by substituting a certain first‐guess value of Tg into hcg and hrg
on the right side of Equation 3. Ideally, the first‐guess value should be close to Tg, but this is less critical due to
reasons articulated below.

hcg is derived from empirical correlations under forced convection with surrounding fluid motion (Liljegren
et al., 2008). It is primarily influenced by wind speed, with minimal impact from variations in film temperature
and surface pressure within their typical ranges (Figure 1a). This choice is justified by the dominance of forced
convection over free convection under non‐negligible wind speeds and reasonable temperature gradients between
the globe and ambient air (Gao et al., 2019). Under a wind speed of 2 m/s and surface pressure of 1,000 hPa, a
10°C increase of film temperature from 30 to 40°C only cause a 0.2% reduction in hcg. In fact, the international
standard ISO 7726 (ISO, 1998) parameterizes convective heat transfer coefficients under forced convection as
solely a function of wind speed. On the other hand, hrg only varies by around 0.5% per °C change in Tg, and energy
loss via thermal radiation is typically 2–5 times less efficient than convection (Figure 1b).

The minor influence of temperature on hcg and small fractional changes in hrg with temperature suggest that the
initial estimate's proximity to the true value is not critical. Therefore, we choose Ta as a first guess for Tg for

simplicity. The resultant approximations to both heat transfer coefficients are denoted as ĥcg and ĥrg the latter of

which is calculated as ĥrg = 4σϵgT3
a. For ĥcg , film temperature is approximated by T f =

Tg+Ta
2 ≈ Ta. Conse-

quently, we have an analytic approximation of Tg:

Figure 1. (a) hcg, hcw and kx as functions of wind speed. Blue, black, and red curves correspond to surface pressure values of
950, 1,000, and 1,050 hPa respectively with the shading represent spread due to film temperature variations from 20 to 50°C.
(b) hcg/hrg (shading), hcw/hrw (solid contour) and hew/hrw (dashed contour) as functions of film temperature and wind speed.
Thermal radiative heat transfer coefficients are approximated as hrg ≈ 4σϵgT3

f for the black globe and hrw ≈ 4σϵwT3
f for the wet

wick, with ϵg = ϵw = 0.95. Surface pressure is fixed at 1,000 hPa in panel (b).
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T̂g = Ta +
SRg + LRg − σϵgT4

a

ĥcg + ĥrg
(9)

The accuracy of T̂g can be assessed by comparing it against the true value of Tg in Equation 3.

T̂g − Tg = (Tg − Ta)
hcg − ĥcg + hrg − ĥrg

ĥcg + ĥrg

As explained above, the deviation of ĥcg from hcg is negligible, which simplifies the bias of T̂g into

T̂g − Tg = (Tg − Ta)
hr g − ĥrg
ĥcg + ĥrg

=
σϵg(Tg − Ta)

2
[(Tg + Ta)

2 + 2T2
a]

ĥcg + ĥrg

(10)

It is clear that T̂g always has non‐negative biases the magnitude of which is proportional to the square of the
temperature gradient between the globe and ambient air. Therefore, T̂g is expected to perform better under
conditions of weak solar radiation and high wind speed wherein the weaker solar heating and efficient convective
heat transfer make Tg closer to Ta. Given Tg and Ta of ∼300 K and Tg − Ta of ∼20 K, the largest possible bias is
∼2 K which can only be realized when hcg = 0. However, the actual bias will be significantly smaller since hcg is
usually considerably larger than hrg (Figure 1a). The physical interpretation of this formulation is that the
approximation to long‐wave cooling introduces minimal biases when convection is the dominant pathway for
energy loss.

3.2. Natural Wet‐Bulb Temperature

An analytic solution for Tnw can be obtained by substituting a first‐guess value of Tnw into the mass and three heat
transfer coefficients in Equation 6. Similar to the case of Tg, both kx and hcw are primarily influenced by wind
speed with minor influences from variations in film temperature and surface pressure (Figure 1a). hrw only varies
by 0.5% per °C change in Tnw and energy loss via thermal radiation is much less efficient than convection and
evaporation (Figure 1b). Therefore, the proximity of the first guess to the true Tnw is less critical for the co-
efficients of mass transfer and heat transfer via convection and thermal radiation. However, it might be of greater
concern for the evaporative heat transfer coefficient (Equation 7), as hew varies by around 2%–3% per °C change
in Tnw, and evaporation is the most efficient energy loss pathway for the wet wick (Figure 1b).

Therefore, a reasonably good first guess for Tnw is needed. We choose the wet‐bulb temperature (Tw) which is
very close to Tnw at night and typically remains within 3°C below Tnw during the day, depending on solar radiation
intensity (Figure 5b). For the sake of computational efficiency and analytic tractability, we calculate Tw from
temperature and relative humidity (RH) using an empirical formula developed by Stull (2011). Stull's Tw is
subject to around 1°C overestimation at high temperatures, commonly occurring during the day (Buzan
et al., 2015). This slight overestimation actually brings Stull's Tw closer to Tnw and provides a better initial guess.
The resulting analytic approximation is

T̂nw = Ta +
SRw − β̂(esat (Ta) − ea) + LRw − σϵwT4

a

ĥew + ĥcw + ĥrw
(11)

where β̂ = k̂xMH2OΔH/P. By comparing against Equation 6, we quantify the bias of T̂nw

T̂nw − Tnw = η(Tnw − Ta) (Tnw − Tw) (12)
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η =
1
2β

∂2esat(T)
∂T2 |T=Tnw+Tw+2Ta

4
+ σϵw (T2

nw + T2
w + T2

a + TnwTw + TaTnw + TaTw)

ĥew + ĥcw + ĥrw

where we assume k̂x ≈ kx and ĥcw ≈ hcw since both the convective mass and heat transfer coefficients are
extremely insensitive to variations in film temperature (Figure 1a). Since Tnw ≥ Tw, T̂nw is subject to over-
estimation when Tnw > Ta and underestimation otherwise. By inspection, it is clear that the magnitude of biases
increases with enlarging differences between Tnw and both Ta and Tw. Over subtropical hot‐dry regions, the strong
VPD cooling and solar radiative heating are expected to enlarge both temperature gradients with Tnw < Ta and
Tnw >Tw leading to relatively strong negative biases in T̂nw .

3.3. WBGT

Substituting T̂g (Equation 9) and T̂nw (Equation 11) back into Equation 1, we obtain the analytic approximation to
WBGT

ŴBGT = 0.7T̂nw + 0.2T̂g + 0.1Ta (13)

T̂g , T̂nw and ŴBGT are referred as analytic approximations in the sense that self‐nonlinearities in Tg and Tnw within
the energy balance equations are eliminated by substituting initial estimates of them into the mass and/or heat
transfer coefficients. This permits WBGT to be expressed as an analytic function of temperature, humidity, wind
and radiation, although this function remains highly complex and nonlinear.

4. Validation of the Analytic Approximation
The validation of the analytic approximation is undertaken in both an idealized and a more realistic context by
comparing against results from Liljegren's full model driven by atmospheric variable inputs.

In the idealized setting, we investigate the bias structure of the analytic approximation across a multi‐dimensional
parameter space of air temperature, wind speed, RH and downward solar radiation based on synthetic data. We
highlight the environmental conditions that yield relatively large biases. Note that Liljegren et al. (2008)'s original
formulation is used for bias quantification in the idealized setting (Figure 2). Namely, only downward solar
radiation is included as input, with other radiation components being approximated. This approach is taken
because thermal radiation and surface‐reflected solar radiation inherently depend on temperature and downward
solar radiation, making it inappropriate to treat these other radiation components as independent dimensions of the
climatic phase space.

Next, we examine the magnitude and spatial distribution of biases within a more realistic setting using ERA5
reanalysis (Hersbach et al., 2018) for the period 2013–2022 as inputs. Since we aim to use this approximate
framework in a range of climate states, including a much warmer future, we also validate it against a “hot” CMIP6
simulation. This is conducted for the period 2091–2100 under the SSP585 scenario using the ACCESS‐CM2
model (Dix et al., 2019) which has a relatively high equilibrium climate sensitivity of 4.7°C (Haus-
father, 2019). The data is evaluated at hourly intervals for ERA5 and 3‐hourly for ACCESS‐CM2 at their original
grid spacing. WBGT is calculated from 2 m air temperature and humidity (dewpoint temperature for ERA5 and
specific humidity for ACCESS‐CM2), 10 m wind speed (transferred to 2 m level), surface pressure, as well as
surface downward and upwelling flux of long‐wave and short‐wave radiation. Direct (diffuse) solar radiation is
also retrieved from ERA5 (ACCESS‐CM2) to obtain the fraction of direct solar radiation ( fdir) .

4.1. Validation and Bias Characterization: Idealized Setting

The accuracy of the analytic approximation is evaluated across a range of air temperature (20–50°C) and wind
speed (0.13–3 m/s) under different levels of RH (20% and 60%) and downward solar radiation (0, 450, and 900W/
m2) (Figure 2).
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T̂g slightly overestimates Tg in Liljegren's full model by less than 0.2°C during nighttime and under conditions of
moderate solar radiation (450W/m2). However, as solar radiation intensifies and wind speed diminishes, the
degree of overestimation becomes more pronounced. It can exceed 1°C under scenarios of strong solar radiation
(900 W/m2) and low wind speed (<0.5m/s) (Figure 2a). This intensification of overestimation can be attributed
to the increased temperature gradient between the black globe and the ambient air (as illustrated in Equation 10)
due to intense solar heating and less effective energy loss through convection under low wind speed. In practice,
the relatively large overestimation under low wind speed is less a concern as the movement of human body creates
relative air flow especially for outdoor workers. In fact, prior studies frequently assume a minimum wind speed of
1 m/s when assessing heat stress‐induced labor loss (Bröde et al., 2018; Casanueva et al., 2020; Kjellstrom
et al., 2018).

T̂nw has small biases (within ±0.2°C of Tnw in Liljeren's full model) at nighttime when Tw, our initial estimate, is
close to Tnw (Figure 5b). At daytime, T̂nw performs well under wet condition (60% RH). However, under dry
condition (20% RH), T̂nw shows substantial underestimations especially under lower wind speed and higher
temperature where the underestimation can extend up to − 2°C. This can be attributed to a strong temperature
gradient between the wet wick and the ambient air (Tnw − Ta) under hot‐dry conditions with low wind speed (as
illustrated in Equation 12). The underestimation also intensifies under stronger solar radiation probably owing to
an enlarged difference between Tnw and Tw.

Biases in ŴBGT are expected to be primarily influenced by biases in T̂nw , given that Tnw contributes 70% to
WBGT. Accordingly, we found that ŴBGT shares a similar bias structure with T̂nw , but the magnitudes are smaller
and within ±0.8°C across the selected ranges of meteorological conditions (Figure 2c).

Figure 2. Biases in analytic approximations of (a) Tg, (b) Tnw, and (c) wet‐bulb globe temperature across the parameter space covering selected ranges of temperature
(Ta) (20–50°C), wind speed (0.13–3 m/s), relative humidity (RH) (20%, 60%) and downward solar radiation (SRdown) (0, 450, 900W /m2). Biases are evaluated against
Liljegren's full model. The cosine of the solar zenith angle (cos θ) is set to 0.75. Thermal radiation, and direct and surface reflected solar radiation are approximated from
temperature, RH, cos θ, SRdown and an assumed surface albedo following the original formulation of Liljegren et al. (2008). Surface pressure is fixed at 1,000 hPa.
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4.2. Validation and Bias Characterization: Realistic Setting

The bias characterization within the idealized setting demonstrates the
structure of biases in the analytic approximations across a range of meteo-
rological conditions. In practice, those meteorological conditions are not
equally sampled with some combinations of temperature, humidity, solar
radiation and/or wind speed more or less likely. It is of interest to examine the
likely magnitudes and spatial distribution of biases in more realistic settings.

Figure 3 shows the area‐weighted empirical distribution of biases in ŴBGT
over land. During the period 2013–2022 of ERA5, around 78% of the total
samples have biases within ±0.1°C, while this percentage extends to 97% for
biases within ±0.5°C. A similar level of accuracy is maintained in a warmer
world with 93% of samples falling within ±0.5°C. Although the peak of the
distribution around zero becomes lower, accompanied by a slightly fatter tail
on the side of negative biases (Figure 3), it is unclear whether this accuracy
reduction can be attributed to climate change (Sherwood & Huber, 2010;
Williams et al., 2009), or due to potential effects from other confounding
factors such as the distinct spatial resolutions between ERA5 and ACCESS‐
CM2. For our purpose however, the method is sufficiently accurate across a
wide range of climates.

Using ERA5, we then highlight the annual 1% and 99% percentile of these
biases, thereby directing attention to the tails of the bias distribution and their
spatial patterns (Figure 4). T̂g , as demonstrated in Equation 10, is only subject
to overestimations the 1% percentile of which is close to zero (Figure 4a). The

99% percentile of the overestimations is within 1°C over 97% of global land area (Figures 4b and 4k). Over some
alpine areas, like the Himalayas, strong solar radiation stemming from an optically thin atmosphere leads to large
disparities between Tg and Ta, thereby causing relatively strong overestimations (>1.8°C) (Figure 4b).

In comparison, T̂nw , can cause both under‐ and overestimations. The 1% percentile of biases is characterized by
underestimations within − 1°C over 85% of land area (Figures 4d and 4j). Over subtropical dry regions, strong
VPD and solar radiation make Tnw substantially smaller than Ta and larger than Tw which induces more pro-
nounced underestimations by T̂nw (Figure 4d) as demonstrated in Equation 12. The 99% percentile of biases show
weak overestimations within 0.6°C over 92% of land area (Figures 4e and 4k). Over the Himalayas alpine region,
small VPD (as a result of cold temperature) and strong solar radiation make Tnw considerably larger than both Ta
and Tw leading to relatively strong overestimations (Figure 4e).

ŴBGT shares a similar spatial distribution of biases as T̂nw with the 1% percentile of biases showing un-
derestimations within − 1°C over 96% of land area (Figures 4g and 4j), and the 99% percentile characterized by
overestimations within 0.6°C over 94% of land area (Figures 4h and 4k).

We also show the 99% percentile of the absolute values of biases in the analytic approximations (Figures 4c, 4f, 4i,
and 4l) in order to highlight the upper tail of the magnitudes of their deviations from Liljegren's full model. In 99%
cases, biases in T̂g , T̂nw and ŴBGT are limited within ±1°C over 97%, 82%, and 93% of land area. It is also of
interest to know the performance of our analytic approximation in representing heat stress at the levels of annual
mean and different percentiles. As shown in Figures 6q–6t, ŴBGT can well represent heat stress across annual
mean and 75%, 90% and 99% percentiles with biases within ±0.5°C globally.

4.3. Comparison Against Other Approximations

We compare ŴBGT against several other WBGT approximations commonly used in the literature. These include
sWBGT which only contains temperature and humidity while implicitly assuming moderately strong solar ra-
diation and low wind speeds (Australian Bureau of Meteorology, 2010), the environmental stress index (ESI),
derived through a multivariate regression of WBGT against temperature, downward solar radiation, and RH
(Moran et al., 2001, 2003), the indoor WBGT (WBGTin) which substitutes Tnw with the thermodynamic wet‐bulb

Figure 3. Empirical probability distribution of biases in our analytic
approximation ŴBGT . The y‐axes are designed to represent the percentage of
samples showing biases within a 0.2°C interval centered on the corresponding x
coordinates. The empirical distribution is derived from land data weighted by
grid‐cell area using ERA5 reanalysis for the period 2013–2022 and the
ACCESS‐CM2 model for the period 2091–2100 under the SSP585 scenario.
Samples with wet‐bulb globe temperature below 15°C are excluded, as they are
less relevant to heat stress.
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temperature (Tw) and Tg with Ta (Dunne et al., 2013; C. Li et al., 2020; D. Li et al., 2020), and the one recently
developed by Brimicombe et al. (2023) (WBGTBr) which calculates Tg from mean radiant temperature, and
approximates Tnw using Stull's Tw formulation (Stull, 2011).

Figure 5a illustrates the empirical bias distribution of these approximations along with that of our analytic
approximation based on ERA5. ŴBGT clearly outperforms others. sWBGT performs the worst, and its bias
distribution peaks at an overestimation of approximately 5°C potentially due to the implicit assumption of
moderately strong solar radiation and low wind. This overestimate can profoundly affect future heat stress
projections and estimate of impact on people (de Lima et al., 2021; Sun et al., 2024; Zhang & Shindell, 2021; Zhu
et al., 2021). Therefore, we do not recommend the continued use of sWBGT. ESI performs significantly better
with a relatively symmetric distribution of biases centered around zero.

The distribution of biases in bothWBGTin andWBGTBr have a primary peak near zero as well as secondary peaks
corresponding to underestimations of approximately − 2.4 and − 1.2°C respectively (Figure 5a). Both WBGTin
and WBGTBr substitute Tnw with Tw, and WBGTin also approximates Tg with Ta. These approximations work
relatively well during nighttime especially for Tnw (Figure 5b). Notably, Tg is lower than Ta at nighttime, and the
distribution of their differences peaks around − 1°C, but can extend up to − 3°C (Figure 5b). That is because air is
not a black body, and consequently the long‐wave radiative exchange between the black globe and ambient air
produce net cooling on the globe. However, during daytime, Tw and Ta significantly underestimate Tnw and Tg due
to the omission of solar radiative heating. The distributions of these underestimations peak around − 1.2 and

Figure 4. Annual (left) 1% and (middle) 99% percentile of biases, and (right) 99% percentile of the absolute magnitudes of biases in the analytic approximations of (a–c)
Tg, (d–f) Tnw and (g–i) wet‐bulb globe temperature. Panels j–l represent the empirical cumulative distribution of these biases across all continental grid cells weighted by
area. The 1% percentile of biases in T̂g are very close to zero and therefore are omitted in (j). Biases are evaluated by comparing against Liljegren's full model based on
hourly ERA5 reanalysis data during 2013–2022.
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− 7.6°C respectively (Figure 5b) which amounts to underestimations in WBGT of − 0.8 and − 1.5°C given the
weights on Tnw and Tg in WBGT formulation. The differentiated daytime versus nighttime performances explain
the bimodal distribution of biases in WBGTin and WBGTBr (Figure 5a).

The shape of the bias distribution and the relative performance of different approximations remain consistent in a
future warmer world, where ŴBGT continues to have the best performance (Figure 5c).

Our analytic approximation also performs better in representing the annual mean and 75%–99% percentiles of
WBGT. The biases are within ±0.1°C in the majority of regions, and mostly within ±0.5°C except over the
Sahara and Arabian deserts and alpine areas in the Tibetan Plateau for higher percentiles (Figure 6). sWBGT
strongly overestimates WBGT especially at annual mean level, and this overestimation becomes weaker toward
higher percentiles where the assumption of moderately strong solar radiation becomes more applicable
(Figures 6a–6d). ESI performs well in capturing annual mean and 75% percentile of WBGT with biases mostly
within ±1°C, but considerably underestimates the 99% percentile by up to − 4°C across the low latitudes
(Figures 6e–6h). Both WBGTin and WBGTBr consistently show underestimations the magnitude of which in-
creases toward higher percentiles (Figures 6i–6p). Among them, WBGTBr has better performance since Tg is
calculated from mean radiant temperature rather than replaced with Ta as is done for WBGTin.

5. Summary and Implication
We have developed an approximate form of WBGT that does not require iterative calculation. The need for
iteration in WBGT calculation arises from the nonlinear dependence of mass and/or heat transfer (through
convection, thermal radiation and evaporation) efficiencies on Tg or Tnw, rendering the energy balance equations
analytically intractable. However, we have shown that this dependence is weak for convection which is primarily
influenced by wind speed. This self‐dependence is also of minor importance for thermal radiation because the
thermal radiative heat transfer coefficient changes by a small fraction within the typical variation range of Tg or
Tnw, and energy loss via thermal radiation is much less efficient than convection and evaporation. The dependence
of evaporative heat transfer coefficient on Tnw is of greater concern since hew is relatively sensitive to Tnw var-
iations (hew varies by 2%–3% per °C change in Tnw) and evaporation plays a dominant role in the energy loss of the
wet wick.

The recognition of the weak self‐nonlinearity, at least for convection and thermal radiation, motivates the
development of an analytic approximation of WBGT by substituting Ta and Tw as initial estimates for Tg and Tnw

into the mass and heat transfer coefficients. The analytic approximation eliminates the need for iteration and is
more accurate than other WBGT approximations commonly used in the literature. It presents an useful first guess
to Liljegren's full model given its reasonably high accuracy and computational straightforwardness. However,

Figure 5. Empirical probability distribution of (a) biases in our analytic formulation ŴBGT and several other wet‐bulb globe temperature (WBGT) approximations, and
(b) Tnw − Tw and Tg − Ta at both daytime and nighttime. Both (a) and (b) are derived from land data weighted by grid‐cell area using ERA5 reanalysis for the period of
2013–2022. Panel (c) is the same as (a) except for the period 2091–2100 under the SSP585 scenario using the ACCESS‐CM2 model. The y‐axes are designed to represent
the percentage of samples showing biases within a 0.2°C interval centered on the corresponding x coordinates. Samples with WBGT below 15°C are excluded, as they are
less relevant to heat stress.
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Figure 6. Biases in the (a, e, i, m, q) annual mean and (b, f, j, n, r) 75%, (c, g, k, o, s in Figure 6 continued) 90%, and (d, h, l, p, t in Figure 6 continued) 99% percentile
values of our analytic approximation ŴBGT and several other approximations of wet‐bulb globe temperature. Biases are evaluated by comparing against Liljegren's full
model based on hourly ERA5 reanalysis data during 2013–2022.
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users should consider the potential underestimation of heat stress under extremely hot‐dry conditions. Notably,
more accurate estimates can be obtained through a single iteration, with the analytic approximations serving as the
updated first guesses. Recently, Liljeren's WBGT formulation has been implemented into the Community Land
Model Version 5 (CLM5) for non‐urban settings (Buzan, 2024). Our analytic approximation could offer an useful

Figure 6. (Continued)
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alternative for inclusion in the model to prevent the model from slowing down due to iterative WBGT
calculations.

The complex, nonlinear interactions between multiple meteorological parameters not only require WBGT to be
calculated iteratively, but also lead to a functional form that is opaque to theoretical investigation and often times
treated as a black box. As a result, WBGT–despite being a good representation of human heat stress–has not been
adopted for understanding the atmospheric dynamics and thermodynamic processes controlling heat stress.
Instead, strictly thermodynamic variables like Tw, moist enthalpy or equivalent potential temperature are used for
such purpose because of their straightforward dynamic and thermodynamic constraint (Kong & Huber, 2023;
Lutsko, 2021; Raymond et al., 2021; Zhang et al., 2021). But these thermodynamic quantities are not intended for
or well calibrated to human heat stress which diminishes the practical relevance of the generated insights (Lu &
Romps, 2023; Simpson et al., 2023).

In deriving the analytic approximation, we have gained insights that the deviation of both Tg and Tnw from Ta is
controlled by the ratio between solar radiative heating (and VPD cooling for Tnw) and the efficiency of energy loss
through convection and long‐wave cooling (and evaporation for Tnw) (Equations 4 and 8). Therefore,
understanding changes in Tg, Tnw and consequently WBGT, must involve strong constraints or knowledge of
the evolution of this ratio. Depending on the problem under consideration, if solar radiation and wind speed
remain unchanged, the ratio for Tg (Equation 4) is approximately constant given minor influence from
changes in thermal radiative heat transfer efficiency. Consequently, Tg is expected to vary at the same rate as
Ta. It is less straightforward to get a quick, simple relation between changes in Tnw and Ta, as the ratio in
Equation 8 also depends on humidity and Tnw itself due to the VPD cooling term and evaporative heat transfer
coefficient. Nevertheless, given certain assumptions on humidity changes (e.g., constant RH), we should be
able to explicitly predict how Tnw scales with temperature as well. In addition, since Tnw is driven away from
Tw by solar radiation under the modulation of wind, we may expect the differences between them to be
roughly constant if both solar radiation and wind remain unchanged. If this is the case, the scaling of Tnw and
Tw with temperature should be close to each other.

More generally, Equations 4 and 8, with their clear physical interpretation, may serve as a starting point for an
analytic investigation of the sensitivity of WBGT to changes in temperature, humidity, wind and solar radiation.
Clearly, we have better intuition on these traditional meteorological parameters, and established theories to
constrain their variations (Byrne, 2021; Byrne & O’Gorman, 2013, 2016; McColl & Tang, 2024; Zhang &
Boos, 2023). An explicit, analytic expression of WBGT's sensitivity to these traditional meteorological variables
helps remove the obscuring veil of WBGT's apparent complexity and may facilitate its application in under-
standing the physical control of heat stress. For example, we can quantitatively disentangle the relative role of
changes in each meteorological input and the underlying physical processes in explaining WBGT responses to
any physical perturbations (like atmospheric blocking events, irrigation or increasing greenhouse gas emission).
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Data Availability Statement
Hersbach et al. (2018) was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis‐era5‐single‐levels?tab=form). The results contain
modified Copernicus Climate Change Service information 2020. Neither the European Commission nor ECMWF
is responsible for any use that may be made of the Copernicus information or data it contains. Dix et al. (2019) was
downloaded from https://esgf‐index1.ceda.ac.uk/search/cmip6‐ceda/. Liljegren's WBGT code in C language is
accessible at https://github.com/mdljts/wbgt/blob/master/src/wbgt.c, and was ported to Cython (can be compiled
and implemented in Python) by Kong and Huber (2022) (available at https://zenodo.org/record/5980536). The
code for the analytic WBGT approximation is deposited at Zenodo (https://zenodo.org/records/10802580) along
with a Jupyter notebook to introduce its usage. WBGTin was calculated using the code developed by D. Li
et al. (2020) (available at https://github.com/dw‐li/WBGT) while correcting the inappropriate humidity ap-
proximations identified by Rogers and Warren (2024). WBGTBr was calculated using the thermofeel Python
package (available at https://github.com/ecmwf/thermofeel/tree/master) (Brimicombe et al., 2021, 2022), with
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the mean radiant temperature retrieved from ERA5‐HEAT (Di Napoli, 2020; Di Napoli et al., 2021) (available at
https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived‐utci‐historical?tab=form). The following Python
packages were also utilized: Numpy (Harris et al., 2020), Xarray (Hoyer & Hamman, 2017), Dask (Dask
Development Team, 2016), Matplotlib (Hunter, 2007), and Cartopy (Met Office, 2010–2015).
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