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Background: To develop machine learning classifiers at admission for predicting which patients with 
coronavirus disease 2019 (COVID-19) who will progress to critical illness. 
Methods: A total of 158 patients with laboratory-confirmed COVID-19 admitted to three designated 
hospitals between December 31, 2019 and March 31, 2020 were retrospectively collected. 27 clinical 
and laboratory variables of COVID-19 patients were collected from the medical records. A total of 201 
quantitative CT features of COVID-19 pneumonia were extracted by using an artificial intelligence software. 
The critically ill cases were defined according to the COVID-19 guidelines. The least absolute shrinkage 
and selection operator (LASSO) logistic regression was used to select the predictors of critical illness from 
clinical and radiological features, respectively. Accordingly, we developed clinical and radiological models 
using the following machine learning classifiers, including naive bayes (NB), linear regression (LR), random 
forest (RF), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), K-nearest neighbor 
(KNN), kernel support vector machine (k-SVM), and back propagation neural networks (BPNN). The 
combined model incorporating the selected clinical and radiological factors was also developed using the 
eight above-mentioned classifiers. The predictive efficiency of the models is validated using a 5-fold cross-
validation method. The performance of the models was compared by the area under the receiver operating 
characteristic curve (AUC). 
Results: The mean age of all patients was 58.9±13.9 years and 89 (56.3%) were males. 35 (22.2%) patients 
deteriorated to critical illness. After LASSO analysis, four clinical features including lymphocyte percentage, 
lactic dehydrogenase, neutrophil count, and D-dimer and four quantitative CT features were selected. 
The XGBoost-based clinical model yielded the highest AUC of 0.960 [95% confidence interval (CI): 
0.913–1.000)]. The XGBoost-based radiological model achieved an AUC of 0.890 (95% CI: 0.757–1.000). 
However, the predictive efficacy of XGBoost-based combined model was very close to that of the XGBoost-
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Introduction

The emergence and rapid spread of coronavirus disease 
2019 (COVID-19) caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) as a potentially 
fatal disease is a major and urgent threat to global health. 
As of July 24, 2020, there are more than 15.64 million 
confirmed cases by World Health Organization (WHO) 
with 636,384 deaths. The clinical spectrum of COVID-19 
pneumonia ranges from mild to critically ill. Most patients 
of COVID-19 had mild acute respiratory infection 
symptoms, such as fever, dry cough, and fatigue, but some 
could rapidly develop fatal complications, including acute 
respiratory distress syndrome (ARDS) or respiratory failure, 
multiple organ dysfunction or failure, septic shock or even  
death (1).  Until  now, no specific treatments were 
recommended for COVID-19 except for meticulous 
supportive care (2); thus, early identification of patients with 
a high-risk of progression to critical illness may facilitate 
the provision of proper supportive treatment in advance and 
reduce mortality. 

Some attempts have been made to develop forewarning 
models by taking into account possible prognostic 
biomarkers to predict poor outcomes in patients with 
COVID-19. Ji et al. established a clinical nomogram 
to predict progression risk in COVID-19 (3). Liu et al. 
identified patients at elevated risk of severe illness according 
to quantitative computed tomography (CT) features 
of pneumonia lesions in the early days (4). Liang et al. 
developed a clinical score consisting of 10 clinical variables 
at hospital admission for predicting which patients with 
COVID-19 will develop critical illness (5). Yan et al. 
developed a clinical model based on lactic dehydrogenase 
(LDH), lymphocyte and high-sensitivity C-reactive protein 
(hs-CRP) that can predict the mortality rates of COVID-19 
patients >10 days in advance with >90% accuracy (6). 
Dong et al. developed a scoring system based on D-dimer, 
lymphocyte, and erythrocyte sedimentation rate to predict 

the severity of patients with COVID-19 (7). Wang et al. 
constructed clinical-laboratory model to predict in-hospital 
mortality of COVID-19 patients (8). However, the role of 
quantitative CT features has not been fully investigated and 
the majority of these studies follow the standard scientific 
methods, such as Cox regression and binary logistic 
regression analysis. While undeniably successful, these 
standard methods might have inherent limitations. 

Machine learning is broadly defined as a body of 
computational methods/models that use patterns in data to 
improve performance or make accurate predictions (9). It 
provides a powerful set of tools to unravel the relationship 
between the variables and outcomes, particularly when 
data are nonlinear and complex (10). It is best applied 
when there are lots of variables and overfitting can be 
a problem for traditional statistical methods (10). The 
profusion of data requires machine learning to improve 
and accelerate the management of COVID-19 (11). Recent 
studies have identified the ability of machine learning and 
artificial intelligence (AI) using CT findings or radiomic/
deep learning features extracted from CT images to detect, 
triage, and assess the severity and prognosis of COVID-19 
patients (12-23). The machine learning models might serve 
to augment human diagnostic performance and show great 
potentials for assisting decision-making in the management 
of COVID-19 patients by assessing disease severity and 
predicting clinical outcomes. 

Considering the machine learning method is purely 
data-driven, it is essential to compare multiple models for 
optimal prediction of a specific task (24). Therefore, the 
primary aims of this study are to compare the performance 
of multiple machine learning models based on clinical, 
laboratory, and radiological data for predicting critical 
illness in patients with COVID-19 pneumonia. Early 
detection of patients who are likely to develop critical 
illness is of great importance in the clinical settings, which 
may help clinicians to better choose treatment strategy and 

based clinical model, with an AUC of 0.955 (95% CI: 0.906–1.000). 
Conclusions: A XGBoost-based based clinical model on admission might be used as an effective tool to 
identify patients at high risk of critical illness. 
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improve the use of limited resources. 
We present the following article in accordance with the 

STROBE reporting checklist (available at http://dx.doi.
org/10.21037/jtd-20-2580).

Methods

Data sources

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the institutional review Board of the First Affiliated 
Hospital of Guangzhou Medical University (approval 
number: 202056); the need for informed consent was waived 
due to the retrospective nature of the study. The reporting 
follows the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) checklist (25). We 
included laboratory-confirmed hospitalized cases with 
COVID-19 admitted to three designated hospitals (Huangpi 
District Hospital of Traditional Chinese Medicine, Hankou 
Hospital of Wuhan, and The First Affiliated Hospital 
of Guangzhou Medical University) for COVID-19 
treatment between December 31, 2019 and March 31, 
2020. COVID-19 cases were confirmed by real-time 
reverse transcription-polymerase chain reaction (RT-PCR) 
assay of nasal and pharyngeal swab specimens (at least two 

samples were taken, at least 24 hours apart) for COVID-19 
according to the protocol established by the WHO. Patients 
aged <18 years or patients with no available clinical/CT 
records or patients were critically ill on admission were 
excluded. Finally, 158 patients with COVID-19 were 
included, 123 (77.8%) were non-critical and 35 (22.2%) 
were critical cases. On admission, clinical data including 
age, sex, and comorbidities of patients were collected. The 
laboratory parameters, mainly including routine blood 
tests, coagulation profile, liver and renal function, and 
myocardial enzyme were examined at admission. The data 
in source documents were confirmed independently by two 
researchers. Figure 1 illustrates the workflow of this study. 

CT image acquisition

All patients underwent chest CT scans by a 64-slice 
CT scanner (Siemens Definition AS + 128, Forchheim, 
Germany). Each patient was scanned from the lung 
apex to the diaphragm during a breath-hold at the end 
full inspiration and at end normal-expiration. To reduce 
breathing artifacts, patients were instructed on breath-
holding. No contrast agent was administered. CT acquisition 
was executed as follows: tube voltage, 120 Kilovolt (kV); tube 
current, auto milliampere second (mAs); pitch, 1.2; Rotation 

clinical and laboratory
data collection CT image acquisition feature selection

Al-based quantitative CT analysis
machine learning model

development

clinical model

radiological
model

combined 
model

performance evaluation

ROC analysis

LASSO regression

eight machine learning classifiers:
NB,LR,RF,XGBoost,AdaBoost, KNN, k-SVM, and BPNN

1 2

3

4

5

Figure 1 The framework of predicting progression to critical illness in COVID-19 patients. The workflow mainly consists of five  
steps: (1) clinical and laboratory data collection; (2) chest CT image acquisition; (3) AI-based quantitative CT analysis; (4) feature selection; 
and (5) development of clinical, radiological, and combined models using eight machine learning classifiers. The performance of models was 
evaluated by receiver operating characteristic curve analysis.
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time, 0.5 s; the field of view (FOV), 330 mm ×330 mm. 
Lung images were reconstructed at a slice thickness of 
1.0–1.25 mm using the I50 medium sharp algorithm. Lung 
window level and window width were set as −530–430 
Hounsfield units (HU) and 1,400–1,600 HU, respectively. 

Quantitative CT analysis

The quantitative analysis of lung infected by COVID-19 
was performed by a care.ai Intelligent Multi-disciplinary 
Imaging Diagnosis Platform Intelligent Evaluation System 
of Chest CT for COVID-19 (YT-CT-Lung, YITU 
Healthcare Technology Co., Ltd., China). This system 
used a multi-scale convolutional neural network with 
adaptive thresholding and morphological operations for the 
segmentation of lungs and pneumonia lesions (26,27). By 
thresholding on CT values in the pneumonia lesions, three 
quantitative features were generated, including ground-glass 
opacities (GGO) with value ranges of −1,000–−500 HU, 
semi-consolidation with value ranges of −500–−250 HU 
and consolidation with density ranges of -250–60 HU (4). 
A quantitative analysis of pneumonia lesions, GGO, 
consolidation, and whole lungs was performed based on 
the segmentation results. All images were independently 
reviewed and assessed by two radiologists (with 10 and 20 
years of experience in thoracic imaging) and discrepancies 
were resolved by consensus. A total of 201 quantitative 
CT features were extracted, which were listed below: (I) 
Volumes of pneumonia lesion, GGO, and consolidation in 
both lungs, left lung, right lung, and five lobes (n=24). (II) 
Volumes and percentages of pneumonia lesion, GGO, and 
consolidation in 18 lung segments (n=36). (III) Percentages 
of pneumonia volume, GGO volume, and consolidation 
volume in both lungs, left lung, right lung, and each lobe 
(n=24). (IV) CT values (mean, standard deviation, median, 
maximum, interquartile range) of pneumonia lesions, GGO, 
and consolidation in both lungs, left lung, and right lung 
(n=45); Hellinger distance, intersection over union (IOU), 
volume, CT values (mean, standard deviation, median, 
maximum, interquartile range) of total lung, volumes and 
percentages of whole lung with density of −1,000 to −700 
HU, −700 to −600 HU, −600 to −500 HU, −500 to −300 
HU, −300 to −200 HU, −200 to 60 HU, and 60 to 1,000 
HU (n=22); herein, Hellinger distance is used to measure 
the similarity of two distributions. The closer the value is 
to 0, the higher the similarity. IOU is also called an overlap 
ratio, which is the ratio of the intersection and union of two 
distributions. Ideally, they are completely overlapping, that 

is, the ratio is 1.0. (V) Hellinger distance, IOU, volume, 
CT values (mean, standard deviation, median, maximum, 
interquartile range) of left lung, volumes and percentages 
of left lung with density of −1,000 to −700 HU, −700 to 
−600 HU, −600 to −500 HU, −500 to −300 HU, −300 to 
−200 HU, −200 to 60 HU, and 60 to 1,000 HU (n=22). (6) 
Hellinger distance, IOU, volume, CT values (mean, 
standard deviation, median, maximum, interquartile range) 
of the right lung, volumes and percentages of right lung 
with density of −1,000 to −700 HU, −700 to −600 HU, −600 
to −500 HU, −500 to −300 HU, −300 to −200 HU, −200 
to 60 HU, and 60 to 1,000 HU (n=22). (7) Each of the five 
lung lobes was scored with the following formula: 3× the 
volume ratio of consolidation to total lung + 2× the volume 
ratio of GGO to total lung (n=5). Accordingly, the total 
lung score was computed by summarizing the scores of five 
lobes (n=1). 

Definition of endpoint

We defined the severity of COVID-19 according to the 
newest COVID-19 guidelines released by the National 
Health Commission of China (28) and the guidelines of 
the American Thoracic Society for community-acquired 
pneumonia (29). We defined critical illness as a composite 
of admission to intensive care unit (ICU), respiratory 
failure requiring mechanical ventilation, shock during 
hospitalization, or death. 

Feature selection and machine learning model development

COVID-19 patients in the training dataset were included 
for feature selection and machine learning based model 
development. Imputation for missing variables was 
considered if missing values were less than 20%. Five 
laboratory variables (C-reactive protein, myohemoglobin, 
creatine kinase, erythrocyte sedimentation rate, and 
brain natriuretic peptide) with missing values >50% 
were excluded. Finally, a total of 27 clinical data and 201 
quantitative CT features were entered into the selection 
process, respectively. We used mean value to impute 
numeric features. The least absolute shrinkage and selection 
operator (LASSO) logistic regression algorithm was used 
to select the most significant predictors from among all 
the candidate variables. It can minimize the potential 
collinearity of variables measured from the same patient and 
over-fitting of variables. The penalty parameter lambda was 
selected in the LASSO regression by 5-fold cross-validation 
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based on the error within one standard error range of the 
minimum. 

We firstly constructed the clinical and radiological 
models based on the corresponding clinical and radiological 
features selected by LASSO and then built the combined 
model based on the combination of the selected clinical 
and radiological features. Eight machine learning classifiers 
were used to develop those models for predicting critical 
illness, including Naive Bayes (NB), Linear Regression 
(LR), Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), Adaptive Boosting (AdaBoost), K-Nearest 
Neighbor (KNN), Kernel Support Vector Machine 
(k-SVM), and Back Propagation Neural Networks (BPNN). 
The predictive value of the models is validated by 5-fold 
cross-validation. Classification performance of the machine 
learning models was measured using the area under the 
curve (AUC), F1 score, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), sensitivity, and 
specificity. Machine learning models were implemented in 
open source Python 3X and Project Jupyter version 1.2.3 
(Anaconda, Inc, https://jupyter.org/about). 

Statistical analysis

Categorical variables were expressed as counts and 
percentages, while continuous variables are shown as mean 
and standard deviation (SD) or median and interquartile 
range. All the statistical analyses were performed using 
R software, version 3.6.1 (R Foundation for Statistical 
Computing, Vienna, Austria). The packages were used as 
follows: “glmnet” for LASSO logistic regression, “xgboost” 
for XGBoost, “adabag” for AdaBoost, “naivebayes” for 
NB, “mlr” for LR, “class” for KNN, “randomForest” for 
RF, “e1071” for SVM, and “nnet” for BPNN. Differences 
of clinical and laboratory characteristics between the non-
critical and critical COVID-19 cases were compared using 
the Chi-square test or Fisher’s exact test or Mann-Whitney 
U test, if appropriate. The comparison of different models 
used the Delong test. A P<0.05 was considered significant. 

Results

Clinical characteristics of patients
Among the 158 patients with COVID-19, 123 (77.8%) 
were non-critical cases, and 35 (22.2%) were critical cases 
including 12 deaths during hospitalization. The relatively 
high critically ill rate seen in our study was related to the 
fact that the First Affiliated Hospital of Guangzhou Medical 

University only admitted severe/critical cases transferred 
from other designated hospitals of Guangzhou (10 critical 
cases were included). The mean age of all patients was 
58.9±13.9 years (range, 25–95 years), 89 of 158 patients 
(56.3%) were male. Fever (72.8%) was the most common 
symptom, followed by dry cough (67.7%), shortness of 
breath (48.7%) and fatigue (41.8%). 67 patients (42.4%) 
had at least one underlying comorbidity, with hypertension 
(25.3%) being the most common, followed by diabetes 
(13.3%) and heart diseases (8.9%). Baseline clinical and 
laboratory characteristics of non-critically ill and critically 
ill patients are shown in Table 1. 

Predictors of developing critical illness in COVID-19 
patients

A total of 27 clinical and laboratory variables measured at 
hospital admission (Table 1) were included in the LASSO 
regression. After LASSO regression selection (Figure 2), 
four variables remained significant predictors of critical 
illness, which were ranked as lymphocyte percentage, 
LDH, neutrophil count, and D-dimer according to the 
absolute value of regression coefficient (Figure 3A). Of the  
201 quantitative CT features, the vast majority of them were 
redundant and only four features were selected (Figure 2), 
which were ranked as pneumonia percentage in the lateral 
basal segment of left lower lung, volume of whole lung with 
density of −300 to −200 HU, pneumonia volume in both 
lungs, and pneumonia volume in right lung according to the 
absolute value of regression coefficient (Figure 3B). Figure 
4 illustrates the CT findings and clinical parameters in two 
representative cases of non-critical and critical COVID-19 
patients.

Performance of the clinical model, radiological model, and 
combined model

Machine learning models were formulated according to 
the above risk factors associated with critical illness, and 
validated by internal bootstrap validation. Tables 2-4 and 
Figure 5A,B,C show the predictive performance of eight 
classifiers in the clinical, radiological, and combined 
models, respectively. In the validation phase of the clinical 
model (Table 2 and Figure 5A), the AUCs of eight machine 
learning classifiers ranged from 0.821 to 0.960. The AUCs 
of XGBoost, AdaBoost, RF, LR, and SVM exceeded 0.900. 
The SVM showed the highest discriminatory powers of 
AUC of 0.960 (95% CI: 0.913–1.000), with sensitivity 
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Table 1 The baseline characteristics and laboratory findings at admission 

Non-critical (n=123) Critical (n=35) P value

Age (years) 58.2±14.4 61.5±11.7 0.213

Sex

Male 64 (52.0) 25 (71.4)
0.041

Female 59 (48.0) 10 (28.6)

Comorbidities

COPD 3 (2.4) 2 (5.7) 0.307

Heart disease 10 (8.1) 4 (11.4) 0.513

Hypertension 23 (18.7) 17 (48.6) <0.001

Diabetes 9 (7.3) 12 (34.3) <0.001

Malignancy 1 (0.8) 1 (2.9) 0.395

Cerebropathy 3 (2.4) 0 1.000

Others 23 (18.7) 7 (20.0) 0.863

No. of comorbidities

0 80 (65.0) 11 (31.4) <0.001

1 25 (20.3) 11 (31.4) 0.167

2 13 (10.6) 9 (25.7) 0.049

3 3 (2.4) 2 (5.7) 0.307

4 2 (1.6) 2 (5.7) 0.213

WBC (×109/L) 5.4±2.1 9.2±5.3 <0.001

Neutrophil (×109/L) 4.4±6.2 8.2±5.2 0.002

Neutrophil (%) 67.0±15.4 86.6±6.9 <0.001

Lymphocyte (×109/L) 1.3±1.9 0.6±0.3 0.031

Lymphocyte (%) 22.8±11.3 8.0±4.7 <0.001

Eosinophil (×109/L) 0.1±0.3 0.01±0.02 0.143

Eosinophil (%) 2.3±10.2 0.1±0.2 0.227

Monocyte (×109/L) 0.4±0.2 0.5±0.3 0.186

Monocyte (%) 7.7±3.3 5.1±2.9 0.002

Hemoglobin (g/L) 126.4±19.4 131.9±16.0 0.138

Platelet (g/L) 216.4±76.7 172.5±56.4 0.001

Fibrinogen (g/L) 3.8±2.0 5.4±1.8 0.002

D-dimer (μg/mL) 20.7±102.3 963.9±2,241.8 0.011

hs-CRP (mg/L) 19.1±19.9 34.8±4.3 <0.001

ALT (U/L) 26.1±17.0 43.0±28.2 0.004

AST (U/L) 25.9±14.2 50.3±34.6 0.001

TBIL (μmol/L) 12.5±7.7 13.4±6.4 0.554

Table 1 (continued)
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Table 1 (continued)

Non-critical (n=123) Critical (n=35) P value

DBIL (μmol/L) 6.1±19.3 6.0±4.2 0.983

ALP (U/L) 67.0±30.6 73.2±36.7 0.436

LDH (U/L) 231.8±105.9 458.4±161.4 <0.001

Procalcitonin (ng/mL) 0.14±0.13 0.52±0.84 0.032

Creatinine (μmol/L) 69.7±17.8 91.0±46.8 0.020

Urea nitrogen (mmol/L) 4.6±1.6 7.6±4.3 0.001

Data were mean ± standard deviation (SD) or number (percentage). P values were calculated by t test, Mann-Whitney U test, χ² test or 
Fisher’s exact test, as appropriate. Abbreviations: COPD, chronic obstructive pulmonary disease; CT, computed tomography; WBC, white 
blood cells; hs-CRP, high-sensitivity C-reactive protein; ALT, alanine transaminase; AST, aspartate aminotransferase; TBIL, total bilirubin; 
DBIL, direct bilirubin; ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
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Figure 2 Feature selection using the LASSO binary logistic regression model. (A) Tuning parameter (lambda) selection in the LASSO 
regression used 5-fold cross-validation via 1 standard error criteria, four laboratory features with non-zero coefficient were selected. (B) 
LASSO coefficient profiles of the 27 clinical features. (C) Tuning parameter (lambda) selection in the LASSO regression used 5-fold cross-
validation via 1 standard error criteria, four quantitative CT features with non-zero coefficient were selected. (D) LASSO coefficient profiles 
of the 201 radiological features. 
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Figure 4 Two representative cases of non-critical and critical COVID-19 patients. The non-critical case was a 25-year-old female presented 
with fever for one day. Her initial chest CT images show GGO and consolidation with crazy paving and air bronchogram sign in the lateral 
segment of right middle lobe of lung (A,B). The laboratory tests show WBC of 4.3×109/L, neutrophil of 2.7×109/L, lymphocyte count of 
1.1×109/L, lymphocyte percentage of 26.1%, d-dimer of 263 μg/mL, and LDH of 47.6 U/L. The critical case was a 58-year-old male who 
had fever for 10 days and shortness of breath for 3 days. The admission thin-section chest CT images demonstrate extensive GGO and 
consolidation with crazy paving and bronchial wall thickening in both lungs (C,D). The laboratory findings show WBC of 10.2×109/L, 
neutrophil of 9.6×109/L, lymphocyte count of 0.2×109/L, lymphocyte percentage of 2.2%, d-dimer of 1,807 μg/mL, and LDH of 811.7 U/L.
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Table 2 Comparison of clinical model based on eight machine learning classifiers in predicting critical illness among patients with COVID-19

Classifiers

Measured metrics

AUC  
(95% CI)

Accuracy%  
(95% CI)

F1 score  
(95% CI)

PPV%  
(95% CI)

NPV%  
(95% CI)

Specificity%  
(95% CI)

Sensitivity%  
(95% CI)

XGBoost 0.960  
(0.913–1.000)

90.6  
(81.1–98.1)

82.8  
(65.9–100.0)

70.6  
(54.5–100.0)

100.0  
(95.1–100.0)

87.8  
(75.6–100.0)

100.0  
(83.3–100.0)

AdaBoost 0.929  
(0.857–1.000)

84.9  
(71.7–98.1)

75.0  
(53.3–100.0)

60.0  
(44.4–100.0)

100.0  
(91.1–100.0)

80.5  
(63.4–100.0)

100.0  
(66.7–100.0)

RF 0.959  
(0.913–1.000)

90.6  
(81.1–98.1)

82.8  
(68.4–100.0)

70.6  
(54.5–100.0)

100.0  
(97.1–100.0)

87.8  
(75.6–100.0)

100.0  
(91.7–100.0)

LR 0.937  
(0.871–1.000)

90.6  
(81.1–98.1)

82.8  
(68.4–96.0)

70.6  
(54.5–92.3)

100.0  
(97.1–100.0)

87.8  
(75.6–97.6)

100.0  
(91.7–100.0)

KNN 0.851  
(0.718–0.983)

90.6  
(83.0–98.1)

78.9  
(55.6–100.0)

83.3  
(62.5–100.0)

92.9  
(86.7–100.0)

95.1  
(87.8–100.0)

75.0  
(50.0–100.0)

SVM 0.917  
(0.834–1.000)

92.5  
(73.6–98.1)

86.5  
(57.1–100.0)

81.8  
(46.2–100.0)

97.4  
(92.7–100.0)

95.1  
(65.9–100.0)

91.7  
(75.0–100.0)

NB 0.856  
(0.734–0.977)

86.8  
(77.4–94.3)

74.1  
(53.8–94.7)

66.7  
(50.0–90.0)

94.9  
(87.8–100.0)

87.8  
(75.6–97.6)

83.3  
(58.3–100.0)

BPNN 0.821  
(0.680–0.962)

90.6  
(83.0–96.2)

76.6  
(52.0–95.7)

90.0  
(69.2–100.0)

90.9  
(84.8–97.6)

97.6  
(92.7–100.0)

66.7  
(41.7–91.7)

The confusion matrix in our study was given as a 2×2 contingency table that reported the number of true positives, false positives, false  
negatives, and true negatives. Sensitivity = true positives/(true positives + false negatives) ×100%. Specificity = True negatives/(true  
negatives + false positives) ×100%. Accuracy = (true positives + true negatives)/n ×100%. The F1 score is equivalent to harmonic mean 
of the precision and recall, where the best value is 1.0 and the worst value is 0.0. The formula for F1 score is: F1 =2 * (precision * recall) 
/(precision + recall), precision = true positives/(true positives + false positives), recall = true positives/(true positives + false negatives). PPV 
was the probability that the disease was present when the test was positive (expressed as a percentage). NPV was the probability that 
the disease was not present when the test was negative (expressed as a percentage). The ROC curve was created by plotting the true  
positive rate (sensitivity) against the false positive rate (1-sensitivity). By varying the predicted probability threshold, we calculated AUC  
values. We calculated 95% CIs with the bootstrap (100 iterations) method. AUC, area under the curve; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; NB, Naive Bayes; LR, Linear Regression; RF, Random Forest; XGBoost, Extreme Gradient  
Boosting; AdaBoost, Adaptive Boosting; KNN, K-Nearest Neighbor; k-SVM, Kernel Support Vector Machine; BPNN, Back Propagation Neural  
Networks.

of 100.0% (95% CI: 83.3–100.0%), specificity of 87.8% 
(95% CI: 75.6–100.0%), accuracy of 90.6% (95% CI: 81.1–
98.1%), F1 score of 82.8% (95% CI: 65.9–100.0%), PPV of 
70.6% (54.5–100.0%), and NPV of 100.0% (95.1–100.0%). 
In the validation phase of radiological model (Table 3 and 
Figure 5B), the AUCs of all classifiers exceed 0.800 except 
BNPP. The XGBoost-based model achieved an AUC of 
0.890 (95% CI: 0.757–1.000), sensitivity of 91.7% (95% CI: 
66.7–100.0%), specificity of 90.2% (95% CI: 75.6–100.0%), 
accuracy of 90.6% (95% CI: 77.4–96.2%), F1 score of 
80.3% (95% CI: 57.1–100.0%), PPV of 71.4% (95% CI: 
50.0–100.0%), and NPV of 97.2% (95% CI: 90.7–100.0%). 
In the validation phase of combined model (Table 4 and 

Figure 5C), the AUCs of eight classifiers ranged from 0.856 
to 0.959. The XGBoost-based combined model performed 
similarly with the XGBoost-based clinical model, with 
an AUC of 0.955 (95% CI: 0.906–1.000), sensitivity of 
100.0% (91.7–100.0%), specificity of 87.8% (75.6–97.6%), 
accuracy of 90.6% (81.1–98.1%), F1 score of 82.8% (95% 
CI: 68.4–96.0%), PPV of 70.6% (54.5–92.3%), and NPV of 
100.0% (97.1–100.0%). The clinical model outperformed 
the radiological model in predicting the risk of developing 
critical illness in patients with COVID-19, however, with 
no significant difference (P=0.330). Adding the quantitative 
CT features to the clinical model achieved no significant 
improvement (P=0.763). 
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Discussion

In this study, we developed and validated multiple machine 
learning models to predict the risk of developing critical 
illness among patients hospitalized for COVID-19 
pneumonia. The results demonstrated that the clinical 
model including decreased lymphocyte percentage, 
increased LDH, neutrophil count, and D-dimer could 
achieve the highest performance in predicting critical illness 
in COVID-19 patients, with an AUC of 0.960 (95% CI: 
0.913–1.000) and accuracy of 90.6% (95% CI: 81.1–98.1%). 

Currently, predicted risk factors associated with a fatal 
outcome have been often identified from clinical and 

laboratory parameters. Although the COVID-19 more 
likely infected older males with pre-existing comorbidities, 
they were not good predictors of developing critical illness. 
Previous studies have determined many risk factors related 
to disease severity or poor prognosis using traditional 
statistical methods or LASSO regression (3-8). In fact, the 
identification of predictors depends on available features, 
feature selection method used and sample size of studies. 
Our findings showed that lymphocyte percentage, LDH, 
neutrophil count, and D-dimer were four significant 
predictors of severity of COVID-19. Lymphocytopenia was 
a prominent feature of patients with COVID-19 because 

Table 3 Comparison of radiological model based on eight machine learning classifiers in predicting critical illness among patients with 
COVID-19

Classifiers

Measured metrics

AUC  

(95% CI)

Accuracy% 

(95% CI)

F1 score 

(95% CI)

PPV%  

(95% CI)

NPV%  

(95% CI)

Specificity% 

(95% CI)

Sensitivity% 

(95% CI)

XGBoost 0.890  

(0.757–1.000)

90.6  

(77.4–96.2)

80.3 

(57.1–100.0)

71.4 

(50.0–100.0)

97.2  

(90.7–100.0)

90.2  

(75.6–100.0)

91.7  

(66.7–100.0)

AdaBoost 0.872  

(0.743–1.000)

86.8 

(71.7–96.2)

77.2 

(53.3–95.7)

66.7 

(44.4–91.7)

96.5  

(89.5–100.0)

87.8  

(65.9–97.6)

91.7  

(66.7–100.0)

RF 0.878  

(0.735–1.000)

88.7 

(75.5–96.2)

76.9 

(55.6–100.0)

71.4 

(47.6–100.0)

95.3  

(89.7–100.0)

90.2  

(70.7–100.0)

83.3  

(66.7–100.0)

LR 0.872  

(0.735–1.000)

86.8 

(73.6–96.2)

78.6 

(54.3–96.0)

68.8 

(45.8–92.3)

96.6  

(89.7–100.0)

87.8  

(68.3–97.6)

91.7  

(66.7–100.0)

KNN 0.826  

(0.690–0.962)

86.8 

(77.4–94.3)

72.4 

(50.0–95.2)

70.0 

(50.0–90.9)

92.5  

(86.0–100.0)

90.2  

(80.5–97.6)

75.0  

(50.0–100.0)

SVM 0.833  

(0.691–0.976)

83.0  

(67.9–92.5)

68.3 

(47.5–94.7)

57.9 

(40.0–90.0)

94.9  

(88.2–100.0)

82.9  

(61.0–97.6)

83.3  

(58.3–100.0)

NB 0.856  

(0.734–0.977)

86.8 

(77.4–96.2)

74.1 

(53.8–94.7)

66.7 

(50.0–90.0)

94.9  

(88.1–100.0)

87.8  

(78.0–97.6)

83.3  

(58.3–100.0)

BPNN 0.736  

(0.584–0.888)

77.4 

(66.0–88.7)

57.1 

(37.0–81.1)

50.0 

(33.3–72.7)

89.5  

(81.8–97.1)

80.5  

(68.3–92.7)

66.7  

(41.7–91.7)

The confusion matrix in our study was given as a 2×2 contingency table that reported the number of true positives, false positives, false  
negatives, and true negatives. Sensitivity = true positives/(true positives + false negatives) ×100%. Specificity = True negatives/(true  
negatives + false positives) ×100%. Accuracy = (true positives + true negatives)/n ×100%. The F1 score is equivalent to harmonic mean 
of the precision and recall, where the best value is 1.0 and the worst value is 0.0. The formula for F1 score is: F1 =2 * (precision * recall) 
/(precision + recall), precision = true positives/(true positives + false positives), recall = true positives/(true positives + false negatives). PPV 
was the probability that the disease was present when the test was positive (expressed as a percentage). NPV was the probability that 
the disease was not present when the test was negative (expressed as a percentage). The ROC curve was created by plotting the true  
positive rate (sensitivity) against the false positive rate (1-sensitivity). By varying the predicted probability threshold, we calculated AUC  
values. We calculated 95% CIs with the bootstrap (100 iterations) method. AUC, area under the curve; CI, confidence interval; PPV, positive  
predictive value; NPV, negative predictive value; NB, Naive Bayes; LR, Linear Regression; RF, Random Forest; XGBoost, Extreme Gradient  
Boosting; AdaBoost, Adaptive Boosting; KNN, K-Nearest Neighbor; k-SVM, Kernel Support Vector Machine; BPNN, Back Propagation Neural  
Networks.
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Table 4 Comparison of combined model based on eight machine learning classifiers in predicting critical illness among patients with COVID-19

Classifiers

Measured metrics

AUC  
(95% CI)

Accuracy%  
(95% CI)

F1 score  
(95% CI)

PPV%  
(95% CI)

NPV%  
(95% CI)

Specificity%  
(95% CI)

Sensitivity%  
(95% CI)

XGBoost 0.955  
(0.906–1.000)

90.6  
(81.1–98.1)

82.8  
(68.4–96.0)

70.6  
(54.5–92.3)

100.0  
(97.1–100.0)

87.8  
(75.6–97.6)

100.0  
(91.7–100.0)

AdaBoost 0.955  
(0.905–1.000)

92.5  
(83.0–98.1)

85.7  
(70.4–96.0)

75.0  
(57.1–92.3)

100.0  
(97.6–100.0)

90.2  
(78.0–97.6)

100.0  
(91.7–100.0)

RF 0.959  
(0.913–1.000)

90.6  
(83.0–98.1)

82.8  
(70.4–100.0)

70.6  
(57.1–100.0)

100.0  
(97.6–100.0)

87.8  
(78.0–100.0)

100.0  
(91.7–100.0)

LR 0.935  
(0.870–1.000)

88.7  
(79.2–96.2)

80.0  
(66.5–95.7)

66.7  
(52.2–91.7)

100.0  
(97.1–100.0)

85.4  
(73.2–97.6)

100.0  
(91.7–100.0)

KNN 0.904  
(0.792–1.000)

94.3  
(86.8–100.0)

87.0  
(65.6–100.0)

90.9  
(75.0–100.0)

95.2  
(88.9–100.0)

97.6  
(92.7–100.0)

83.3  
(58.3–100.0)

SVM 0.886  
(0.780–0.992)

84.9  
(73.6–94.3)

74.3  
(54.1–100.0)

62.5  
(45.5–100.0)

97.1  
(90.7–100.0)

82.9  
(68.3–100.0)

91.7  
(66.7–100.0)

NB 0.873  
(0.773–0.973)

84.9  
(75.5–94.3)

73.3  
(58.1–88.9)

61.1  
(47.4–80.0)

97.2  
(91.4–100.0)

82.9 
(70.7–92.7)

91.7  
(75.0–100.0)

BPNN 0.856  
(0.734–0.977)

86.8  
(77.4–94.3)

74.1  
(53.8–94.7)

66.7  
(50.0–90.0)

94.9  
(88.1–100.0)

87.8  
(78.0–97.6)

83.3  
(58.3–100.0)

The confusion matrix in our study was given as a 2×2 contingency table that reported the number of true positives, false positives, false  
negatives, and true negatives. Sensitivity = true positives/(true positives + false negatives) ×100%. Specificity = True negatives/(true  
negatives + false positives) ×100%. Accuracy = (true positives + true negatives)/n ×100%. The F1 score is equivalent to harmonic mean 
of the precision and recall, where the best value is 1.0 and the worst value is 0.0. The formula for F1 score is: F1 =2 * (precision * recall) 
/(precision + recall), precision = true positives/(true positives + false positives), recall = true positives/(true positives + false negatives). PPV 
was the probability that the disease was present when the test was positive (expressed as a percentage). NPV was the probability that the  
disease was not present when the test was negative (expressed as a percentage). The ROC curve was created by plotting the true positive rate  
(sensitivity) against the false positive rate (1-sensitivity). By varying the predicted probability threshold, we calculated AUC values. We  
calculated 95% CIs with the bootstrap (100 iterations) method. AUC, area under the curve; CI, confidence interval; PPV, positive  
predictive value; NPV, negative predictive value; NB, Naive Bayes; LR, Linear Regression; RF, Random Forest; XGBoost, Extreme Gradient  
Boosting; AdaBoost, Adaptive Boosting; KNN, K-Nearest Neighbor; k-SVM, Kernel Support Vector Machine; BPNN, Back Propagation Neural  
Networks.

targeted invasion by viral particles damages the cytoplasmic 
component of the lymphocyte and causes its destruction, 
which may reflect the severity of COVID-19 (2). In this study, 
lymphocyte percentage seems to play the most crucial role 
in prediction of critical illness of COVID-19. For critically 
ill patients with COVID-19, the rise in LDH level indicates 
an increase of the activity and extent of lung injury (30). 
Neutrophilia is one of the biomarkers of acute infection. 
Neutrophils are recruited early to sites of infection where they 
kill pathogens (bacteria, fungi, and viruses) by oxidative burst 
and phagocytosis (31). Some literature supported the hypothesis 
that a little known yet powerful function of neutrophils—the 
ability to form neutrophil extracellular traps—may contribute 
to organ damage and death in COVID-19 (32). Neutrophil 

count, either individually or paired in a ratio with lymphocytes, 
also predicts disease severity in COVID-19 patients  
(33-35). Elevation of D-dimer indicated a hypercoagulable 
state in patient with COVID-19, which was an independent 
predictor of requiring critical care support or in-hospital 
mortality (36). Our SVM-based clinical model selected 
the above four biomarkers that predict the critical illness 
of individual patients in advance with accuracy of more  
than 90%. 

Chest CT plays an indispensable role in the detection, 
diagnosis, and follow-up of COVID-19 pneumonia (37). 
Visual CT findings such as GGO, consolidation, crazy 
paving, and bronchial wall thickening are key clues to 
COVID-19. However, chest CT images are usually visually 
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interpreted by radiologists in the clinical setting, which is 
somewhat subjective with large variability that unable to 
quantitatively assess the disease severity and is also time-
consuming and labor-intensive. Recently, many studies used 
AI algorithms integrate chest CT findings with or without 
other variables, such as clinical symptoms, exposure history, 
and laboratory testing to rapidly diagnose COVID-19  
(15-18,38-54). Also, other studies have used quantitative 
CT features derived from artificial intelligence to quantify 
pneumonia lesions and the risk of poor outcomes in patients 
with COVID-19 (4,19-22,55-61). In particular, Yin et al. 
concluded that quantitative CT features were superior to 
that of a semiquantitative visual CT score in the assessment 
of the severity of COVID-19 (60). Liu et al. found that 
quantitative CT features on day 0 and day 4 could predict 
the progression to severe illness in COVID-19 patients, 
which outperformed the acute physiology and chronic 
health evaluation II score, neutrophil-to-lymphocyte ratio, 
and D-dimer (4). Yu et al. observed that larger consolidation 
lesions in the upper lung on admission CT would increase 
the risk of poor prognosis in COVID-19 patients (61). 
In this study, although the XGBoost-based radiological 
model achieved a good accuracy in predicting the risk of 
developing critical illness in patients with COVID-19, 
it was hard to provide additional improvement to the 
XGBoost-based clinical model, maybe due to the high 
enough performance of the clinical model. 

This study also has some potential limitations. Firstly, 
the retrospective nature of this study with a relatively 
small sample size. Secondly, the data for machine learning 

training and validation were all from China, which could 
limit the generalizability of the models in other areas of the 
world. Therefore, other validations of the proposed models 
outside China would be helpful. Thirdly, our AI system has 
not evaluated the radiological features (such as crazy paving, 
lymphadenopathy, bronchial wall thickening, and pleural 
effusion) extracting by radiologists (38,62,63), which may 
help to improve the model performance. However, the CT 
findings are mainly used to diagnose COVID-19 not to 
predict the outcome of COVID-19. Finally, future external 
validation is needed to identify the generalizability of our 
machine learning models. Although the external validation 
was not performed due to insufficient data for machine 
learning, the testing results of our clinical model might 
be good because it was built by four simple and strong 
predictors that proven in previous studies. 

In conclusion, in this study, we identified the SVM-
based clinical model with lymphocyte percentage, LDH, 
neutrophil count, and D-dimer as the optimal tool to 
estimate the risk of developing critical illness among 
patients with COVID-19. Early detection of patients who 
are likely to develop critical illness is of great importance 
in the clinical settings, which may help select patients at 
risk of rapid deterioration who should require high-level 
monitoring. If a patient’s predicted risk for critical illness 
is low, regular monitoring may be enough, whereas high-
risk patients might need aggressive treatment or ICU care. 
However, large-scale prospective studies in the future are 
warranted to validate the effectiveness of our proposed 
machine learning models. 

Figure 5 Receiver operating characteristic curve analyses of eight machine learning classifiers in predicting critical illness among COVID-19 
patients. (A) clinical model; (B) radiological model; and (C) combined model.
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