Cognitive, Affective, & Behavioral Neuroscience (2020) 20:961-982
https://doi.org/10.3758/s13415-020-00813-5

®

Check for
updates

Event-related brain potentials reflect predictive coding of anticipated
economic change

Diamantis Petropoulos Petalas (@ - Stefan Bos> - Paul Hendriks Vettehen' - Hein T. van Schie’

Published online: 18 August 2020
© The Author(s) 2020

Abstract

Research has demonstrated the importance of economic forecasts for financial decisions at the aggregate economic level.
However, little is known about the psychological and neurophysiological mechanisms that economic forecasts activate at the
level of individual decision-making. In the present study, we used event-related brain potentials (ERPs) to test the hypothesis that
economic forecasts influence individuals’ internal model of the economy and their subsequent decision behavior. Using a simple
economic decision-making game, the Balloon Analogue of Risk Task (BART) and predictive messages about possible economic
changes in the game before each block, we test the idea that brain potentials time-locked to decision outcomes can vary as a
function of exposure to economic forecasts. Behavioural results indicate that economic forecasts influenced the amount of risk
that participants were willing to take. Analyses of brain potentials indicated parametric increases of the N1, P2, P3a, and P3b
amplitudes as a function of the level of risk in subsequent inflation steps in the BART. Mismatches between economic forecasts
and decision outcomes in the BART (i.e., reward prediction errors) were reflected in the amplitude of the P2, P3a, and P3b,
suggesting increased attentional processing of unexpected outcomes. These electrophysiological results corroborate the idea that
economic messages may indeed influence people’s beliefs about the economy and bias their subsequent financial decision-
making. Our findings present a first important step in the development of a low-level neurophysiological model that may help to
explain the self-fulfilling prophecy effect of economic news in the larger economy.
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Economic forecasting refers to the psychology of making pre-
dictions about the future economy. Economic forecasts can

“We are all forecasters. When we think about changing jobs, getting
married, buying a house, making an investment, launching a new
product, or retiring, we decide based on how we expect the future will
unfold. These expectations are forecasts. Often we do our own
forecasting.”

Tetlock and Gardner (2015, p. 1)
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have important implications for people’s economic expecta-
tions and everyday economic behaviour. For instance, the an-
ticipation of an economic opportunity or threat may lead indi-
viduals to opt for riskier strategies to increase financial profit or
to choose safer options with lower payoffs to secure existing
resources. Research on economic forecasting is concerned with
the effect of expectations on economic decision-making and
self-fulfilling prophecies (i.e., economic consequences) that
may follow from these expectations (Bovi, 2009; Diekmann,
Tenbrunsel, & Galinsky, 2003; Greenwood & Shleifer,
2014; Petropoulos Petalas, van Schie, & Hendriks Vettehen,
2017; Wennberg & Nykvist, 2007). The field of economic
forecasting is part of a larger literature on decision-making psy-
chology that focusses on probabilistic forecasting in various
domains, such as economy, weather, and health (Brown,
1973; Christensen-Szalanski & Bushyhead, 1981; Lawrence,
Goodwin, O’Connor, & Onkal, 2006).

Economic forecasts are often represented in media news
(Bach, Weber, & Quiring, 2013; Doms & Morin, 2004,
Goidel, Procopio, Terrell, & Wu, 2010; Kalogeropoulos,
Albaxk, de Vreese, & Van Dalen, 2015; Tetlock & Gardner,
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2015). Therefore, “effects” of economic forecasts on decision-
making behaviour are often discussed in studies on economic/
financial news that investigate formation of economic percep-
tions or beliefs and how they link to collective financial
decision-making phenomena at different levels of aggregate
economic behaviour (Arts, Takeshita, & Becker, 2002;
Boomgaarden, van Spanje, Vliegenthart, & de Vreese, 2011;
Giglio & Shue, 2014; Hetsroni, Sheaffer, Ben Zion, &
Rosenboim, 2012; Lischka, 2015; Pruitt, Reilly, & Hoffer,
1988; van Raaij, 1989). Examples of such decision-making
phenomena span from stock market reactions and investment
patterns (Engelberg & Parsons, 2011; Green, 2004; Hetsroni,
Reizer, & Ben Zion, 2017; Roache & Rossi, 2010; Scheufele,
Haas, & Brosius, 2011; Tetlock, 2007) to consumer and
household spending (Bovi, 2009; Doms & Morin, 2004;
Kamins, Folkes, & Perner, 1997; Starr, 2012).

However, and despite the apparent implication of econom-
ic forecasts for economic behaviour, we know relatively little
about how economic forecasts set in in the minds of individ-
uals and how they influence financial decision-making that
may lead to such collective behavioural phenomena.
Characterizing these mechanisms can be useful in the model-
ing and understanding of real-world economic developments,
as well as for predicting or even controlling such develop-
ments to prevent or counteract the negative effects of bad
investments and recurring economic crises.

Towards a cognitive psychological account
of economic forecasting

Frydman and Camerer (2016) reviewed psychological and neu-
roscientific literature to discuss psychophysiological mechanisms
underlying biases in economic decision-making. Such biases can
be driven by domain-general cognitive operations supporting
perception, action, memory, and motivation (Frydman & Nave,
2015). For example, negative emotional information is processed
more attentively and remembered better than positive informa-
tion (Compton, 2003). Similarly, investors have been found to
react asymmetrically to positive and negative economic forecasts
(Kuhnen, 2015; Soroka, 2006), and specifically more strongly to
negative than to positive economic news (Akhtar, Faff, Oliver, &
Subrahmanyam, 2011).

Another theoretical framework in cognitive neuroscience
that may be relevant to understand the influence of economic
forecasting in financial decision-making is the predictive pro-
cessing framework (Clark, 2013; Den Ouden, Kok, & de
Lange, 2012; Friston, 2005, 2010; Hohwy, 2013; Huang &
Rao, 2011; Rao & Ballard, 1999; Rauss, Schwartz, &
Pourtois, 2011; Rushworth, Mars, & Summerfield, 2009;
Summerfield et al., 2006; Summerfield & de Lange, 2014).
In its core idea, the brain is considered a hierarchical
prediction-generation machinery that constructs and holds an
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internal model of the environment, by favoring higher-level
beliefs (priors) that match lower-level sensory input at multi-
ples levels of the processing hierarchy (i.e., a process of rec-
onciling sensory information with existing mental schemata).
By transmitting prediction error signals (i.e., neural responses
to mismatches between prior beliefs and new sensory input) to
higher processing units, representations of the world can be
neuronally updated in a highly efficient manner (Hsu,
Hédmaildinen, & Waszak, 2014; Huang & Rao, 2011).
Although predictive processing originated in visual research,
prediction error signals have been identified and discussed in
relation to economic decision-making as well (Frydman &
Camerer, 2016; Knutson, Wimmer, Kuhnen, & Wilkielman,
2008; Kuhnen & Knutson, 2005; Preuschoff, Bossaerts, &
Quartz, 2006; Rushworth et al., 2009; Summerfield &
Tsetsos, 2012; Towal, Mormann, & Koch, 2013). For in-
stance, distinct neural circuits, including the nucleus accum-
bens in the ventral striatum and the anterior insula, have been
found to index reward anticipation and reward prediction er-
rors. Overactivation and underactivation in these respective
regions may lead to shifts in risk preferences and promote
irrational choice during risky decision-making (Engelmann,
Meyer, Fehr, & Ruff, 2015; Kuhnen & Knutson, 2011).

In line with the predictive processing framework,
Petropoulos Petalas et al. (2017) recently proposed that eco-
nomic forecasts may directly influence people’s prior beliefs
about the economy and their perception of future economic
events and financial decision options. In their experiment,
participants played a gambling task (the Balloon Analogue
Risk Task, or BART), and while playing, they received a
message informing them of possible changes in the BART
payoff scheme that might occur in upcoming trials. The mes-
sage either indicated a possible negative change in the BART,
whereby balloons might be popping more easily, or the mes-
sage indicated a possible positive change, whereby balloons
might be popping at a later time. Results indicated that mes-
sages forecasting a negative development resulted in partici-
pants taking less risk than messages forecasting a positive
development. In addition, a gradual increase in response time
with each inflation step was found to be stronger following
negative economic forecasting than following positive eco-
nomic forecasting. Both effects were interpreted to be consis-
tent with the theoretical idea that economic forecast may
change people’s prior belief of the economy and influence
their perception of risk in financial decision-making.

Here, we build on this paradigm to scrutinize the hypothe-
sis that economic forecasting can influence people’s mental
model of the economy and influence their anticipation of eco-
nomic outcomes. More specifically, we will investigate pre-
diction error signals reflected in the EEG that provide an im-
plicit measure of participants anticipation of positive and neg-
ative economic outcomes in the BART. Previous research has
identified several ERP components to display reward
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prediction errors, most notably the feedback related negativity
(FRN) and the P3/P300 (Holroyd & Coles,
2002; Nieuwenhuis, Holroyd, Mol, & Coles, 2004; San
Martin, 2012; Xu et al., 2016). The FRN represents a negative
peak or negative difference wave over medial frontal regions
between 200 milliseconds (hereafter, ms) and 400 ms follow-
ing negative feedback or unexpected absence of reward
(Nieuwenhuis et al., 2004; Walsh & Anderson, 2012). The
P3 or P300 is a pronounced positive deflection occurring be-
tween 300 ms and 600 ms over the medial frontal and parietal
and is known to be sensitive to the magnitude of the reward as
well as violations of reward expectancy (San Martin, 2012;
Yeung & Sanfey, 2004). As prediction errors may theoretical-
ly be expressed at various stages of outcome processing—
from early visual processing as reflected in the N1 to slow
waves following the P3 (Duncan-Johnson, 1981; West,
Bailey, Anderson, & Kieffaber, 2014)—we took an explor-
atory approach to first identify components in the ERP that are
sensitive to risk taking (inflation step) in the BART and sub-
sequently tested whether and to what extent these components
would be influenced by economic forecasting. The functional
significance of the components identified and studied here is
addressed extensively in the Discussion section.

Method

In our study, the BART was framed as an economic decision-
making computer game, in which participants could earn succes-
sively higher amounts of (actual) money by making riskier
choices. The BART was chosen because it can be seen as an
intuitively straightforward visual metaphor of the economy as a
bubble at risk of a burst. The same metaphor of the bubble
economy is often used in economic news and involves a com-
mon figure of speech (Shiller, 2015; van der Yeught, 2007)
linking BART’s bubble economy with the concept of actual
economic bubbles in the real world. Furthermore, the features
of the BART resemble real-world risky decision-making in the
sense that individuals often experience uncertainty about the out-
comes of their financial decisions, as seen in market trading
behaviour; investing in shares, bonds, or land property; starting
up a new business; or buying a house. Likewise, the BART
provides individuals with the option to avoid risk taking by
collecting the value that was successfully accumulated up to that
point, which may resemble risk aversive behaviour such as sav-
ing money in a zero-interest checking account.

While playing in the BART, participants encountered eco-
nomic forecasting by means of a text message on the computer
screen, which suggested possible changes (positive and nega-
tive) in the game’s economic state of future trials (as in
Petropoulos Petalas et al., 2017). We recorded participants’
behavioural responses in the game, as well as their electroen-
cephalogram (EEG). Our study used a within-subjects

experimental design with three levels (blocks): a baseline
and two experimental blocks. The baseline block was always
presented first. Both experimental blocks were preceded by a
positive or negative economic forecast (counterbalanced).

Participants

We determined the sample size necessary for our experiment on
the basis of a similar previous study that used 22 participants and
reported moderate (d = 41 and n* = .23) effect sizes (see S. Xu
et al., 2016). To account for possible dropouts or errors during
the experiment, 23 right-handed participants (nine males, M, =
22.5 years, SD,q. = 3.0 years; age range: 18-30 years), with no
known visual or neurological impairments, were recruited for the
experiment. Two female and one male participant had to be
excluded due to errors in the correct registration of event markers
in the raw EEG signal, and due to complications with electrode
conductivity or impedance. All participants received a standard
participation fee per time spent in the lab (€5.00 per hour). The
20 participants used in the final study sample received additional
monetary profit ranging between €4.33 and €9.94 (M = 7.59, SD
==+1.54), based on 5% of their actual performance in the BART.
All participants were recruited through the university’s partici-
pant repository portal and provided verbal and written consent.
The study was conducted according to the ethical standards de-
scribed in the 1964 Declaration of Helsinki.

Paradigm

In the original BART (Lejuez et al., 2002), the participant can
acquire an increasing monetary value by sequentially inflating
a visual analogue of a balloon. At each trial, the participant is
presented with the decision to either inflate the balloon or to
withdraw from inflating it and collect the monetary value ac-
quired to that point. Every successive inflation response leads
to an increase in the size of the balloon and the monetary value
associated with that particular balloon size, given that the in-
flation is successful. At the same time, each successive infla-
tion response comes at an increasing probability for a burst. If
the balloon bursts, any monetary value is lost. It is the partic-
ipant’s choice to stop inflating the balloon when she or he
feels the level of risk outweighs the possible gain. Therefore,
each successive inflation response in the BART reflects risk
taking, as it may result in either an increase in potential benefit
(as the value of the balloon increases cumulatively with each
response to inflate) or in a total loss of the balloon value
accumulated up to that point. Following a balloon burst or a
response to collect the acquired monetary value, the trial ends
and the participant may start inflating a new balloon. In our
modified version of the BART task, we used a visual analogue
of a bubble, as it may be seen as a visual metaphor of a bubble
economy at risk of a burst. Although the explicit meaning of
this metaphor was not mentioned to participants, the word
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“bubble” instead of “balloon” was used throughout the
experiment.

BART task

Similar to the Petropoulos Petalas et al. (2017) study, here we
used an adapted version of the BART paradigm with a max-
imum of 12 inflation steps that permits measurements of be-
havioural and electrophysiological data to successive inflation
responses (self-paced). Participants were introduced to the
BART as a game in which they could earn money depending
on their performance and were specifically instructed that the
game’s goal was to maximize their earnings. Although the
exact probabilities for bursts were unknown to participants,
they were told that each bubble could be maximally inflated
12 times before a definite burst would occur, and that they had
to perform at least one inflation before collecting any money.
That is, the first inflation response would never result in a
burst. Bubble bursts were pseudorandomized and their prob-
ability of bursting was predetermined based on the following
formula:

Pourst = Number of Inflation Step/12. (1)

To ensure similar reward structure across the three blocks,
the same sequence of burst probabilities was used in each
block. The experiment was programmed in Presentation®
(Version 15.0, Neurobehavioural Systems Inc., Berkeley,
CA, USA). Participants were instructed to use only their right
(left) hand for inflating the bubble by pressing the space bar
and their left (right) hand for collecting money using the left
(right) control button (i.e., response hands for inflating and
collecting money were counterbalanced across participants).

At the beginning of each trial, the value “0.10” was pre-
sented at the center of the screen (font type: Arial; font size: 11
pt.; font colour: white), similar to a standard fixation point.
Following a time interval that varied between 1,000 and 1,500
ms, a transparent, white-lined bubble, 100 x 100 pixels (1.33
% 1.33 inch [3.37 x 3.37 cm]), was projected around the pre-
sented value, and the participant could start to inflate the bub-
ble (see Fig. 1). Inflation responses were self-paced. Seven
hundred ms after participants pressed the space bar to inflate,
the bubble began to increase in size (animation), and 300 ms
later a short inflating sound (sound duration: 300 ms) was
played; the total duration of this audiovisual frame was 600
ms. Each successive response to inflate the bubble led to an
animated increase in its size by approximately 1° visual angle
(about 0.39 inch [1 cm] in all directions). Seven hundred ms
after the animation frame, a positive or a negative feedback
stimulus was presented, indicating whether the response re-
sulted in a successful bubble inflation or in a bubble burst. In
case of a successful inflation, the inflated bubble would turn
green and remain on-screen for 800 ms while a short clinking
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sound (150 ms) was played (600 ms after the change in colour,
to distinguish between visual and auditory evoked potentials).
The bubble would then turn white again, and the value would
update to the stake of the next inflation response. With each
successive inflation step, the value increased, up to €3.90 (see
Table S1 in the Supplementary Materials, which presents a
detailed description of the bubble value at each successive
Inflation Steps 1-13).

In case of a bubble burst, the inflated bubble would turn red
and remain on-screen for 2 000 ms, while a subtle explosion
sound (300 ms) was played (600 ms after the change in col-
our); no money would be collected in that case, and the trial
would end. A collect response—that is, stop inflating the bub-
ble and collect the accumulated value (using the right/left
control button) would immediately result in a green-framed
screen, with the text “You collected *value bubble* Euro” in
the center of the screen for 2,000 ms (font type: Arial; font
size: 22 pt.; font colour: green), and the same clinking sound
was successively played for three times (600 ms after the
change in colour). Following the end of every trial (i.e., after
either a collect response or a bubble burst), a black screen was
presented as an intertrial interval for 1,000 ms.

Procedure

Participants were first welcomed in the lab and were intro-
duced to the experimental equipment (EEG) and procedure.
Following, participants provided their written consent, in ac-
cordance to the standard protocol for human psychology ex-
perimentation from the Ethics committee of the institute where
the study was conducted. Next, participants were seated in a
comfortable chair, approximately 80 cm in front of a 24-in.
LCD monitor (TN panel type; 1,920 x 1,080 resolution; mod-
el BenqXL2420Z) and used a gaming keyboard (Corsair
Vengeance K70) to perform the modified version of the
BART task. After explaining the experimental procedure
and fitting of the EEG electrodes (see Data Collection and
EEG Signal Preprocessing section, below), participants re-
ceived instructions about the BART task. Participants were
familiarized to the BART with five practice trials (bubbles),
ensuring they had understood how the game works and how to
minimize artifacts in the EEG. Participants were explicitly
instructed to use the intervals between successive rounds or
trials in order to blink or move, when necessary. After com-
pleting this practice phase, a baseline block of 80 trials was
presented in four mini blocks of 20 trials each. Following each
block, a self-paced break of approximately 1 minute was of-
fered to participants to relax before the next block. Following
the baseline block, two experimental blocks were adminis-
tered, again consisting of four mini blocks of 20 trials each.
Before the onset of each experimental block, a positive or
negative text message appeared on a black background screen
(font type: Arial; font size: 28 pt.; font colour: green in the case
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Fig. 1 Time course of all events at a given trial of the BART task

of a positive message, red in the case of a negative message). The
order of positive and negative forecasts before the experimental
blocks was counterbalanced across participants. The positive
(negative) forecast read: “Positive (negative) economic changes
may occur within the coming trials. In this case, the chances of
explosions will decrease (increase), which will result in bubbles
popping at bigger (smaller) sizes, and can influence your total
gains.” The forecasts were deliberately kept vague, in line with
the theoretical proposition that economic news often offers a
vague description of economic predictions about the future
(Baker, Bloom, & Davis, 2016; Tetlock & Gardner, 2015).
Therefore, the word “may” was used, which is a neutral phrase
of estimative probability that says nothing about the degree of
likelihood for and event to actually happen (Mauboussin &
Mauboussin, 2018). In addition, the forecasts captured the ele-
ment of directionality (i.e., valence), which is often accentuated
or framed in journalistic reports about the future economy
(Akhtar, et al., 2011; Soroka, 2006). Each message remained
on-screen until participants chose to continue to the next block.
Following the BART task, participants completed a short inven-
tory of questions including items about demographics and items
checking the message manipulation. The whole experiment
lasted on average 100 minutes (M = 99.86, SD = 10.24), depend-
ing on participants’ pace.

Data collection and EEG signal preprocessing

Behavioural performance data, including number of inflations
performed per bubble (trial) and reaction times (RTs) in re-
sponse to every inflation decision, were collected using the
stimulus presentation software. EEG data were collected with

N,
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‘\

Explosion feedback
screen (2000ms)

TRIAL ENDS
IT1 1000ms

two sets of 32-channel active electrode systems (actiCap
MedCaT B.V., Netherlands), amplified by two 32-channel
BrainAmp EEG amplifiers with electrode placement accord-
ing to the international 10-20 system on the following scalp
locations: Fpl/2, AFz, AF3/4, AF7/8, Fz, F1/2, F3/4, F5/6,
F7/8, FCz, FC1/2, FC3/4, FC5/6, FT7/8, Cz, C1/2, C3/4, C5/
6, CPz, CP1/2, CP3/4, CP5/6, TP7/8, Pz, P1/2, P3/4, P5/6, P7/
8, POz, PO3/4, PO7/8, Oz, O1/2, PO10, and right mastoid. A
ground electrode was placed on the right collarbone, and the
reference electrode was placed at the left mastoid.
Electrooculography (EOG) was recorded using electrodes at
supra-orbital and infra-orbital sites around the right eye to
control for vertical eye movement and blinks, and at the outer
canthi of the left and right eyes to control for horizontal eye
movements. Conductance gel was used to connect the elec-
trodes to the scalp, and impedance was kept below 20 k(2. The
online sampling rate was set at 500 Hz.

Preprocessing of the EEG data was done in BrainVision
Analyzer (Version 2.0.2, Brain Products GmbH, Gilching,
Germany). The EEG signal was rereferenced off-line to an
average of the linked mastoids. A Butterworth zero-phase
filter was used to eliminate low-frequency drift and high-
frequency noise, with a low cutoff set at 0.1 Hz at 48 dB/
octave and a high cutoff at 40 Hz at 48 dB/octave. Eye-
movement artifacts (blinks and saccades) were corrected
using the Gratton and Coles ocular correction method
(Gratton, Coles, & Donchin, 1983). Muscle artifacts and
low-frequency drifts were excluded using semi-automatic
detection of amplitudes surpassing £150 V. Manual de-
tection was then used to exclude any remaining artifacts
that were missed in the automatic detection procedure. On
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Fig. 2 ERP components in response to successful feedback (a) and to
burst feedback stimuli (b) per Inflation Steps 1-8. Topographic maps
reflect spline maps showing a spherical 3D distribution of each
component across the head (top view, nose is pointing upwards) in the

average, 7% of the recorded EEG signal was excluded
from analysis.

The stimulus presentation script was programmed to send
triggers to the EEG data acquisition system, marking all stim-
uli and responses in parallel with the recording of the EEG.
Markers designating feedback stimuli (indicating either a suc-
cessful or an unsuccessful inflation) were used to extract
epochs between —250 ms and +750 ms with respect to the
onset of feedback stimulus. Epochs were averaged separately
per stimulus type (successful/unsuccessful inflation), per in-
flation step (Step 1-Step 12), per experimental condition
(baseline, positive message, and negative message) and elec-
trode site. These epochs were then baseline corrected (from
—250 ms to 0 ms) to create ERPs relevant to our investigation.

EEG components of interest To examine differences between
the two conditions of interest in the amplitude and latency of
event-related potentials (ERPs) in response to feedback stim-
uli in the EEG, we first examined effects of inflation step
number on the ERPs by collapsing the data across (baseline,
positive, and negative) forecasting conditions, following
known practices for minimizing bias (Luck & Gaspelin,
2017). Visual inspection of changes in ERPs as a function of
inflation step (separately for bubble bursts and successful in-
flations) in BrainVision Analyzer 2.1 (Brain Products GmbH,
Munich, Germany) indicated an influence of inflation step on
the amplitude and latency of four consecutive ERP compo-
nents (see Fig. 2). Over frontal electrodes, and most clearly
visible in the ERPs to successful feedback stimuli, the P2 was
found to increase in amplitude and reduce in latency as a
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interval of the blue transparent vertical bar. Zero ms indicates the time of
stimulus onset. White dots on the topographical maps represent electrode
locations at which each component was found to peak. (Color figure
online)

function of inflation step. Over occipital electrodes, the N1
was observed to increase in amplitude and was accompanied
by a reduction in latency as a function of inflation step. Over
centrofrontal electrodes, the P3a component was found to in-
crease in amplitude and peak earlier with increasing inflation
step. Finally, over centroparietal areas, and most clearly visi-
ble in the ERPs to successful feedback stimuli, the P3b com-
ponent was found to increase in amplitude as a function of
inflation step. Topographic maps and difference waves be-
tween inflation steps indicated that the P2 and P3b were also
present in ERPs to bubble bursts, although the individual
peaks of these components were not clearly visible in the
grand average ERPs.

Against our expectations, in the current experiment no nega-
tive peak in the latency window of the FRN (~240 ms) and no
signs of a component with a negative polarity signature in the
spline maps and current source density (CSD) plots were identi-
fied to vary as a function of inflation step. Hence, the FRN was
not included as a component in our analyses.' Statistical testing

! Previous studies investigating outcome processing in decision making have
also identified reward prediction errors to be reflected in the FRN (Bai,
Katahira, & Ohira, 2015; Fein & Chang, 2008; Yi Huang & Yu, 2014; San
Martin, 2012; note that the FRN has also been labeled fERN, MFN, and FN;
see Proudfit, 2015). A few EEG studies have run varying versions of the
BART, among which some have reported an FRN observed at frontocentral
electrode sites approximately 240 ms following balloon bursts (e.g., Fein &
Chang, 2008; Takacs et al., 2015), while others have failed to identify it (Gu
et al., 2018). In our study, we found no indications of an FRN. A possible
reason for this may be that a strong reward-related positivity (RewP) compo-
nent with a similar frontocentral topography, such as the P3a in the present
study, masked the FRN (cf. Proudfit, 2015).
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of amplitude and latency differences of ERP components that
were found to be sensitive to the increase of inflation step number
follows in the Results section.

Peak latencies of the four components were determined
separately per outcome condition (bursts, successful infla-
tions) using visual inspection of the topography and amplitude
of difference waves of ERPs to feedback stimuli presented at
subsequent inflation steps. A window of 100 ms centered
around the peak latency (=50 ms, +50 ms) of each ERP com-
ponent was used for analysis. For ERPs time locked to posi-
tive feedback (successful inflations), these windows were P2
(80—180 ms); N1 (120-220 ms); P3a (210-310 ms); and P3b
(340440 ms). For ERPs in response to negative feedback
stimuli (bubble bursts), these time windows were P2 (75—
175 ms); N1 (120-220 ms); P3a (290-390 ms); and P3b
(515-615 ms). For each component, the mean amplitude
was calculated by taking the average amplitude of five
electrodes—that is, the electrode at which the component
peaked, and four surrounding electrodes on the basis of visual
inspection of the topography, in order to increase signal to
noise for statistical testing. The selected electrodes were in
accordance with literature on the known distribution of these
four components (N1, P2, P3a, P3b). For the P2, amplitude
was calculated from Fz and the four surrounding electrodes
(AFz, FCz, F1, and F2). For the N1, amplitude was averaged
from POz and surrounding electrodes (Pz, Oz, PO3, and PO4).
For the P3a, amplitude was averaged from FCz, and surround-
ing electrodes (Fz, Cz, FC1, and FC2). For the P3b, amplitude
data were averaged from CPz and surrounding electrodes (Cz,
Pz, CP1, and CP2). Subsequently, we extracted the averaged
amplitude in microvolts (V) and identified the peak latency
of each component in the selected 100 ms intervals, separately
per condition (baseline, positive, negative), stimulus (correct
inflation, burst), and inflation step (1-8) for each participant.
These peak latency and mean amplitude measures were used
in the statistical analyses reported in the Results section.

Participants who were more risk averse produced less re-
sponses at higher inflation steps, resulting in fewer trials. A
criterion of at least five trials for each ERP was used for in-
clusion in the study (Boudewyn, Luck, Farrens, &
Kappenman, 2018). Supplementary Table S2 provides an
overview of the number of participants and epochs that were
included in the calculation of ERPs per condition and inflation
step. The reduced signal to noise ratio at these higher inflation
steps is taken into account by the mixed-model analysis (see
below) that assigns statistical weight of condition cells as a
function of the number of observations.

Analysis procedure
All statistical analyses were conducted in R (R Core Team,

2011). With respect to behavioural observations, we were first
interested in differences in risk taking between blocks (i.e., the

number of inflation responses following positive and negative
economic forecasts). In line with the Petropoulos Petalas et al.
(2017) study, we expected that participants would be inclined
to take more risk following positive economic messages than
following negative economic messages. We computed an
analysis of variance (ANOVA) for a linear model using the
Im function of the stats package (Version 3.5.2; R Core Team)
to analyze differences in the number of inflation responses, as
a function of block (baseline vs. positive information condi-
tion vs. negative information condition) and order (positive
vs. negative information block presented first) as a well as
their two-way interaction. Post hoc contrasts using the
Tukey method for multiple comparisons were used to test
pair-wise comparisons between blocks.

In addition, and similar to the Petropoulos Petalas
et al. (2017) study, we expected the effect of positive
and negative forecasting on risk taking to be consistent
over the course of their respective blocks. We therefore
tested whether the rate of change in risk taking scores
across trial number for each condition was significant.
For these simple linear models, p values for the main
effects of block and trial number were estimated using
conditional F tests (Type III sum of squares), as applied
in the Anova function (package car, Version 2.0-21;
Fox, Friendly, & Weisberg, 2013).

In view of the nested nature of the RT and EEG data (as we
obtained observations from repeated measures both within
participants and trials), we chose a (generalized) linear
mixed-effects model for the analyses. This type of model al-
lows viewing the data without necessarily aggregating at the
trial or at the participant levels, thus resulting in lower unex-
plained variance and higher statistical power to account for
effects at both levels (condition, step) of the analysis. In addi-
tion, mixed models handle missing data more appropriately
compared with traditional methods, such as the repeated-
measures ANOVA (Baayen, Davidson, & Bates, 2008; Barr,
Levy, Scheepers, & Tily, 2013; Vaughn, 2008). We therefore
used the (g)lmer function of the /me4 package (Version 1.1-7;
Bates, Michler, Bolker, & Walker, 2015) in R to investigate
differences in RT and EEG data between the two main exper-
imental conditions per number of inflation step. Following
Barr (2013), a maximal random-effects model structure was
used where possible, including a per-participant random ad-
justment to the fixed intercept and a per-participant random
adjustment to the slopes of predictors varying within
subjects—in this case, number of inflation step and condition.
All possible random terms (i.e., random intercept and slope)
across random effects were included, unless otherwise speci-
fied. For these generalized linear mixed-effects models, p-

values were determined using bootstrapped likelihood ratio

tests, as implemented in the anova function (package stats4,
Version 3.0.1; R Core Team, 2011). All confidence intervals
reported are at 95%, unless otherwise specified.
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We examined RT data to investigate effects of inflation
step and economic forecast condition. Following the advice
by Baayen and Milin (2010), we first removed responses be-
low 100 ms, as they most likely reflect accidental button
presses or participants holding down the button to speed up
the trial. Overall, 5.1% of all observations (1,453 out of
28,439 in total) were identified as unjustifiably fast (<100
ms), and they were removed from the data set. Albeit the data
were skewed, it was decided to not transform the data, to ease
results interpretation. Modern multilevel approaches in analy-
ses of reaction times suggest that distributional skewness is
not as much of a problem compared with the problem of
interpreting logarithmically transformed data (Lo &
Andrews, 2015). A multilevel mixed-model analysis was used
in R, as implemented using the /mer function (LME4 pack-
age). We first tested whether a random effects structure was
warranted and compared a /m() to a Imer() model structure. As
expected, adding the random structure improved the model fit.
Following the advice by Bates et al. (2015), we then ran a
maximum model structure that included main effects for the
factors of step (i.e., inflation step number) and condition (i.e.,
valence of forecast) as well as their interaction—and random
slopes and intercepts for the Step x Condition interaction ef-
fect, as well as for the (random) effects of trial number and
participant number. This maximal structure model did not
converge; therefore, in accordance with Barr (2013), steps
were then taken to reduce the processing power (i.e., first,
by trying different data optimizers) and the model’s complex-
ity (i.e., subsequently, by gradually reducing the model’s
structure until a model fit the data best). The best fitting model
(REML criterion at convergence: 215,706) excluded number
of inflation step from the random structure, and included a
random effects structure only for the main effect of condition,
with correlated intercept and slopes. By consecutively adding
parameters to the model, we tested whether they significantly
improved the model fit. Adding step as a mixed factor signif-
icantly improved the model fit (p < .001, BIC fit/full =
216385/216121), and so did condition (p < .001, BIC fit/full
=216142/216121), as well as the interaction term (p < .001,
BIC fit/full =216212/216121).

Concerning the EEG data, we were interested in the ampli-
tudes and latencies of the four components that were found to
vary as a function of the increase in inflation step in the BART
(see Fig. 2). Similarly to analyzing RTs, due to the small
number of responses to inflate beyond inflation Step 8, we
only looked at differences until and including Inflation Step
8. Moreover, and because the first inflation never resulted in a
bubble burst, all analyses for bubble burst were limited to
Inflation Steps 2—8. We ran linear mixed-model analyses to
test for effects of inflation step and forecasting condition on
ERP amplitude and latency, for each of the four components
of interest (P2, N1, P3a, and P3b) and for each feedback event
type (successful inflations and bubble bursts). Each model
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included fixed effects for step and condition, as a well as their
two-way interaction. As random effects, we included the in-
tercepts per participants, and for the main effects of step and
condition, we allowed per-participant random slopes. This
maximal random-effects model structure was used in all cases,
and visual inspection of residual plots did not reveal homo-
scedasticity or deviations from normality. However, for
modeling differences in latency of the P3b in the case of bub-
ble bursts, we had to eliminate the random correlation and
random intercept terms, as a maximal structure failed to con-
verge. The best fitting model included fixed effects for infla-
tion step number and condition, as well as the interaction term
and per-participant random slopes. As mentioned earlier, p-
values were obtained by likelihood ratio tests of the full mod-
el with the effect in question, compared against the model
without the effect in question.

Results
Behavioural responses

Risk taking (bubble inflations) Risk-taking scores were calcu-
lated as the maximal number of bubble inflations performed
by the participant for each trial, until the participant decided to
collect or a bubble explosion had occurred. All data were
normally distributed, and no outliers had to be removed.
Participants inflated the bubble on average 6.72 times in the
baseline (SD = 1.74, SE = .059), 6.68 times in the negative
forecasting condition (SD = 1.91, SE = .064), and 7.71 times
in the positive forecasting condition (SD = 1.81, SE = .066).
We used an ANOVA to analyze differences in the mean
number of inflation responses per experimental condition,
with experimental block (baseline vs. positive information
condition vs. negative information condition) and order (pos-
itive vs. negative information condition presented first) as a
well as their two-way interaction as predictors, and with num-
ber of inflations as the dependent variable. Results of the lin-
ear mixed-effects model to investigate differences in risk tak-
ing as a consequence of economic forecasting indicated a
main effect of block, F(2, 2498) = 81.59, p < .001, partial n2
=.015, and a main effect of order on the number of inflation
responses, F(1, 2498) =38.07, p < .001, partial nz =.001. The
two-way Block % Order interaction was not significant (p =
.108). These findings suggest that although the two
counterbalancing groups performed differently on the
BART, the order in which conditions were administered did
not influence the main effect of block (i.e., the effect of the
economic forecast; see Fig. 3). Post hoc contrasts using the
Tukey method for multiple comparison showed a significant
estimate difference of AM = 1.02 inflations, SE = .09, #(2,498)
= 11.41, p < .001, partial n* = .061, 95% CI [-1.03 , —.81],
meaning that participants took more risk in the positive and
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Fig. 3 Number of inflation responses (risk taking) in the baseline (white)
and for each of the two forecasting conditions (red for negative and green
for positive forecasting), plotted separately for the difference in order of

less risk in the negative forecasting conditions, and this differ-
ence was statistically significant. The difference in inflation
scores between baseline and positive forecasting condition
was also significant, AM = .97 inflations, SE = .09, #(2,498)
=10.73, p <.001, 95% CI [-1.19, —.76]). Last, the difference
in inflation scores between baseline and negative forecasting
condition was insignificant (p = .832). See Fig. 3 for a sche-
matic illustration of these results.

The number of “bubbles collected” (instances in which
participants opted for collecting gains and thus to stop inflat-
ing the bubble) was greater than the number of “bubble
bursts” (instances in which the bubble exploded) at the base-
line (Mcoliected = 42.8, SDcoliected = 0.29 and Myyrgs = 37.2,
SDy,.is = 0.27) and at the negative forecasting condition
(MCollected = 45’ SDCOlleCted = 0.30 and Mbursts = 355 SDbursts
= 0.26); however, this was not the case in the positive fore-
casting condition (MC()llected = 375, SDCo]lected = 0.26 and
Myyests = 42.4, SDyyrors = 0.28). The difference in bubble col-
lected across the three blocks was significant, F(1, 28436) =
21.34, p < .001, partial n2 = .007, while the difference in
bubble bursts was not.

To investigate whether the effect of the message forecast
on risk taking is resilient over the course of trials in the BART,
we looked at the rate of change in risk taking across all 80
trials per experimental condition. Although participants’ aver-
age risk taking increased significantly as a function of trial
numbers 1-80 in the baseline (R* = .029, b = .013, p <
.001), there were no significant changes in risk taking
throughout the 80 trials of the experimental blocks, neither
in the negative (R2 < .001, b = .001, p = .477) nor in the
positive (R2 =.001, b =-.003, p = .256) forecasting condition
(see Fig. 4). The absence of a significant change in risk taking

Negative First

presenting the positive and the negative message forecasts. Whiskers
indicate standard error. (Color figure online)

in the positive and negative experimental blocks denotes that
the effect of the positive and negative forecast manipulation
was stable over the course of these respective block (see Fig. 4
for a graphical representation of risk taking over trials). The
increase in risk taking in the baseline may reflect a learning
effect, in the sense that participants may be more anxious or
careful in the beginning of the baseline block and gain confi-
dence over trials, manifested as an increase in risk taking.

Number of Inflations

20 60 80

Trial Nudrgber 1-80
Fig. 4 Risk taking in the BART as a function of Trials 1-80, for the
baseline block (dashed line) and each of the experimental blocks
following positive (top solid line) and negative (bottom solid line)
economic forecasting. Individual points (baseline = small solid dots;
negative forecasting = triangle symbol; positive forecasting = cross
symbol) signify aggregate responses across trials. Shaded regions
represent 95% confidence intervals
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Reaction times (RTs) We expected slower responses for suc-
cessive inflations steps, reflecting higher uncertainty for in-
creasingly riskier decisions (Petropoulos Petalas et al., 2017,
Pleskac & Wershbale, 2014). Furthermore, we expected the
rate of change in RTs to be steeper for the negative versus the
positive forecasting condition, reflecting the increasingly
stronger uncertainty in case of a negative economic forecast.
Table 1 presents a summary of descriptive statistics of RTs per
condition and inflation step.

Likelihood ratio tests indicated a significant effect of step,
#21.67)=14.45,p <.001, SE = 48.07, meaning that RTs were
significantly slower as the number of inflation steps became
higher. The effect of the condition was also significant,
#(113.36) = 8.36, p < .001, SE = 15.94, thereby confirming
that negative forecasting elicits slower responses in the deci-
sion to inflate, compared with positive forecasting. Last, there
was a significant interaction effect, #14,338.12) = 20.59 p <
.001, SE = 14.55, meaning that the rate of change in RTs
differed significantly between the two experimental condi-
tions. In all, the analysis of reaction times showed slower
RTs for successively riskier decisions (i.e., an effect of step)
and further suggested this effect was stronger for the case of
negative economic forecasting (see Fig. 5 for a schematic
presentation of these differences).

EEG results

ERP amplitudes We first looked at differences in ERP ampli-
tudes of the P2, N1, P3a, and P3b components to feedback
screens, indicating successful bubble inflations and bubble
bursts. Amplitudes of most of these components differed sig-
nificantly as a function of the increase in inflation step number
and also as a function of the forecasting condition. For an

Table 1

overview of the amplitude of the four components in pos-
itive and negative forecasting blocks, see Table 2 and Fig.
6. Also see Figs. S1, S3, and S4 in the Supplementary
Materials. Figure S1 presents an overview of the compo-
nent amplitudes with detailed information on the data
points of individual participants. Figures S3 and S4, re-
spectively, present the ERPs to successful inflations and
bubble bursts separately for positive and negative forecast-
ing conditions. Below, we detail the outcomes of the anal-
yses per component and feedback screens.

P2. As can be seen in Figs. 6 and S3, for successful
inflations, the amplitude of the P2 component to positive
feedback stimuli generally increased as a function of in-
flation step, X2(7) =28.83, p<.001, a contrast of AM =
3.01 uV (SE =3.42) between Step 1 and Step 8. The main
effect of condition, Xz(l) = 6.79, p = .009, and the
Inflation Step x Condition interaction, x*(7) = 17.57, p
=.014, were also significant. At higher inflation steps (in
particular, Steps 5, 6, and 7), negative forecasting resulted
in higher P2 amplitudes compared with positive forecast-
ing, by AM = 0.54 uV (SE = 0.21). For bubble bursts, a
trend towards an effect of step, X2(6) =11.51, p =.073,
was found, reflecting an increase in P2 amplitude by AM
= 3.12 uV (SE = 1.52) across Inflation Steps 2—8. The
main effect of condition was significant, x>(1) = 5.04, p =
.024, indicating that on average the positive forecasting
message resulted in higher P2 amplitude by AM =
1.40 uV (SE = 0.66). The Inflation Step x Condition
interaction was also significant, x2(6) = 20.01, p < .01,
indicating that the stronger P2 amplitude for the positive
forecasting condition was found for most steps (3, 5, 6,
and 8), but not for other steps (2, 4, and 7).

Descriptive statistics of RTs (in milliseconds) per forecasting condition and at each inflation step number 1-11.

Inflation step number Negative forecasting

Positive forecasting

n Mean RT (SD) SE n Mean RT (SD) SE
1 1594 472 (405) 10.17 1597 488 (432) 10.82
2 1418 446 (369) 9.8 1450 474 (458) 12.02
3 1224 465 (422) 12.05 1297 482 (465) 12.91
4 980 426 (404) 12.92 1133 464 (409) 12.14
5 654 443 (514) 20.09 878 421 (402) 13.58
6 444 455 (559) 26.52 634 448 (419) 16.77
7 245 509 (803) 51.31 390 414 (418) 21.19
8 85 422 (346) 37.51 184 487 (630) 46.46
9 52 1045 (1899) 263.33 91 549 (700) 734
10 19 413 (258) 59.15 38 1109 (1682) 272.82
11 8 907 (1503) 531.55 7 3189 (3858) 1458.21

Note. Descriptive statistics on aggregate data across all steps, trials, and participants. RTs smaller than 100 ms have been removed (see text)
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Fig. 5 Linear trend of the reaction times (RTs) in milliseconds per infla-
tion step number, for the positive (solid green line) and for the negative
(dashed red line) forecasting conditions, both at the aggregate (left side)

NI1. For successful inflations, the amplitude of the N1 to
positive feedback stimuli increased significantly at higher
inflation steps, 2(7) = 34.33, p <.001, a contrast of AM
=2.91 uV (SE = 3.64) between Step 1 and Step 8. The
main effect of condition and the Step x Condition inter-
action effect were not significant. For bubble bursts, a
similar increase in N1 amplitude was found as a function
of step number, X2(6) =21.55, p < .01; the difference in
magnitude of the N1 component between Steps 2—8 was
AM = -2.73 uV (SE = 1.74). In addition, we found a
trend towards a main effect of condition, x*(1) = 3.79 , p
=.051, showing greater amplitude for the negative (M =
—8.93 uV, SE = 1.05, 95% CI [-11.10 , —6.77]) com-
pared with the positive (M = —7.76 uV, SE = 0.82, 95%
CI[-9.45, 6.07]) forecasting condition; a contrast of AM
=-1.16 uV (SE = 0.62). The interaction effect of Step x
Condition was also significant, x*(6) = 19.54, p < .01,
indicating that the stronger amplitude of the N1 in the
negative forecasting condition varied (unsystematically)
over inflation steps.

P3a. For successful inflations, the amplitude of the
P3a component was found to increase as a function
of inflation step, x2(7) = 53.51, p < .001; a contrast
of AM = 1.58 uV (SE = 0.22) from Steps 1-8. The
main effect of condition was not significant, but the
Step x Condition interaction effect was, X*(7) = 39.07,
p <.001, indicating a stronger amplitude of the P3a in
the negative forecasting condition at increasing infla-
tion steps (5—8). For bubble bursts, the main effect of
step was significant, x*(6) = 91.65, p < .001; the am-
plitude of the P3a component increased across
Inflation Steps 2—8 by 25.40 uV (SE = 3.43). Both

and at the individual level (right side). Shadowing represents 95% Cls.
(Color figure online)

the main effect of condition and the interaction effect

of Step x Condition were insignificant.
P3b. For successful inflations the amplitude of the P3b
component increased as a function of inflation step, X*(7)
=100.23, p <.001; a contrast of AM = 15.08 uV (SE =
1.62) between Steps 1 and 8. The main effect of condition
was not significant, but the interaction effect of Step x
Condition was significant, X2(7) =37.90, p <.001, indi-
cating a stronger amplitude of the P3b in the negative
forecasting condition at increasing inflation steps (4-8).
For bubble bursts, a significant main effect of inflation
step, x2(6) =15.66, p =.015, was found, showing that the
amplitude of the P3b component across Inflation Steps 2—
8 increased by 7.12 nV (SE = 2.21). Both the main effect
of condition and the interaction effect were insignificant.

ERP latencies We also looked at variations in peak latency of
the P2, N1, P3a, and P3b components, again separately for
successful inflations and for bubble burst feedback screens.
Latencies of most of these components differed significantly
as a function of the increase in inflation step number, but not
as a function of the economic forecasting condition, albeit
interaction effects were noticed. See Table 3 as well as Fig.
6 for an overview of these differences. Also see Fig. S2 in the
Supplementary Materials, which presents an overview of the
component peak latencies with detailed information on the
data points of individual participants.

P2. For successful inflations, we found a marginally sig-
nificant effect in the latency of the P2 over inflation steps,
X2(7) = 14.039, p = .050, while the main effect of condi-
tion was insignificant (p = .726). However, there was a
trend towards a Step x Condition interaction, x*(7) =
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Table 2 Feedback-locked ERP amplitudes across Inflation Steps 1-8 and per forecasting condition
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Note. Mean amplitude (in p1V) and standard deviation (SD) as directly extracted from BrainVision Analyzer. The first inflation never led to a bubble burst (see text)

12.901, p = .074, reflecting a different pace of variation in
P2 latency between the two experimental conditions of
interest. For bubble bursts, the increase in Step Numbers
2-8 did not significantly affect the latency of the P2 com-
ponent (p = .165). Furthermore, neither the main effect of
condition (p = .580) nor the interaction effect of
Condition x Step (p = .272) were found to be significant.
NI1. For successful inflations, the increase in Step
Numbers 1-8 significantly reduced the latency of the
N1 component, X2(7) = 23.37, p < .001; a mean differ-
ence of —9.26 ms (SE = 2.43) across Inflation Steps 1-8.
The main effect of condition (p = .527) and the interaction
effect of Inflation Step x Condition (p = .209) were not
significant. For bubble bursts, the latency of the N1 peak
varied over inflation steps, X2(6) = 15.953, p = .014,
revealing a similar pattern as the N1 latency to feedback
of successful inflation; the mean difference in the latency
of N1 between Inflations Steps 2—8 was —3.47 ms (SE =
1.91). Neither the main effect of condition (p = .822) nor
the Inflation Step x Condition interaction (p = .252) was
significant.

P3a. For successful inflations, neither the main effects of
condition (p =.777) and step (p = .454) nor the interaction
effect between Step % Condition (p = .625) were signifi-
cant. For bubble bursts, neither the main effects of step (p
= .455) and condition (p = .636) nor the interaction be-
tween Step x Condition (p = .593) were significant.
P3b. For successful bubble inflations, the latency of the
P3b was found to vary over inflation steps, x*(7) = 14.49,
(p = .043). The main effect of condition (p = .387) was
insignificant; however, the interaction effect between
Step x Condition was significant, x*(7) = 14.41, p =
.044, reflecting different fluctuations in P3b latency be-
tween conditions. For bubble bursts, no significant main
effect of step (p = .922) or interaction effect with condi-
tion (p = .673) were found.

Discussion

The goal of the present study was to investigate the neuro-
physiological basis of economic decision-making in the
BART and to find converging evidence from ERPs for the
idea that economic forecasts can influence people’s internal
model of the economic reality and their subsequent financial
decision-making. We hypothesized that beliefs regarding the
BART economy would be reflected in electrophysiological
brain responses that are sensitive to risk taking in the BART.
In accordance with this aim, we found four ERP components
(P2, N1, P3a, and P3b) to be sensitive to the level of risk
taking in the BART. Furthermore, and most importantly,
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Fig. 6 Summary of ERP amplitude (a) and latency b) differences as a
function of Inflation Steps 1-8. Green (red) lines correspond to feedback
from successful inflations (bubble bursts); solid (dotted) lines correspond

messages about possible changes in the BART economy were
found to systematically influence the amplitude and/or the
latency of these components, supporting the theoretical idea
that economic forecasting may change people’s mental model
of the economy and influence their perception of risk in finan-
cial decision-making. Thereby, the findings of the current
study corroborate the self-fulfilling prophecy effect in eco-
nomic forecasting, which states that economic forecasts may
influence people’s beliefs about the economy and their con-
secutive financial decision-making, thus effectuating the eco-
nomic prophecy that was forecasted in the first place.

The behavioural outcomes of the present study largely rep-
licate the results of the Petropoulos Petalas et al. (2017) study.
Similar to that study, we found that economic messages fore-
casting a potentially negative development in the economy
resulted in participants taking less risk in the BART than fol-
lowing messages forecasting a possible positive economic de-
velopment. The changes in financial risk taking were found to
be substantial: more than one inflation on average in the pos-
itive news condition on an average of 7.2 inflations per trial.
Furthermore, in statistical terms, the effect size of the differ-
ence in number of inflations per block can be considered a
moderate effect (Abelson, 1985; Ferguson, 2009). In addition,
analysis of the forecasting effect across trials indicated that
that the effect set in immediately following the economic mes-
sages and remained stable throughout the block (see Fig. 4).
As previously argued (Petropoulos Petalas et al., 2017), these
latter two findings likely follow from the probabilistic risk
function of the BART that was unknown to the participants
(as is the case for the real economy), which makes it difficult
for participants to determine if and when an economic forecast
has become a reality, and to correct potentially false beliefs
through experience sampling (H. Zhang, Paily, & Maloney,

to positive (negative) economic forecasting conditions, accordingly.
(Color figure online)

2015). Last, the analysis of reaction times showed prolonged
RTs for successively riskier decisions (i.e., an effect of step)
and further suggested this effect was stronger for the case of
negative economic forecasting. In line with Petropoulos
Petalas et al. (2017), this finding suggests that participants’
uncertainty increased with inflation step and was enhanced
by negative economic forecasts relative to positive forecasts.

The electrophysiological effects of economic forecasting in
the present study play a crucial role in the sense that they
corroborate the interpretation that economic forecasts led to
a change in the participants’ mental model of the (BART)
economy, which in turn influenced their financial decision-
making. Overall, we found that the amplitudes of P2, NI,
P3a, and P3b to feedback stimuli increased in amplitude with
increasingly riskier gambles and that negative economic fore-
casts further accelerated this increase in component amplitude,
relative to positive economic forecasts. The effect of econom-
ic forecasting was not the same for each component, however,
and was found to vary with the type of feedback stimulus
(success or burst) that was presented.

P2

At frontocentral electrode sites feedback stimuli indicating a
successful inflation evoked a P2 with a peak around 130 ms. A
P2 with a similar frontocentral topography but without a clear
peak (as the ERP transitioned in a P3a; see, e.g., San Martin,
Appelbaum, Pearson, Huettel, & Woldorft, 2013) was ob-
served following feedback stimuli, indicating a burst. The
P2 has been associated with the evaluation of stimulus rele-
vance (Chen, Zhang, Zhong, Hu, & Li, 2013; Potts, 2004) and
the recruitment of attentional resources (Carreti¢, Hinojosa,
Martin-Loeches, Mercado, & Tapia, 2004; Carretié et al.,
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Table 3  Feedback-locked ERP latencies across Inflation Steps 1-8 and per forecasting condition
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Bubble bursts

Successful inflations

ERPs in response to negative forecasting ERPs in response to positive forecasting

ERPs in response to positive forecasting

Inflation step ERPs in response to negative forecasting

number

P3b

P3a

N1

P2

P3b

P3a

N1

P2

P3b

P3a

N1

P2

P3b

P3a

N1

P2

131 (10.80) 178 (8.59) 263 (12.97) 408 (23.02) 129 (12.65) 179 (8.35) 267 (14.39) 395 (20.79) —

132 (8.87)

173 (8.80) 262 (16.82) 393 (22.68) 131 (10.22) 172 (7.67) 341 (45.51) 571 (55.29) 129 (11.40) 173 (631) 337 (43.66) 567 (54.45)

175 (7.45) 261 (16.45) 385 (16.36) 133 (9.39)

175 (8.09) 264 (11.71) 395 (23.51) 130 (10.64) 177 (7.08) 339 (37.08) 568 (38.15) 124 (12.59) 175 (5.88) 336 (46.78) 565 (49.13)
175 (8.41) 266 (18.04) 383 (17.96) 129 (14.40) 174 (7.21) 341 (33.85) 574 (31.70) 127 (12.28) 173 (6.74) 356 (31.14) 543 (38.36)

130 (10.60) 174 (8.01) 263 (13.70) 391 (20.61) 126 (9.87)

130 (11.47) 175 (6.96) 267 (15.41) 390 (17.06) 131 (9.17)

135 (8.00)
127 (9.66)

172 (4.83) 347 (30.44) 564 (45.32) 130 (11.40) 171 (5.76) 345 (35.61) 583 (59.14)

172 (7.66) 269 (18.67) 384 (21.80) 131 (10.91) 173 (6.13) 265 (16.06) 391 (23.77) 129 (9.74)

174 (5.66) 265 (18.89) 392(23.22) 133 (10.37) 174 (7.09) 263 (17.05) 390 (20.40) 123 (14.24) 172 (7.49) 348 (27.19) 568 (45.85) 123 (14.23) 175 (7.77) 340 (29.03) 571 (45.59)

172 (6.51) 335 (33.84) 574 (51.63)

127 (12.94) 172 (6.56) 262 (13.13) 385 (18.91) 122 (13.57) 173 (5.88) 338 (26.73) 564 (38.11) 128 (8.79)

127 (13.94) 172 (5.75) 264 (20.12) 397 (24.90)

124 (24.33) 169 (6.39) 260 (19.96) 387 (18.91) 127 (12.21) 166 (6.29) 255 (20.91) 391 (23.22) 127 (10.31) 170 (7.28) 339 (21.67) 569 (42.22) 125 (11.28) 169 (6.25) 341 (24.10) 558 (46.68)

Note. Mean latency (in ms) and standard deviation (SD) as directly extracted from BrainVision Analyzer. The first inflation never led to a bubble burst (see text)

2001a, b; Chen et al., 2013) to potentially threatening and
emotionally relevant stimuli such as faces with negative (e.g.,
fearful or angry) emotional expressions (Chen et al., 2012;
Eimer & Holmes, 2007; Moser, Huppert, Duval, & Simons,
2008; Wang, Liu, & Yan, 2014; Yang, Yuan, & Li, 2012),
images evoking strong negative emotions such as fear or disgust
(Carretié et al., 2001a, b; Chen et al., 2013; Delplanque, Lavoie,
Hot, Silvert, & Sequeira, 2004; Yuan et al., 2007), and cues
signaling an impeding threat (Gibbons, Schnuerch, & Stahl,
2016; Rossignol, Philippot, Douilliez, Crommelinck, &
Campanella, 2005; Bublatzky & Schupp, 2012). Furthermore,
studies examining feedback processing in gambling tasks
(Schuermann, Endrass, & Kathmann, 2012; West et al., 2014)
have found P2 responses to feedback stimuli to increase in am-
plitude with more negative outcomes (e.g., S. Xu et al.,, 2011)
and to grow in size with increasing risk (i.e., with increasing
outcome variance (Kiat, Straley, & Cheadle, 2016; Goyer,
Woldorff, & Huettel, 2008). In line with these findings, the am-
plitude of the P2 to feedback stimuli in the current study was
found to increase with inflation step and was larger following
negative feedback stimuli (bursts) as compared with positive
feedback (successful inflations). These findings corroborate the
functional involvement of the P2 in the early and preferential
processing of stimuli with potential negative emotional conse-
quences for the self.

‘We need to be aware however, that the ERP effects of infla-
tion are confounded with the size of the bubble, which increased
with every inflation step. Pfabigan, Sailer, and Lamm (2015)
indicated that the amplitude of several ERP components, includ-
ing the P2, is influenced by the physical size of feedback stimuli.
The exact reason for the larger P2 to feedback stimuli of increas-
ing size is unclear and could have various explanations (cf.
Pfabigan et al., 2015) such as the differential expression of phys-
ical properties of large and small stimuli in the evoked potentials,
the stronger salience and or potency of large stimuli to attract
attention, and even the intrusive distance at which stimuli may be
perceived. Note however that Kiat et al. (2016) contrasted inflat-
ing and deflating bubbles in the BART and found that in both
conditions the P2 was found to increase with inflation/deflation
step, suggesting that size of the gamble rather than the size of the
bubble is what drives the P2 amplitude.

Most importantly for the purpose of the present experiment
is that the P2 amplitude not only increased as a function of
feedback valence and inflation step but it also varied as a
function of the economic forecast. More specifically, P2 am-
plitudes were found to be larger, on average, when outcomes
did not match the economic forecasts. That is, in the case of
successful feedback, P2 amplitudes were larger when these
outcomes were presented in the context of negative economic
forecasts. Oppositely, for negative feedback stimuli, P2 am-
plitudes were larger when economic forecasts had been posi-
tive. These findings suggest that unexpectedly positive or neg-
ative outcome (considering the context of economic
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forecasting) generated a reward prediction error. Previous re-
search investigating effects of predictive cueing in gambling
paradigms has found similar reward prediction errors reflected
in the amplitude of the P2 (Schaefer, Buratto, Goto, &
Brotherhood, 2016), as well as other components, such as
the FRN and the P3 (Hajcak, Holroyd, Moser, & Simons,
2005; Hajcak, Moser, Holroyd, & Simons, 2007; Mushtaq,
Wilkie, Mon-Williams, & Schaefer, 2016; Walsh &
Anderson, 2012; Wu & Zhou, 2009). The finding of a reward
prediction error on the P2 in the current paradigm suggests
that unexpected outcomes (i.e., not in accordance with the
expectations formed on the basis of the forecasts) generated
a stronger attentional orienting over and above the effects of
stimulus frequency (i.e., bursts > successful inflations) and
inflation step.

N1

Over occipital regions, feedback stimuli generated an N1 com-
ponent around 170 ms that increased in amplitude and decreased
in latency as a function of inflation step. Previous studies have
established that the visual N1 is sensitive to both exogenous
factors, i.e., physical properties such as stimulus size and lumi-
nance (De Cesarei & Codispoti, 2006; Gannon, Knapp, Adams,
Long, & Parks, 2016; Pfabigan et al., 2015; Wijers, Lange,
Mulder, & Mulder, 1997) as well as endogenous factors such
as selective attention in tasks requiring stimulus discrimination
(Bradley, 2009; Hillyard, Vogel, & Luck, 1998). Accordingly,
the effects of inflation step on the N1 could either reflect the size
of feedback stimuli, which increased with inflation step, or incre-
ments in visual attention with the increasing size of gambles per
inflation step (or a combination of the two). Two arguments from
Kiat et al. (2016) support the latter attentional interpretation. In
their ERP study of the BART, the increase in P2 amplitude with
inflation/compression step suggests that feedback stimuli to se-
quential gambles in the BART increasingly recruited attentional
resources. Furthermore, their results reveal an increase of the N1
amplitude with inflation step that is quite comparable with the
effects on the P2 (see Kiat et al., 2016, Fig. 22). These findings
suggest that the increase in N1 amplitude with inflation step in
the current study, at least partly, reflect increased attentional pro-
cessing of feedback stimuli with increasingly risky gambles in
the BART (see Gu, Zhang, Luo, Wang, & Broster, 2018, for
similar reasoning).

Interestingly, our analyses indicated that N1 amplitude was
larger following negative feedback stimuli than in response to
positive feedback, suggesting a negativity bias for attentive
processing of negative emotional feedback over positive feed-
back. Although previous studies have reported a negativity
bias for the P2 (see, e.g., Yuan et al., 2007), as far as we know,

% Note, though, that a statistical analysis of this effect is not reported in the Kiat
et al. (2016) paper.

such an effect has not yet been reported for the N1. A possible
account for the stronger N1 to bursts is that negative feedback
stimuli triggered early recruitment of attentional resources
(P2) (~130 ms), which was early enough to trigger enhance-
ments in visual attention as reflected in the N1 (~170 ms). One
possible reason for the early peak latency of the P2 is that the
current paradigm used a clear and discriminative feature (i.e.,
colour) that allowed an early classification of the valence of
the feedback stimulus. Future research could test this hypoth-
esis by comparing the latency and amplitude of early ERP
components to simple and complex feedback stimuli.

Importantly, negative economic forecasting increased the am-
plitude of the N1 to negative feedback, as compared with the
positive economic forecasting condition. This effect corroborates
the conclusion that economic forecasting changed participants’
mental model of the BART economy and their anticipation of
negative feedback. Also, it supports our view that the effects in
N1 amplitude reflect a measure of visual attention, which in-
creases as a function of perceived risk. Interestingly, the effect
of economic forecasting on the N1 was found selectively for
negative feedback stimuli, and not for positive feedback stimuli
(i.e., successful inflations). This finding suggests that partici-
pants’ anticipation of bubble burst was stronger in the negative
forecasting condition than in the positive forecasting condition
and selectively enhanced the processing of visual features asso-
ciated with burst stimuli (cf. Miiller & Keil, 2004).

P3a

In line with other studies investigating electrophysiological
responses in the BART, outcome stimuli generated a P3a
component with a peak at around 270 ms for successive feed-
back stimuli, and more pronounced P3a with a somewhat later
peak at around 340 ms following burst stimuli (Fein & Chang,
2008; Lannoy, D’Hondt, Dormal, Billieux, & Maurage,
2017). Previous research has found the P3a to be associated
with involuntary orienting to unexpected salient stimuli in
oddball paradigms (see review in Nieuwenhuis, De Geus, &
Aston-Jones, 2011) and with the processing of outcomes fol-
lowing risky decisions in gambling paradigms (review in San
Martin, 2012). Polich (2007) proposes that the P3a reflects the
recruitment of a frontal attention mechanism that is triggered
by incoming stimuli. In line with this idea, several papers have
suggested that the frontal P2 and the P3a may involve the
same component, with the P2 constituting an early phase of
the P3a (Goyer et al., 2008; Polania, Krajbich, Grueschow, &
Ruff, 2014; Rigoni, Polezzi, Rumiati, Guarino, & Sartori,
2010; San Martin et al., 2013; San Martin, Kwak, Pearson,
Woldorff, & Huettel, 2016), or, alternatively, that P2 and P3a
are part of an oscillatory complex, caused by phase-resetting
of theta (4—8 Hz) oscillations following stimulus onset (Foti,
Weinberg, Dien, & Hajcak, 2011; Holroyd, Pakzad-Vaezi, &
Krigolson, 2008; West et al., 2014).
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ERP research in the domain of gambling has typically fo-
cused on brain potentials to outcome stimuli signaling success
or failure. Studies have found P3a amplitude to vary as a
function of valence and magnitude of the outcome (reviews
in San Martin, 2012; West et al., 2014), with larger P3a am-
plitudes to negative outcomes than to positive outcomes, and
to large gambles as compared with small gamble outcomes. In
the current study, we found that P3a amplitude was larger for
bubble bursts than to feedback of successful inflations.
Furthermore, and in line with previous findings that P3a am-
plitude is sensitive to the magnitude of gambles, P3a ampli-
tude in the present study was found to increase as a function of
step size. In accordance with results on the P2 and the N1,
these findings suggest that burst stimuli gathered more atten-
tion than successful inflations, and that outcomes of gambles
with increasing magnitude received more attention.

Importantly, our analyses indicated that the amplitude of
the P3a was not only modulated by valence and magnitude of
the outcome stimuli but was also influenced by economic
forecasting. More specifically, the increase in P3a amplitude
with successive steps was found to be stronger following a
negative forecasting messages than following positive eco-
nomic forecast. This effect was found selectively in the
ERPs to successful inflations, but not in response to bubble
bursts. Considering the similarity in the effects of economic
forecasting on the P2 and P3a to successful inflations (both set
in after Step 4), and previous accounts that have argued for a
functional overlap between these two components, it is likely
that that the increase in P3a amplitude presents a similar re-
ward prediction error (Fischer & Ullsperger, 2013; Ullsperger,
Fischer, Nigbur, & Endrass, 2014) as in the case of the P2. In
functional terms, this finding implies that unexpected positive
outcomes in the context of negative economic forecasts
caused a stronger orienting of attention to the outcome of the
gamble.

P3b

Following the P3a, a P3b developed over a centroparietal
regions with a peak at around 410 ms for successful feedback
stimuli. Comparable with the pattern of effects for the P3a,
P3b amplitude was larger and peaked later (at around 570 ms)
for bubble bursts than for successful inflations. Previous re-
search has suggested that the P3b reflects the evaluation and
encoding of novel and motivationally significant stimuli or
events (reviews in Nieuwenhuis et al., 2004; Polich, 2007)
that may inform future behavioural responses to the same
stimuli or conditions. The P3b is found to be larger for stimuli
with emotional valence than neutral stimuli (e.g., Delplanque
et al., 2004; Delplanque, Silvert, Hot, & Sequeira, 2005; Keil
etal., 2002), and for arousing stimuli than nonarousing stimuli
(Rozenkrants & Polich, 2008). In gambling paradigms, P3b is
larger in response to rewards than to losses (Hajcak et al.,

@ Springer

2005; Hajcak et al., 2007) and is found to increase as a func-
tion of the absolute value or magnitude of gambles (e.g., Wu
& Zhou, 2009; Yeung & Sanfey, 2004). Interestingly, the P3b
has also been associated with adjustments of behaviour in task
performance in subsequent trials (Chase et al., 2011; Fisher &
Ullsperger, 2013; Gu et al., 2018; Mushtaq et al., 2016) and
with the encoding of information in memory, supporting later
recall and recognition (Donchin et al. 1984; Fabiani, Karis, &
Donchin, 1990; Paller, Kutas, & Mayes, 1987; see a review in
Wagner, Koutstaal, & Schachter, 1999). In the context of the
present paradigm the P3b could reflect the encoding of trial
outcomes to update the mental representation of the p distri-
bution of bursts and successful inflations in the BART to
optimize future financial decision-making.

Similar to the pattern of effects for the P2, N1, and P3a com-
ponents, the P3b was found to be larger to bursts than to success-
ful inflations, and analysis indicated that the P3b amplitude in-
creased as a function of inflation step. These findings are in line
with studies that have found the P3b amplitude to be influenced
by the frequency of stimuli (review in Nieuwenhuis et al., 2004),
and the magnitude of gambles (e.g., Wu & Zhou, 2009; Yeung
and Sanfey, 2004). It is relevant to point out that the P3b is
largely unaffected by physical properties of stimuli
(Nieuwenhuis et al., 2004). Hence, differences in the size of
stimuli per inflation step can be ruled out as a confounding factor
for the P3b. Most importantly, however, the amplitude of the P3b
to successful inflations was modulated by the valence of the
economic forecast. More specifically, the increase in P3b ampli-
tude with successive steps was larger following negative eco-
nomic forecasts than following positive forecasts. This finding
suggests that the reward prediction error to successful inflations
following negative economic predictions also influenced the P3b
component. This finding implies stronger engagement of differ-
ent cognitive or affective functions such as attention, reward,
arousal, and memory encoding (Nieuwenhuis et al., 2004;
Pfabigan, Alexopoulos, Bauer, & Sailer, 2011; Polich, 2007;
San Martin, 2012) in response to unexpected positive outcomes
in the BART.

Altogether, the findings on the four consecutive ERP compo-
nents present a consistent picture. In all components we found
that inflation step parametrically enhanced the amplitude of all
four ERP components. These effects probably reflect stronger
attentional engagement to stimuli of greater importance (Goyer
etal., 2008; Kiat et al., 2016; San Martin, 2012; West et al., 2014;
Wu & Zhou, 2009; Yeung and Sanfey, 2004). In addition, and
most importantly considering the goal of the present study, the
amplitudes of all four components were influenced by economic
forecasting. In cases of the P2, P3a, and P3b, the effects of
economic forecasting probably reflect a reward prediction error
(Fischer & Ullsperger, 2013; Hajcak et al., 2005; Hajcak et al.,
2007; Mushtaq et al., 2016; Schaefer et al., 2016; Ullsperger
et al., 2014; Walsh & Anderson, 2012; Wu & Zhou, 2009) that
captures attention when the outcomes in the BART are



Cogn Affect Behav Neurosci (2020) 20:961-982

977

unexpected in light of the preceding economic forecast. The
similarity in ERP effects across the four components suggests a
close functional coupling between the different processing stages
of outcome stimuli in the BART. These findings match previous
accounts that have stressed functional relations between the P2,
P3a, and P3b. More specifically, it has been suggested that the
consecutive P2, FRN, and P3a reflect a frontal theta oscillatory
response supporting attentional orienting to presented stimuli
(West et al., 2014). According to Polich (2007) and recent work
by Bachman and Bernat (2018), attentional orienting as reflected
in theta may also contribute to the P3b.

The current findings provide support for the idea that the
predictive processing framework may be well suited to ex-
plain how beliefs about the economy may influence people’s
economic choices. Participants’ electrophysiological re-
sponses to positive and negative outcomes indicate that eco-
nomic forecasting messages influenced participants’ predic-
tions about the outcomes of their risky decisions. This finding
is consistent with predictive processing models in the domain
of action (Friston, 2010; Pickering & Clark, 2014,
Ridderinkhof & Brass, 2015), which suggest that people form
specific top-down expectations about the outcomes of their
actions that serve as a perceptual filter in the bottom-up pro-
cessing of action consequences (Lin et al., 2012; Melloni,
Schwiedrzik, Miiller, Rodriguez, & Singer, 2011). Analysis
of risk taking over time indicated that participants did not
update their false beliefs about the BART economy, which
points to the idea that false beliefs higher up in the perceptual
hierarchy may be quite difficult to change, especially when the
available evidence is noisy or ambiguous (Petropoulos Petalas
et al., 2017). Similarly, the state of the general economy may
be hard to estimate, given the complex economic indices, and
individuals may be selectively processing information that is
consistent with their view (Kaaronen, 2018). In addition to
predictive processing, our findings may also be compatible
with model-based reinforcement learning, which suggests that
animals and humans may instantaneously change their
reward-based decision-making depending on the
(economical) context (Lee, Seo, & Jung, 2012; Trueblood,
Brown, Heathcote, & Busemeyer, 2013; Zhang et al., 2013).
The current paradigm may provide a fitting case wherein the
integration between reinforcement learning and predictive
processing (cf. Alexander & Brown, 2018) may be investigat-
ed in future studies.

Concluding remarks

Contemporary interest from multiple scientific domains fo-
cuses on the influence of economic forecasting on financial
decision-making. In this paper, we have discussed behavioural
and ERP findings from an economic decision-making exper-
iment to investigate the hypothesis that positive and negative
economic forecasts can influence individual’s internal model

of the economic reality and influence their subsequent finan-
cial decision-making. In accordance with this idea, economic
forecasts were found to influence individuals’ risk taking and
their ERPs to decision outcomes, whereby unexpected out-
comes were processed more attentively than outcomes that
were in line with previous economic forecasts. These findings
confirm the self-fulfilling prophecy effect in economic fore-
casting and corroborate existing models that have suggested a
causal relationship between economic news and economic
decision-making at a macro level.
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