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A wavelet features derived 
radiomics nomogram for prediction 
of malignant and benign 
early‑stage lung nodules
Rui Jing1,6, Jingtao Wang2,6, Jiangbing Li3, Xiaojuan Wang4, Baijie Li1, Fuzhong Xue2, 
Guangrui Shao1* & Hao Xue5*

This study was to develop a radiomics nomogram mainly using wavelet features for identifying 
malignant and benign early-stage lung nodules for high-risk screening. A total of 116 patients with 
early-stage solitary pulmonary nodules (SPNs) (≤ 3 cm) were divided into a training set (N = 70) and a 
validation set (N = 46). Radiomics features were extracted from plain LDCT images of each patient. 
A radiomics signature was then constructed with the LASSO with the training set. Combined with 
independent risk factors, a radiomics nomogram was built with a multivariate logistic regression 
model. This radiomics signature, consisting of one original and nine wavelet features, achieved 
favorable predictive efficacy than Mayo Clinic Model. The radiomics nomogram with radiomics 
signature and age also showed good calibration and discrimination in the training set (AUC 0.9406; 
95% CI 0.8831–0.9982) and the validation set (AUC 0.8454; 95% CI 0.7196–0.9712). The decision 
curve indicated the clinical usefulness of our nomogram. The presented radiomics nomogram shows 
favorable predictive accuracy for identifying malignant and benign lung nodules in early-stage 
patients and is much better than the Mayo Clinic Model.
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ProGRP	� Pro-gastrin-releasing peptide
SCC	� Squamous cell carcinoma
VA	� Veterans association
SVM	� Support vector machine

Solitary pulmonary nodules (SPNs) are high-incidence intrapulmonary lesions; an SPN usually refers to a lesion 
with a diameter ≤ 3 cm that is round with no atelectasis, no satellite lesions, and no local lymphadenectasis1,2. 
Qualitatively diagnosing SPNs as benign or malignant has important clinical significance, could avoid the high 
risk of surgery for benign SPNs, and could also allow early surgical treatment of malignant SPNs to improve 
patient survival3. At present, CT is simple and economical to apply. Multi-slice spiral computed tomography 
(MSCT) has high spatial and density resolution, which can improve the sensitivity and specificity of detection 
of SPNs4. The high diagnostic accuracy of MSCT makes this imaging modality suitable to be widely used for 
diagnosing benign and malignant SPNs3.

Radiomics is a high-throughput extraction method for images that depends on large numbers of imaging 
features and subsequent quantitative analysis. Radiomics shows excellent decision-making capacity for disease 
diagnosis and prognostic prediction5. Currently, radiomics of lung nodules is mainly used to improve the nodule 
detection rate6 or clinical decision-making7–12, and enhanced CT can be used13,14. To our knowledge, few ideal 
radiomics-based studies evaluating the prediction of early-stage (≤ stage I) malignant and benign lung nod-
ules ≤ 3 cm has been published to date because of their more indistinguishable radiomics features.

In this study, we used one original feature and nine wavelet radiomics features out of 788 features and vali-
dated a novel radiomics nomogram that incorporated a radiomics signature and clinical risk factors to distinguish 
malignant and benign early-stage SPNs.

Materials and methods
Patients.  A total of 116 patients (116 SPNs) were enrolled in our study from Jan 2016 to Dec 2018, and the 
recruit pathway is presented in Fig. S1. and the patients had no anti-tumor therapy before surgery. Their CT 
images were retrospectively analyzed and found to show SPNs that had confirmed pathological results. A total 
of 116 SPNs were detected with LDCT imaging. After surgery, the TNM stage of lung cancer was confirmed to 
be T1N0M0. Patients were divided into training and validation set in a ratio 3:2. 70 patients were divided into 
training set and 46 patients were divided into validation set.

This retrospective study was approved by the ethics review board of Second Hospital of Shandong University. 
The requirement for informed consent was waived by our Review Board (Second Hospital of Shandong Univer-
sity) owing to the retrospective nature of the current study. The methods in the current study were performed 
in accordance with the relevant guidelines and regulations.

CT image acquisition, region‑of‑interest segmentation, and radiomics feature extrac‑
tion.  Before undergoing pulmonary nodule resection or biopsy, all patients underwent pulmonary plain CT 
with a GE 64-slice spiral CT scanner (LightSpeed VCT 64, General Electric Company). The CT scan parameters 
were as follows: 0.7 s/r of rotation time of the X-ray tube, voltage of 120 kV, current of 100 mA, pitch of 0.2, and 
collimation of 0.6 mm × 64. The conventional scanning slice thickness was 5 mm, while the reconstructed slice 
thickness was 1.5 mm. The pulsmonary window had a window width of 1500 HU and a window level of − 600 
HU. The mediastinal window had a window width of 350 HU and window level of 35 HU. The images were 
transmitted to a picture archiving and communication system (PACS) system. Two chest radiologists with more 
than 10 years of experience in image diagnosis read, analyzed and diagnosed the original thin-layer (1.5 mm) 
images on the workstation and recorded the chest CT manifestations.

Tumor regions of interest (ROI) were semiautomatically segmented slice by slice using 3D Slicer (www.​
slicer.​org). Two chest radiologists with more than 10 years of experience in image diagnosis read, analyzed and 
diagnosed the original thin-layer (1.5 mm) images on the workstation and recorded the chest CT manifestations. 
A large set of quantitative radiomics features were extracted using the PyRadiomics15. In total, 788 radiomics 
features were extracted from a single CT image. 100 radiomics features which were extracted from original image 
could be divided into three categories: (a) first-order statistics features, (b) shape-based features, (c) statistics 
based textural features. The remain 688 radiomics features were extracted from images with wavelet transfor-
mation, and therefore were called wavelet features. More detailed information about the radiomics features and 
their extraction reproducibility can be found in the Supplementary Data.

Interclass correlation coefficients (ICCs) were used to assess the intra- and interobserver reproducibility 
of radiomics feature extraction. An ICC greater than 0.75 indicates good agreement of the feature extraction.

Feature selection in benign and malignant early‑stage SPNs and radiomics signature construc‑
tion.  We used the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm to 
select early SPN benign and malignant related feature with nonzero coefficients from the 788 imaging features in 
the training set16. A formula was generated using a linear combination of selected features that were weighted by 
their respective LASSO coefficients; the formula was then used to calculate the radiomics score for each patient 
to reflect the risk of malignancy. Finally, the predictive accuracy of the radiomics signature was quantified by 
the area under the receiver–operator characteristic (ROC) curve (AUC) in both the training and validation sets. 
The association between the selected features and lung nodule malignancy were investigated using univariable 
logistic regression model.

http://www.slicer.org
http://www.slicer.org
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Construction and assessment of the radiomics nomogram.  The radiomics signature and the clini-
cal variables were tested in a multivariable logistic regression model to identify benign and malignant early-stage 
SPNs in the training set. A radiomics nomogram was then constructed based on the multivariate logistic regres-
sion model. The calibration of the nomogram was assessed with a calibration curve. The Hosmer–Lemeshow 
test was performed to assess the goodness-of-fit of the nomogram, and the area under the curve (AUC) was 
calculated to quantify the discrimination performance of the nomogram. In addition, the predictive importance 
of each variable was assessed using the respective t statistics value in the radiomics nomogram.

Internal validation of the radiomics nomogram was performed with the validation set. A radiomics score was 
calculated for each patient in the validation set using the formula constructed in the training set. Calibration 
and the Hosmer–Lemeshow test were performed, and the AUC was calculated.

Clinical utility of the radiomics nomogram.  To estimate the clinical utility of the nomogram, decision 
curve analysis (DCA) was performed by calculating the net benefit for a range of threshold probabilities in the 
combined training and validation sets.

Statistical analysis.  The LASSO logistic regression model was used with penalty parameter tuning that 
was conducted by fivefold cross-validation on the training set based on maximal AUC criteria. The likelihood 
ratio test with backward step-down selection was applied to the multivariable logistic regression model. Detailed 
descriptions of the LASSO algorithm and DCA are provided in the Supplementary Data.

All statistical tests were performed using R statistical software version 3.5.2. We used the "glmnet" package to 
perform the LASSO logistic regression model analysis. The ROC curves were plotted using the "pROC" package. 
The 95% confidence intervals of AUC were estimated using the “ci” function in the "pROC" package. Nomogram 
construction and calibration plots were performed using the "rms" package, and the Hosmer–Lemeshow test was 
conducted using the "generalhoslem" package. The predictive importance of variables were calculated using the 
“varImp” function in the “caret” package. DCA was performed using the " rmda " package. A two-sided P < 0.05 
was considered significant.

Results
Patient clinical characteristics.  The radiomics study flowchart is presented in Fig. 1. The patient char-
acteristics in the training and validation sets are shown in Table 1 and Supplementary Table S1. Patients with 
malignant SPNs accounted for 81.4% (57/70) and 82.6% (38/46) of the training and validation sets, respectively, 
and there were no significant differences between them. Gender showed no significant differences between the 
benign and malignant groups, but age showed certain significant differences in our study.

Feature selection, radiomics signature construction and performance.  A total of 788 imaging 
features were extracted from each images: 100 features were divided into three categories: 18 first order statistics 
features, 14 shape and size features and 68 textural features; the 678 features were classified as the fourth cat-
egory, which contain all first-order statistics features and textural features but were extracted from images with 
wavelet decomposition. More detailed information about the imaging features can be found in the Supplemen-
tary Material S2 and Fig S3. The quartile of interobserver ICCs is [0.8866, 0.9431], indicating favorable intra- and 
interobserver reproducibility of feature extraction.

Ten features of benign and malignant early-stage SPNs with nonzero coefficients were screened using the 
LASSO logistic regression model which was tuned using fivefold cross-validation on 70 patients in the training set 
(Fig. 2A,B). Nine of ten features demonstrated significant association with malignancy risk (Table S2). Among the 
10 features we had included, only one original shape feature, and the other 9 were wavelet features. Therefore, the 
more complex features extracted after image transformation had stronger prediction and distinguishing ability, 
and were more suitable for identifying early-stage SPNs with LDCT. The radiomics score calculation formula and 
the selected features are presented in Supplementary Material S4. Malignant nodules generally displayed a higher 
radiomics score than benign nodules. There was a significant difference between the radiomics scores [median 
(interquartile range)] of the benign and malignant groups in the training set [0.525 (− 0.087 to 1.080) vs. 2.002 
(1.475–2.523), respectively, P < 0.001]; this difference was confirmed in the validation set [0.739 (0.452–1.366) 
vs. 1.862 (1.462–2.507), respectively, P = 0.004] (Fig. 2C,D). The radiomics signature showed favorable predictive 
efficacy, with an AUC of 0.9393 [95% confidence interval (CI), 0.8799–0.9986] in the training set and 0.8257 
(95% CI 0.6938–0.9576) in the validation set (Fig. 2E,F). In addition, an optimal radiomics score cutoff value of 
1.64 was defined based on the maximum Youden index of all patients.

The radiomics signature was identified as an independent predictor of malignant early-stage SPNs in a mul-
tivariate logistic regression model (Table 2). The waterfall plot for the distribution of the radiomics score and 
benign and malignant status of individual lesions is presented in Fig. 3, which clearly reveals that almost all 
patients with malignant pulmonary nodules (97.9%, 93/95) would avoid being missed by using a cutoff value of 
the radiomics signature of 0.6.

Construction, performance assessment and validation of the radiomics nomogram.  A radiom-
ics nomogram of the two predictors was constructed (Fig. 4A). The AUC of 0.9433 (95% CI 0.8832–1) revealed 
good discrimination by the nomogram (Fig. 4B). The calibration curve and a nonsignificant Hosmer–Lemeshow 
test statistic (P = 0.9742) showed good calibration in the training set (Fig. 4D). The AUC of the validation set was 
0.8717 (95% CI 0.737–1; Fig. 4C), and the Hosmer–Lemeshow test yielded a nonsignificant P value of 0.7410 
(Fig. 4E). Therefore, our nomogram performed well in both the training and validation sets. The radiomics sig-
nature presented relatively higher predictive importance than age in the radiomics nomogram (Fig. 5).
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Clinical usefulness of the radiomics nomogram.  The DCA for the radiomics nomogram is presented 
in Fig. 6A. The DCA indicated that when the threshold probability for a doctor or a patient is within the range 
from 0 to 1, the radiomics nomogram adds more net benefit than the "treat all" or "treat none" strategies.

In addition, we evaluated the discriminatory efficiency of the radiomics nomogram in all 116 patients using 
ROC analyses. Figure 6B shows ROC analyses comparing the discriminatory efficacy of the radiomics nomogram 
to those of the radiomics signature and the patient age alone. The radiomics nomogram yielded the greatest ROC 
of 0.9173 (95% CI 0.8556–0.9790), which suggested that the nomogram achieved better predictive efficacy than 
either the radiomics signature or age alone.

Discussion
Distinguishing benign and malignant pulmonary nodules and masses is critical in the diagnosis of lung diseases. 
Accurate prediction of benign and malignant lung lesions will allow appropriate clinical treatment and biopsy 
strategies. As the awareness of the importance medical technology and physical examination increases, more and 
more early-stage lesions are discovered. Among them, early-stage SPNs (≤ 3 cm) have few significant imaging 
features for diagnosis, preoperative noninvasive discrimination is difficult. Noninvasively distinguishing benign 
and malignant SPNs will provide considerable benefit for guiding clinical diagnosis and treatment. On the one 
hand, for benign lesions, choosing drug therapy or needle biopsy will significantly reduce the risk of surgery and 

Figure 1.   Radiomics study flowchart. Radiomics flowchart. (A) Nodules were manually segmented on plain CT 
images. (B) Three categories of radiomics features were extracted from original CT, and wavelet features were 
extracted after wavelet decomposition. (C) After features selection, the most informative radiomics features and 
clinical features were combined to construct machine learning model. Model performance was assessed using 
ROC, calibration curve, DCA and et.al.

Table 1.   Baseline characteristics of the training and validation sets.

Characteristic

Training set (N = 70)

P

Validation set (N = 46)

P
Malignant
(N = 57)

Benign
(N = 13)

Malignant
(N = 38)

Benign
(N = 8)

Age, mean ± SD, years 62.25 ± 9.83 55.08 ± 9.44 0.017 62.95 ± 8.85 58.63 ± 14.53 0.265

Gender (%) > 0.999 > 0.999

 Male 33 (57.90) 8 (61.54) 17 (44.74) 4 (50.00)

 Female 24 (42.10) 5 (38.46) 21 (55.26) 4 (50.00)
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Figure 2.   Texture feature selection using LASSO logistic regression and predictive accuracy of the radiomics 
signature. (A) Selection of the tuning parameter (λ) in the LASSO model via fivefold cross-validation based on 
maximum criteria. The predicted AUC from the LASSO regression cross-validation procedure was plotted as 
a function of log(λ). The y-axis indicates the predicted AUC. The lower x-axis indicates the log(λ). Numbers 
along the upper x-axis represent the average number of predictors. Red dots indicate the average predicted AUC 
for each model with a given λ, and vertical bars through the red dots show the upper and lower values of the 
predicted AUC. The vertical black lines define the optimal values of l, where the model provides its best fit to 
the data. An optimal λ value of 0.066 with log(λ) =  −2.72 was selected. (B) LASSO coefficient profiles of the 788 
texture features. The dotted vertical line was plotted at the value selected using fivefold cross-validation in A. The 
ten resulting features with nonzero coefficients are indicated in the plot. Plots (C) and (D) present the boxplots 
of the radiomics score in the training and validation sets, respectively. Plots (E) and (F) show the receiver 
operating characteristic (ROC) curves of the radiomics signature in the training and validation sets, respectively.
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avoid excessive medical treatment for patients. On the other hand, for malignant lesions, more active biopsy or 
surgical treatment will buy valuable time for the patient’s recovery and maximize the benefits.

Lung cancer is one of the leading causes of cancer-related death worldwide and poses a serious threat to public 
health because most early lung cancer patients are asymptomatic, and symptoms only appear in the advanced 
stage17. Therefore, most lung cancer patients have distant metastasis at the time of initial diagnosis, resulting in a 
poor prognosis of lung cancer and a low survival rate18. The main difficulty and bottleneck at present is the lack 
of highly sensitive and specific diagnostic methods for early-stage lung cancer19. Lung cancer screening trials 
have shown that early detection can improve long-term survival in patients. Additionally, imaging examination 
plays an irreplaceable role in lung cancer detection, diagnosis and efficacy evaluation. With the development 
and improvement in CT, MRI, PET/CT, radiomics, and artificial intelligence technologies, diagnostic meth-
ods for lung cancer based on morphological, functional and molecular characteristics have been established20. 
More advanced imaging examinations, such as PET/CT, show better early diagnostic capabilities21; however, 
CT techniques, especially low-dose CT (LDCT), are simple, widespread, rapid and efficient and are a common 
means of early screening, diagnosis and evaluation of lung cancer. In addition, LDCT had a 24% positive rate 
for detecting lung nodules, and lung cancer-specific mortality was reduced by 20%. Therefore, early diagnosis is 
important for prognosis and survival. However, 96% of these 24% positive results were false positives22. Clini-
cians are still unable to correctly distinguish benign and malignant lesions based on preoperative imaging data, 
which seriously affects the accuracy of subsequent clinical decisions23. In addition to early imaging screening, 
lung cancer-specific tumor markers play an important role in early diagnosis and have been widely accepted by 
doctors and patients. Currently, carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cytokeratin 
19 fragment (CYFRA21-1), pro-gastrin-releasing peptide (ProGRP) and squamous cell carcinoma (SCC) antigen 
are commonly used markers for the diagnosis of lung cancer24. However, the sensitivity and specificity of single 
tumor markers are low and can easily lead to a misdiagnosis. Although multi-index combined detection can 

Table 2.   Risk factors for malignant in lung nodule.

Variable and intercept

Univariate logistic regression
Multivariate logistic 
regression

β SE P β SE P

Radiomics signature 2.933 0.836 < 0.001 3.465 1.022 0.001

Age 0.053 0.031 0.087 0.123 0.068 0.069

Diameter − 0.066 0.046 0.149 NA NA NA

Mayo score 0.118 0.223 0.597 NA NA NA

Gender − 0.049 0.616 0.937 NA NA NA

Spicule sign 0.294 0.629 0.640 NA NA NA

Smoke 0.152 0.630 0.810 NA NA NA

Tumor history 16.161 1978.090 0.993 NA NA NA

Location 1.058 0.658 0.108 NA NA NA

Figure 3.   Waterfall plot for distribution of radiomics score and benign and malignant status of individual 
lesions. The radiomics score for each lesion in the study is shown here.
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Figure 4.   Radiomics nomogram for the prediction of benign and malignant early-stage SPNs. (A) A radiomics 
nomogram of the two predictors was constructed. (B) The AUC of 0.9433 (95% CI 0.8832–1) revealed good 
discrimination by the nomogram. (C) The AUC of the validation set was 0.8717 (95% CI 0.737–1). (D) The 
calibration curve and a nonsignificant Hosmer–Lemeshow test statistic (P = 0.9742) showed good calibration in 
the training set. (E) The Hosmer–Lemeshow test yielded a nonsignificant P value of 0.7410.
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improve the sensitivity and provide evidence for the early diagnosis of lung cancer, this method still requires 
further imaging confirmation.

Several predictive models (Mayo Clinic25, Veterans Association (VA)26, and Brock University27) using clini-
cal and radiological features have been developed that can help physicians to distinguish between benign and 
malignant nodules28. These predictive models only included clinical values and radiological characteristics from 

Figure 5.   Variable importance of each variable in the radiomics nomogram.

Figure 6.   DCA for the radiomics nomogram and the ROC analyses of all 116 patients. (A) The y-axis 
represents the net benefit. The red line represents the radiomics nomogram. The gray line represents the 
hypothesis that all patients were malignant. The black line represents the hypothesis that no patients were 
malignant. The x-axis represents the threshold probability. The threshold probability is where the expected 
benefit of treatment is equal to the expected benefit of avoiding treatment. For example, if the possibility of 
malignant in a patient is over the threshold probability, then a treatment strategy for malignant should be 
adopted. The decision curves in the validation set showed that no matter what the threshold probability is, 
using the radiomics nomogram to predict malignant obtain more benefit than treating either all or no patients. 
(B) Performance of nomogram, radiomics signature and mayo model on all 116 patients. Nomogram adopt 
radiomics signature and age achieves best predict performance.
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CT, and there were no differences among the three models in determining the probability of malignancy of 
pulmonary nodules29. According to our study, the Mayo model had poor predictive ability for identifying early 
pulmonary nodules, probably because early pulmonary nodules have no obvious CT imaging features, such as 
spicule signs, which affected the efficacy of the model.

Radiomics is defined as the quantification of the phenotypic features of a lesion from medical imaging. Simi-
larly, radiologists have already identified a relatively small number of qualitative visual physical characteristics 
to differentiate benign and malignant lesions and included in some predictive models such as the Mayo Clinic 
models25. The current challenge for radiomics is determining the most predictive features among thousands of 
potential phenotypic characteristics. Radiomics can be applied to lung cancer for the detection of lung cancer, 
prediction of malignancy, prediction of histology and subtype, prediction of prognosis, and assessment of treat-
ment effect30. Hawkins et al. studied 600 patients with lung nodules graded from I to IV and only extracted 219 
image features from LDCT11. Their radiomics classifier using random forests had an AUC of 0.87, which was 
equal to that of Paul’s convolutional neural network model31. Huang et al. included 186 lung nodules measuring 
less than 20 mm (a quarter were nonsolid lesions), extracted 1108 features, and used a random forest model that 
achieved an AUC of 0.9132. A support vector machine (SVM) model was used by Chen et al. in 72 patients, and 
only 4 features were selected to obtain an accuracy of 0.8433. Other models, such as the L1 regularized logistic 
regression model using only 94 radiomics features, obtained an AUC of 0.81 in the validation set without a reli-
able radiomics score formula13. In our study, we demonstrated that the LASSO logistic regression algorithm was 
a more effective model and that the second-order wavelet features were more suitable for identifying early-stage 
SPNs with LDCT. Among the 10 features we included, only one original shape feature, and the other 9 were 
wavelet features. By changing the ratio of high-frequency to low-frequency signal in images, we found that the 
wavelet transform increased the information of low-frequency signal, and extracted deeper and high-throughput 
features that is invisible to the naked eye. Other image transformations should also be considered in future 
research and would further improve our radiomics nomogram prediction capabilities. Our other advantage is 
that we did not distinguish between specific pathological types but developed a general recognition system for 
SPNs, which allows our model to be applied more extensively.

However, an important limitation that should be acknowledged in the current study is the relatively small 
sample size. With validation on more patients from multiple centers, it’s hopeful to improve the clinical applicabil-
ity of the model in the current study. In addition, with the development of radiomics, more graphic transforma-
tion methods and radiomics features will be discovered and applied for the diagnosis and prediction of diseases. 
Correspondingly, more efficient and suitable machine learning and deep learning algorithms will be continuously 
applied to this field, and radiomics can be applied in more areas than just tumor research.
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