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In order to help patients monitor their personal health in real time, this paper

proposes an intelligent mobile health monitoring system and establishes a

corresponding health network to track and process patients’ physical activity

and other health-related factors in real time. Performance was analyzed. The

experimental results show that after comparing the accuracy, delay time, error

range, e�ciency, and energy utilization of Im-HMS and existing UCD systems,

it is found that the accuracy of Im-HMS is mostly between 98 and 100%, while

the accuracy of UCD is mostly between 98 and 100%. Most of the systems are

between 91 and 97%; in terms of delay comparison, the delay of the Im-HMS

system is between 18 and 39ms, which is far lower than the lowest value of the

UCD system of 84ms, and the Im-HMS is significantly better than the existing

UCD system; the error range of Im-HMS is mainly between 0.2 and 1.4, while

the error range of UCD system is mainly between −2 and 14; and in terms of

e�ciency and energy utilization, Im-HMS values are higher than those of UCD

system. In general, the Im-HMS system proposed in this study is more accurate

than UCD system and has lower delay, smaller error, and higher e�ciency,

and energy utilization is more e�cient than UCD system, which is of great

significance for mobile health monitoring in practical applications.

KEYWORDS

health monitoring system, physical activity, cloud computing, Bayesian network,
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Introduction to physical activity monitoring

Numerous studies have shown that multi-channel environmental monitoring

systems can be used to observe human physical activity, thereby assisting and analyzing

individual healthcare functions (1). Creating and implementing a precise interconnected

medical infrastructure can predict individual health problems using the rapid medical

system in psychiatric emergency services (PES) (2, 3). The medical field can integrate

medical innovation, artificial learning, smart IoT, and other advanced future technologies

to facilitate the creation of wearable Internet of things (IoT) asmedical devices (4–6). The

system detects the physical signs of an individual’s body and notifies doctors as early as

possible in the event of a serious illness. The computer includes wireless chips for data

collection, battery energy recovery, and data management levels (7).
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Existing applications in the smart healthcare industry are

run to monitor physical activity in a multi-access physical

control system in a cloud network (8). Cloud computing

technology (CCT) facilitates the transmission of health

information collected and analyzed by IoT devices through the

Internet through different deep learning architectures, machine

learning and convolutional neural networks, implemented in the

cloud (9, 10). The current era of multi-access visual surveillance

schemes has seen a huge boom in physical surveillance (11),

which lists the main issues for this generation of investigators in

qualifying situations and data processing:

• Big data collection can be streamed. The continuous

production of large cloud-based datasets results in massive

data collection. Heterogeneous datasets (12) have more

potential errors.

• Incorrect timing relationships of IoT devices can lead to

noisy data, failures, incorrect data transmission to physical

surveillance networks with multiple access rights, and higher-

cost and higher-capacity system bottlenecks (13, 14).

These features increase the complexity of wearable IoT

devices, with fluctuations in computational variables such as

latency, accuracy, performance, standard error, and more power

consumption (15). This inconsistent user response between

cloud and IoT leads to network problems with a large number

of I/O issues to provide stable health information for physical

monitoring systems with multiple access rights (16). Current

IoT approaches have less reaction time because of interrupted

and discrete data transmission, with long gaps in information

gathering (17, 18).

This approach can be a more comprehensive and promising

solution to the current challenges of the multi-layered physical

observation and fitness monitoring market in personal physical

activity. Contributions to this article are as follows:

• A new network of neutral, streamlined, tightly interconnected

layers for determining healthy imbalances in heat,

• A Bayesian machine learning system embedded in a

wearable IoT smart data analysis patch for predicting

organ dysfunction,

• A complete physical monitoring infrastructure using cloud

technology, interactive technology, real-time analysis of IoT

information using evolutionary training,

• An optimized model for classification of different human

physical activity recognition using Bayesian neural

cloud technology.

Based on this, this paper designs and implements an intelligent

mobile health monitoring system (Im-HMS) after investigating

the background and literature about physical activitymonitoring

systems and analyzes and evaluates its performance, aiming to

improve the performance of mobile health monitoring systems

through mobile health networks to monitor human physical

activity in real time, thereby reducing health risks (19, 20).

The innovation of the research lies in the combination of

cloud computing, the Internet of things, artificial intelligence,

etc., and creatively designed a breakthrough mobile health

network, so as to monitor the health of patients in real time and

provide important information for patients to pay attention to

their own health and reduce the risk of pathology tool.

Background of physical activity
monitoring system

Edge and cloud technologies are the best tools for analyzing

data sources in different healthcare systems (21). Mobile

cloud computing is often used as the state of the art in

the modern practice of physical surveillance devices with

multiple access rights. Although these techniques are touted

for their encouraging performance, the latency and accuracy

of transferring large health datasets across the system are

significant for these techniques (22). In terms of efficiency

and energy usage, the use of neural network statistical

computations when analyzing health datasets does not yield

efficient performance. Clinical research on external multi-

access control technologies is significant, mainly focusing on

reducing people’s health risks (23). Some findings suggest that

telemedicine services can be used anywhere, but data-driven

approaches are being used to diagnose already multifaceted

anatomical improvements (24).

This method can achieve a reliability rate of 82%,

making it unsuitable for individual health studies with higher

precision and difficulty (25). A group of academics from

Columbia University used recurrent network approximation

and convolutional neural architecture (CNA) to study the body

motion and heart rhythm of individuals, and they achieved

excellent performance (26). Intensive data analysis (IDA) has

recently been used to include local critical health monitoring

with greater power and significant error rates.

Mobile health (m-Health) initiatives, including text

messaging, have been successful in improving blood sugar

management for heart disease and regular physical activity

(27). Poorer people, such as those with low incomes, diabetes,

and depression, who are geographically and culturally diverse,

have additional barriers to daily physical activity. With the

development of mobile health strategies targeting depressive

symptoms, understanding the needs and barriers to increased

physical activity among disadvantaged groups is critical for

greater end-client engagement (28, 29).

In several recent surveys, with regard to lower information

technology and health status, smartphone ownership in

this population has shown an increased level (93%) (30).

Despite the effective development of online interventions

to improve physical activity in a variety of clients, there

has been little publicity about the developmental process

of initiatives such as the introduction or use of clinical
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practice. It shows that it is not satisfactory to include the

end user’s needs before the developmental process. Successful

approaches combine information adaptation to provide tailored

intervention procedures and direct input from various end

clients (31).

It uses user-centered decoding (UCD) to propose content

and interaction requirements in designing text-based physical

activity interaction, diabetes, and mental health response

alert monitoring and assessment experiments to recognize

the importance of including consumers in the early stages

of developmental sexual process. The program attempts to

use an interface to gather steps and a framework to teach

people to customize information so that clients with diabetes

and anxiety disorders can increase physical activity (32,

33).

The theoretical structure of UCD consists of an established

method of centrally interpreting the identity of the end

user (the patient) in order to make m-Health treatments

relevant and usable to the target group (34). This paper

recognizes common challenges and enables France and Italy

to talk about obesity, comorbid anxiety, and physical activity

reduction through text messages and physical activity (35,

36).

In recent years, condition-based monitoring (CBM) has

been used to rapidly identify defects and other suspicious

behaviors in the body to track different signals of the human

body in multi-access physical monitoring systems. It does not

contain details of human wellbeing due to excessively strong

binding (37). Due to the dynamic nature of this method, it is

not suitable for diagnosis (38). One of the potential solutions

to the multi-access physical tracking device problem is the

advancement of artificial learning models and regressions for

classifying health data sources or physical activity content (39).

A fully automated mobile health intervention with tracking

and texting components increases physical activity (40). SMS

intervention can help people make changes in behavior such

as exercise, but little is known about how this intervention

works and what factors affect people’s responses (41). At

the same time, certain attractive landscapes and facilities can

enable children to increase physical activity on campus (42,

43).

Through the research of domestic and foreign scholars, it

can be found that IoT technology has been implemented and

combined with wearable IoT devices to analyze human pain

through optical surface electromyography. Based on this, the

reliability of the preparation conditions can be reduced by the

method outlined in this paper, and at the same time, the smart

plug-and-play system IoT solves the problem of energy usage.

Therefore, it is of practical significance to study the automatic

tracking problem in the intelligent detection system in this

paper (44).

Proposed intelligent mobile health
monitoring system

As one of the key application areas of pervasive computing

is effective health management, more advancements are

needed in mobile technology in healthcare. This integration

improves communication between patients, physicians, and

other healthcare professionals. It allows accurate medical

information to be transmitted from any location via mobile

devices. Advances in sensors, low-power integrated circuits,

and wireless networks have made it possible to build low-cost,

tiny, lightweight, and intelligent biosensor nodes. This section

discusses an intelligent mobile health monitoring system (Im-

HMS), which uses biomedical and environmental data collected

by deployed sensors to provide medical input to patients via

mobile devices.

Figure 1 shows the architecture of the proposed intelligent

mobile health monitoring system (Im-HMS). IoT sensors

monitor the user’s physical activity and send it to a cloud

computing database, and the Fitbit patch also tracks the user’s

heartbeat. It is sent to the mobile device when the system

is logged in; based on the IoT sensor information and the

intelligent log system, the m-Health information is sent to the

health coach system for detailed analysis of complex issues;

otherwise, the automated system will send SMS to the user.

Cloud computing uses a hybrid cloud and network framework

to solve large-scale physical dataset management challenges.

Health-related data collection can be stored on an edge

computing network consisting of a layer of specific IoT sensor

monitoring units, the edge, and an intelligent logging system

that intelligently processes IoT data using human cognitive

systems. Edge networks for accurate diagnosis and prediction

of body trends have been combined with multiple sensors such

as blood, heat, EMG, ECG, EEG, pressure, vision, respiration,

accelerometers, and cluster heads.

Advanced computing technology captures data where

information is required using decentralized devices. This

wearable smart logging board with an IoT monitor in a

cloud computing environment provides reliable and practical

information about an individual’s physical movements for

physical observation of children and adults in a multi-access

physical monitoring system. Behind the scenes, the tracked

information is analyzed in two different ways:

• Diagnostic specialist,

• Online cloud backup.

Early detection of organ dysfunction is more nuanced and

takes longer to report. It has been done with edge frames. It

uses intelligent gateways, computing units, and powerful remote

network resources and is more suitable for physical surveillance
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FIGURE 1

The architecture of the proposed intelligent m-Health monitoring system (Im-HMS).

of individuals through multi-access tracking devices. A mobile

wearable mat with IoT sensors communicates large datasets with

the framework via local networks including Wi-Fi and NFC.

In this technique, a Bayesian learning network is used to

accurately track the physical movements of individuals in a

decentralized system at the edge of the computing world. The

first process of the service is to assess and isolate characteristics

or patterns of healthcare information sets. The processed

normalized dataset minimizes data accessibility and duplication.

The framework includes a layer of data, polyphase or hidden

units, and an input module.

These frameworks are built into Bayesian networks, where

matrices consist of different IoT databases represented in the

form of inputs that are converted numerically into vectors.

Each level has the same connection to the cross-level defined as

linear regression. This regression is analogous to the fluctuations

of a small part of the human mind. The values obtained

from this normalization operation are “mean (µ) and standard

deviation (µ).”

Case: 1 mean= 0, mean deviation= 1

The smart log patch for wearable sensors displays a network

entry y =
{

y1, y2, y3, · · · , yi
}

, where the i = {1, 2, · · · ,N}input

level is analyzed through the IoT device’s full Nrange of

data sources and transferred to a filter layer to reduce noise

by evaluating the input matrix number. There are some

depolarization and repolarization trends in the data source, in

which Ni are analyzed using mean and default values, as shown

in Equation (1),

Ni =
yi− ȳi

σ
, f (Ni) =

{

Ni, i < N

Ni, else
(1)

where Nirepresents the standardized input dataset used in the

machine learning framework. f (x) varies in a different range

from 0 to N. yi represents the input to the system, and

the average value of the input is denoted as ȳi. The standard

deviation of the input is expressed as σ , and the study uses

gradient descent to make the same update of the parameters.

Figure 2 shows a graphical representation of the ECG signal.

It facilitates extraction of electrocardiogram (ECG) traces, which

include Patrial hyperpolarization waves, denoted as T, and

ventricular hyperpolarization waves, denoted as. During this

procedure, the structure of the brachial plexus (U) is often

ignored as it is not usually shown. The four objects are evaluated

for accuracy from source to target through a Bayesian network.

In the form of null and large logic, the mean ( ȳi) and standard

deviation ( σ ) are represented by Equations (2) and (3),

respectively. It is worth noting that in order not to ignore some

important indicators and reduce errors, which will affect the

results of data analysis, the study here normalizes the mean and

standard deviation.
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FIGURE 2

Illustration of ECG signal.

ȳi =

∑N
i=0 yi

N
f (Ni) (2)

σ =

√

yi − ȳi

N − 1
(3)

Equations (2) and (3) support the data definition and

normalization spectrum from the extracted feature layer analysis

of all health data sources. Nirepresents a collection of inputs

accessed during the learning process. f (x) varies from 0 to N,

which is a function of the input. yiis the output of the first

stage of the framework, and the average is reported as ȳi. The

normalized deviation value is given as σ .

Case: Intelligent log device routing and data collection

Figure 3 shows the system model of the proposed intelligent

mobile health monitoring system (Im-HMS). It contains three

layers, namely, input layer, output layer, and hidden layer. In

the input layer, on the one hand, the output to the hidden layer

is crossed with each other, and on the other hand, the input

and output layers are merged, wherein the amplifier, cache, and

static random access memory (SRAM) setting unit are IoT data

processing structures. It is used to control the output data by

using data selection, “multiplexer” method, and data collection

detectors as different sensors to keep equipment archives. Both

P-MOS and N-MOS have three modes including adaptive, sleep,

and snooze. In this case, summary statistics and F (IG)data

benefit ratios were analyzed using large health datasets. The

income is shown in Equation (4):

F (IG) = IGi −

Ni
∑

i=1

NI
(

yi
)

NI
F (IGi) (4)

where
Ni
∑

i=1

NI(yi)
NI means that the specific NI number varies

between 1 and NIa iset of data and F(IG) represents the data

benefit ratio, which is analyzed using a large health dataset. The

information of the smart sensor is computed on the hidden unit

using wear values that depend on different iteration stages, and

the filtering layer helps to denoise and average the marginal

error. To determine the estimation accuracy of the sensor results,

the time-out ratio was calculated using the gain ratio (GR),

which is the ratio of and its log variables logh (i) shown in

Equation (5).

GR =
F (IG)

∑Ni
i=1 h (i) logh (i)

(5)

where h (i) is the parts of the hidden layer and filter layer

database ivs. i = {1, 2, · · · ,N}, and time-varying ratios

were calculated using the gain ratios (GRs), which are the

ratios of and their log variables logh (i). Proxy and level of

developmental mode I device routing logic multiplication are

shown in Equations (6) and (7).

H(L)N = µ1
(

y1
)

∨ µ2
(

y2
)

∨ · · ·µ3
(

y3
)

∨ µN
(

yi
)

(6)

H(L)N = µ1
(

y1
)

∗ µ2
(

y2
)

∗ · · ·µ3
(

y3
)

∗ µN
(

yi
)

(7)

where is the minimal logical process. The ∨ filter function is

expressed as µi
(

yi
)

, and ivaries from i = {1, 2, · · · ,N}. In the

IoT architecture, the datamanagement nature of the transition is

used and done with a tri-mode shutter that retains information

during the snooze phase. The three-mode switch is built on

unique low-power IoT architectural approaches such as data

retention power limiters, multiple pause stages, and on-chip

acceleration for dynamic power.

Case: 3 systems programming for Bayesian learning

It implements agile learning because it creates a balance

between the information recorded in terms of difficulty or

distraction and the consistency of the extracted feature layers.

That is because, especially in real-world environments, detecting

multi-access physical monitoring applications’ health data on

cutting-edge systems and large databases is more complex. Data

are normalized to prevent transmission and accumulation of

data, as shown in Equations (8) and (9):

Kt = yk − Fȳk (8)

DN =
F

(

Kt
)

√

var
(

yk − Fȳk
)

(9)

yk − Fȳk is the variance between the kth input measurement

and the standard data source. DN is the sample variance ratio

of the kth-level database. varies in a different range from 0

to N. It is mainly used to minimize the unintended noise
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FIGURE 3

Systematic model of the proposed intelligent m-Health monitoring system (Im-HMS).

floor of smart logging devices due to external frequencies. The

computational difficulty of smart log patches is minimized by

adaptive triggering of training layers. The key elements of the

neural classifier are represented by Equations (10)–(13):

xk = ∝kyk − βkY (10)

∝kyk = NR1 (11)

βkY = NR2 (12)

xk = NR1 − NR2 (13)

where NR1 − NR2 is the disturbance factor generated by ∝kyk

and βkY , in which ∝kyk and βkY are the input variables

of the agility training linear kernel function. They can have

a noiseless computing system xk (in this trigger function, a

probability distribution factor from the source layer to the target

layer is added, improving the prediction accuracy by preserving

the bad switching activity inside the network throughout the

operation of the smart log board, and contributes to energy

saving). TheGaussian finite activationmechanism is represented

by Equations (14) and (15):

F
(

g, h|ϕ
)

=

N
∑

i=1

vn − hn

var
(

σ 2
i

) −

k
∑

i=1

Wn ∗ hn

σ 2
i

∗

N
∑

i=1

vn
1
σ 2
i

−

N
∑

i=1

vn

σ 2
i

(14)

F
(

g, h|ϕ
)

=

N
∑

i=1

vn − hn

var
(

σ 2
i

) −

k
∑

i=1

Wn ∗ hn

σi
vn

−

N
∑

i=1

vn

σ 2
i

(15)

where F
(

g, h|ϕ
)

is a finite function of the Gaussian stimulus;

vn is the apparent receptor; hn is the invisible receptor; σi is

the standard error which is a finite function of the logarithmic

stimulus; and Wn is the neuron weight. Information difficulty

with a time factor in minutes is calculated using machine

learning methods in the scalable training of neural networks
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n/m. Here, y is an overall data database of fixed length and time

information T estimate a given input, y, which n/m can reduce

the difficulty if it raises platform constraints T.

The Im-HMS framework is designed on an accessible,

service-oriented infrastructure using portable sensor technology

and a web application programming interface (API) to allow

service users and cardiac rehabilitation (CR) professionals to

messaging for accurate data interaction—in real time. The

following is a detailed description of the key elements and overall

design of the Im-HMS framework.

Architecture design

Im-HMS consists of (a) a wireless Fitbit heart rate

monitoring device, (b) an Android, iOS, or macOS device, (c)

a mobile computer and cloud-based portal Fitbit, (d) an online

therapy platform, and (e) instant messaging via SMS. Fitbit was

selected for its wearable activity monitoring system because it is

very popular, effective, affordable, and user-friendly. Fitbit is the

leading device in the wireless health and wellness market and has

historically been the top economy in the United Nations.

In various validation trials, Fitbit’s activity monitor has

been accurately checked during exercise, screen time, rest, and

pulse rate measurements. Their effectiveness, availability, and

appropriateness have been demonstrated in several intervention

trials affecting various populations and age categories, including

coronary heart disease (CHD) patients participating in CR

services. Smart devices have been seen as the ideal medium

for connectivity. Mobile Internet access enables remote control

of intense fitness and fitness trainers in nearly every area via

text message.

Fitbit Galaxy Gear, Surge 2, and Spike use 3D and heart

rate HR optical activity trackers to record sedentary time,

sleep time in hours, and calorie intake, including strength-

related minutes. Although Im-HMS is flexible and can capture

user activity from other systems, compared with other activity

metrics, Im-HMS is beneficial for tracking individuals with

CHD, resulting in more accurate measurements of sustained HR

and caloric expenditure.

Fitbit gadgets integrate with the Fitbit smartphone app

via Bluetooth Low Energy (BLE) network technology, allowing

users to identify a view of their daily metrics by wirelessly

importing operational data into the app. Fitbit’s smartphone app

offers a range of capabilities and changing resources, including

orientation, automatic monitoring of activity habits and goals

(physical activity (PA), fitness, and screen time), success reviews,

inspiration/questions, social security, bonuses, and more.

Synced data are immediately forwarded from the Fitbit

smartphone app to the Fitbit cloud server every 15–25min

or when the app is accessible to individual users. When CR

respondents upload information from their Fitbit device to the

server, the Im-HMS database is immediately notified via Fitbit’s

registration API. It enables Im-HMS to obtain current data

on respondents without implementing sampling or planning

schemes. Im-HMS starts some API calls to get real information

from Fitbit cloud storage service and saves them securely in its

repository (motion, active time, workout, heart, and sleep).

Figure 4 shows the cloud interface of the proposed

intelligent mobile health monitoring system (Im-HMS). Im-

HMS’s medical framework (screen) is an applicable web-based

password and gateway. The Im-HMS platform provides a user-

friendly interface where CR professionals monitor the activity

details of each client and send motivational text messages to

mobile phones via SMS to increase PA and reduce sedentary

behavior. The text messaging platform comes with a therapy

dashboard that uses the Twilio API to deliver texts and emails

to clients with recorded CRs. Twilio is a cloud-based messaging

network that allows application programmers to dynamically

transmit text messages through its web services API. Text

messages submitted from the Im-HMS can be repeated (e.g.,

daily) or sent to one or even multiple respondents at a specified

date and time.

Regular exercise and activity remote

Themain elements of a CR systemmust assess daily activities

and health status and other significant risks. The latest Fitbit

fitness tracker captures body and HR pace, length, and strength

in real time. They realized the rapid detection and recording

of sustained high-activity movement and enhanced fitness, such

as walking, running, or cycling, through a revolutionary feature

called “SmartTrack.”

Im-HMS collects time-series information related to PA

and HR from the Fitbook cloud platform in proximity and

visualization tools that provide meaningful, interactive views

of the data to aid in effective remote control and provide CR

patients and each location setting goals. Using the calendar

feature, CR professionals can display minutes and HR details

for each client, including totals measured, intensity-rated PA

minutes, and calories burned.

Compared with intraday information, Im-HMS facilitates

monitoring and visualization of PA data over long periods of

time. In terms of physical activity and exercise, CR professionals

can select a date set to see each individual’s improvements and

patterns over time. These steps are complemented by a map

showing the Fitbit’s current wearing period. Im-HMS uses new

technology to use Fitbit’s heart rate monitor to correctly measure

the cumulative minutes each person uses on any given day.

This calculation of device wear time serves the following

three functions: (a) if the Fitbit device is not in use, automatically

send a text message to the customer, (b) assess whether the

Fitbit user’s decline in exercise is due to an improvement in PA

behavior, and (c) collect information to organize time without
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FIGURE 4

Cloud interface of the proposed intelligent mobile health monitoring system (Im-HMS).

sufficient data. The framework is designed for automatic text

message transmission and sequencing.

Remote time and behavior reporting

Numerous observational trials and meta-analyses have

shown that coronary-specific and total mortality are associated

with physical inactivity. Sedentary behavior was associated with

any sleep behavior marked by energy expenditure in a sitting or

resting position. The adverse effects of prolonged sitting have

been reduced. Im-HMS uses software to (a) record and visualize

each person’s screen behavior and (b) automatically send

personalized text message alerts when inactivity is determined

to enable customers to reduce their physical activity behavior.

Adjust SMS operation

Cell phone texting is a useful weapon for changing behavior

because it is readily available, inexpensive, and easy to use.

Extensive literature spanning years of research shows the

beneficial effects of texting on health status and behavior.

TABLE 1 Simulation parameters of intelligent mobile health

monitoring system (Im-HMS).

Parameter Value

Power 0.9 V

Chip size 6 mm

Clock frequency 100 MHz

Input–output port 16

Sensors 14

Texting should be used frequently to foster PA and other positive

habits in CHD patients by providing elements of instruction,

prevention, and self-digestion based on behavioral theoretical

frameworks and techniques.

Im-HMS is designed to help create, tag, store, and distribute

user and community text messages. CR professionals can use

Im-HMS to develop and use the identification and labeling

resources in the framework for easy access and recovery in

a practical way. Arriving Fitbit results and each individual’s

progress can be adjusted based on the nature of the text message.

Text can be delivered immediately, repeatedly, or at a scheduled

time stamp. In addition, Im-HMS encourages the receipt of
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FIGURE 5

Accuracy comparison between Im-HMS system and UCD system. (A) Accuracy analysis of the proposed Intelligent m-Health monitoring system

(Im-HMS). (B) Accuracy analysis of the existing UCD system.

texts from CR patients to enable a two-way connection between

patients and clinicians.

Software analysis and performance
evaluation

In this paper, different health databases are linked by placing

a smart wearable scoreboard to assess the different behaviors

of neurons throughout the body. It supports monitoring of

human cognitive processes through palm and heel pressure,

visible gyroscopes, breathing gyroscopes, and EMG, ECG,

and EEG.

Table 1 shows the simulation parameters of the proposed

intelligent mobile health monitoring system (Im-HMS): IoT

device power supply 0.9 V, chip size 6mm, clock frequency

100 MHz, 16 ports, and 14 sensors, using Bluetooth and

Wi-Fi technology.
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TABLE 2 Latency analysis of the proposed intelligent mobile health

monitoring system (Im-HMS).

Transmission range (%) Im-HMS(ms) UCD (ms)

10 39 88

20 37 89

30 32 91

40 29 92

50 27 89

60 24 86

70 23 84

80 21 88

90 19 90

100 18 92

Figures 5A,B shows the accuracy analysis of the proposed

intelligent mobile health monitoring system (Im-HMS) and the

existing UCD system, respectively. A total of 14 sensors were

considered for simulation analysis. The accuracy of the proposed

intelligent mobile health monitoring system (Im-HMS) and

existing systems is analyzed and plotted in the figure. The results

show that, among all 14 IoT devices, the accuracy of Im-HMS

is in the range of 91–100% overall, most of them being in the

range of 98–100%, while the overall accuracy of the UCD system

is in the range of 83–97%, most of them being between 91 and

97%, so the accuracy of the intelligent mobile health monitoring

system (Im-HMS) proposed in this paper is higher than that of

the existing UCD system.

Table 2 shows the latency analysis of the proposed intelligent

mobile health monitoring system (Im-HMS). The transmission

of IoT devices ranges from a minimum of 10–100% for

simulation analysis. The end-to-end latencies of the proposed

system and the existing UCD system are calculated and given in

the table. The results show that the proposed intelligent mobile

health monitoring system (Im-HMS) has the lowest end-to-end

latency among all IoT devices compared with existing systems.

Figures 6A,B shows the error range analysis of the existing

UCD system and the proposed intelligent mobile health

monitoring system (Im-HMS), respectively. In Figure 6A, the

mu value is set to 5.30714 and the sigma value is 2.12511; in

Figure 6B, the mu value is set to 0.79286 and the sigma value

is 0.1872. The error bounds of the proposed intelligent mobile

health monitoring system (Im-HMS) and measured against

existing systems are shown in the figure. As can be seen from

the figure, the error range of Im-HMS is between 0.2 and 1.4,

while that of UCD system is between −2 and 14. The Im-HMS

system has significantly smaller error than UCD system, and

its output shows that the proposed intelligent mobile health

monitoring system (Im-HMS) has the lowest error among all

sensor nodes. The mean and deviation values of the system are

shown in the figure.

TABLE 3 E�ciency analysis of the proposed intelligent mobile health

monitoring system (Im-HMS).

IoT sensor Im-HMS (%) UCD (%)

1 91 88.7

2 97.2 89.2

3 97.4 91.3

4 97.8 92.7

5 98.1 93.2

6 98.3 93.8

7 98.5 94.1

8 98.6 94.8

9 98.7 95.1

10 98.8 95.6

11 98.9 95.8

12 99.1 96.1

13 99.2 96.3

14 99.3 96.4

Table 3 shows the efficiency analysis of the proposed

intelligent mobile health monitoring system (Im-HMS). The

efficiency of the system is calculated as the ratio of output to

input. The efficiency of the proposed framework and existing

models is evaluated and given in the table. This finding shows

that the proposed intelligent mobile health monitoring system

(Im-HMS) has the highest efficiency among all sensor nodes.

Figures 7A,B shows the energy utilization analysis of

the existing system and the proposed intelligent mobile

health monitoring system (Im-HMS), respectively. The energy

utilization of each IoT device of the proposed intelligent mobile

health monitoring system (Im-HMS) and existing systems is

calculated. The results show that the system has the lowest

energy consumption compared with existing UCD systems in

IoT devices. The proposed system consumes 64% of the existing

system’s energy to monitor users.

The proposed intelligent mobile health monitoring system

(Im-HMS) is designed and implemented. Simulation results

such as accuracy, efficiency, energy utilization, end-to-end

latency, and margin of error are analyzed. The results show

that the proposed intelligent mobile health monitoring system

(Im-HMS) outperforms existing UCD systems in all scenarios.

Conclusion and findings

This paper presents key aspects and capabilities of the

intelligent mobile health monitoring system (Im-HMS)—a

breakthrough mobile health network that supports mobile and

Fitbit technologies for digital exercise tracking and health

training in CR customers. CR is an interdisciplinary lifestyle

procedure with reliable data showing changes in several health
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FIGURE 6

Error comparison between Im-HMS system and UCD system. (A) Error range analysis of the existing UCD system. (B) Error range analysis of the

proposed Intelligent m-Health monitoring system (Im-HMS).

outcomes. Im-HMS ensures routine CR-based services by

increasing patient participation and performance on non-CR

days. It establishes an alternative delivery model for CHD clients

who are unable to join the center-based CR service to satisfy

and motivate them. Im-HMS effectively integrates complex

wearable and smartphone technologies in an economical and

cost-effective manner by providing group therapy for real-time

remote control, direct review, patient ownership, and more

CHD autonomy. The general Im-HMS system definition can

be transferred to other chronic diseases and diseases, obesity,
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FIGURE 7

Comparative analysis of energy utilization between Im-HMS system and UCD system. (A) Energy utilization analysis of the existing UCD system.

(B) Energy utilization analysis of the proposed Intelligent m-Health monitoring system (Im-HMS).

asthma, and severe respiratory obstruction. This paper analyzes

the performance of the proposed Im-HMS system and compares

it with the UCD system in terms of accuracy, delay time,

error range, efficiency, and energy utilization. The experimental

results show that its performance is superior to that of the

UCD system. The Im-HMS system proposed in this paper is

of great significance for patient health monitoring in practical

applications. It is worth noting that the model proposed in this

paper still has shortcomings, and the model can be improved in

future by integrating the advantages of deep learning technology

in health monitoring.
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