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Purpose: When studying nosocomial infections, resource-efficient sampling designs such as nested case-control, case-cohort, and
point prevalence studies are preferred. However, standard analyses of these study designs can introduce selection bias, especially
when interested in absolute rates and risks. Moreover, nosocomial infection studies are often subject to competing risks. We aim to
demonstrate in this tutorial how to address these challenges for all three study designs using simple weighting techniques.
Patients and Methods: We discuss the study designs and explain how inverse probability weights (IPW) are applied to obtain
unbiased hazard ratios (HR), odds ratios and cumulative incidences. We illustrate these methods in a multi-state framework using
a dataset from a nosocomial infections study (n = 2286) in Moscow, Russia.

Results: Including IPW in the analysis corrects the unweighted naive analyses and enables the estimation of absolute risks. Resulting
estimates are close to the full cohort estimates using substantially smaller numbers of patients.

Conclusion: IPW is a powerful tool to account for the unequal selection of controls in case-cohort, nested case-control and point
prevalence studies. Findings can be generalized to the full population and absolute risks can be estimated. When applied to a multi-
state model, competing risks are also taken into account.

Keywords: selection bias, hospital infection, intensive care units, proportional hazards models, risk assessment, cohort studies

Plain Language Summary

Study designs employed to investigate hospital-acquired infections (nosocomial infections, NI) include nested-case control, case-
cohort, and point prevalence studies. They focus on the investigation of relative risks, for example if males have an increased risk
to acquire a NI. In addition, it is of interest how often patients acquire a NI: the absolute risk of infection. This can be challenging
as often the study cohort is enriched with infected patients. Inverse probability weighting (IPW) can be applied to the study
population to regain the proportions of infected and non-infected patients in the original hospital population. This can be achieved
by cloning patients with a low probability of being included in the study several times in the dataset. Furthermore, competing risks
need to be considered in this setting regardless of the study design. Patients who leave the hospital are no longer at risk to acquire
an infection in the hospital. To account for competing risks we use a multi-state model. We explain, demonstrate, and compare
how to apply this analysis strategy using data from a large study performed in Moscow, Russia. We sample the three different
study designs and apply IPW in a multi-state model. We compare the results to the original “full” cohort. Relative risks can be
estimated correctly without using [PW. In contrast, absolute risks can only be estimated when we apply IPW. You can expand your
data analysis by the estimation of absolute risks with the usage of IPW, even when the study was originally focused on other

estimates.
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Graphical Abstract

Inverse probability weighting enhances absolute risk estimation
in three common study designs of nosocomial infections
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Introduction

When investigating rare outcomes such as specific nosocomial infections, it is common to use a study design which
favors the selection of cases (eg, infected patients). These designs are especially attractive if resources are limited.
Common examples of such sampling designs are the nested case control (NCC) and the case cohort design (CC), as well
the point prevalence study (PP)."? All of these designs have in common that information on covariate values is only
collected for a subsample of the source population. While the population from which samples are drawn is representative
of the target population (eg, the population you want to draw conclusions for), the sample you select is distorted when
cases are over-represented. For examples, one could perform a NCC study to investigate risk factors for bloodstream
infections in the intensive care unit (ICU) by sampling four controls at the time of each infection. The case to control
ratio in your study is one to four, which clearly is different from the case proportion in the ICU you drew your sample
from, as well as from your target population of ICU patients in general. Thus, naive analysis of such data may lead to
selection bias and, thereby, misleading conclusions on the relative effect of covariates on the incidence of infections
(even conclusions on the incidence itself).

In this paper, we discuss and demonstrate the use of inverse probability weights (IPW) for NCC, CC and PP studies in
the nosocomial infection setting to repair the selection bias. We compare these three common sampling designs and show
how to perform weighted risk factor analyses based on hazard ratio and absolute risk estimation using a dataset from the
neuro-intensive care unit at the Burdenko Neurosurgery institute in Moscow, Russia (n = 2286).> When studying
nosocomial infections, patients leaving the risk set must be treated in the analysis adequately. A patient who is discharged
from the hospital or dies is no longer at risk to acquire a nosocomial infection in the hospital. The risk to leave the
hospital (dead or alive) competes with the risk to acquire an infection. Disregarding competing risks is a common error
which results in a competing risks bias.* Thus, all of our analyses will account for the competing risk of the composite
event discharge alive/death.

Selection bias and competing risk bias can severely skew your results, if left unaddressed. Still, these biases are not
generally known, although they are very common in the field of nosocomial infections. With this manuscript, we want to
draw attention to these types of biases and provide a comprehensive explanation and solution with ready to use R code in
addition.

Methods

Analysis Outline

We use the full cohort for the benchmark analysis. In reality, the full cohort would be a sample of the true population of
interest itself. We disregard this here, to focus on the bias due to the sampling process. We sample NCC, CC and PP
cohorts and compare how their naive unweighted analyses diverge from the full cohort and how weighting can

1054  toes Clinical Epidemiology 2022:14

Dove!


https://www.dovepress.com
https://www.dovepress.com

Dove Staus et al

91 (t) 5 infection (1)

admission (0)
covariate (x) discharge/ death
o, (t) | without infection (2)

Figure | To account for competing risks we apply a multi-state model with the initial state (0), the event of interest (|) and the competing event (2). In addition, we consider
a discrete risk factor. ag*(t) (x=covariate value, j=1 or 2, t= time) represents the time-dependent cause-specific transition hazards between the states, given the specific
covariate value.

reconstruct the results. The rationale of IPW is to up-weight patients with a small inclusion probability in the study and to
down-weight patients with a high inclusion probability to achieve a weighted survey sample that resembles the full
cohort. Using the weighted cohort for your analysis, you are able to draw conclusion for the target population you are
interested in. The individual weights correspond to the inverse of the inclusion probability for the specific patient.

A potential pitfall in the analysis of nosocomial infections is the presence of competing risks. Disregarding competing
risks altogether is a common error, which often results in the overestimation of the absolute risk of the event of interest.
In addition, the influence of a covariate on a patient’s risk of infection only becomes apparent when accounting for
competing risks.* A covariate of interest, such as an indicator of morbidity, might be uninfluential on the rate of infection
per se. But morbidity may have a strong effect on mortality or discharge. As most patients in this setting are discharged,
the influence of the morbidity on discharge might be a prominent effect. Let us say the morbidity you are interested in
leads to an increased length of hospital stay, which is the combined effect of mortality and discharge. Because of their
longer time at risk, patients with morbidity have an increased risk to acquire an infection.* This shows that the risk for
infection is, in addition to the rate of infection, dependent on the rate of discharge and death before acquiring an
infection. To analyze the effects of morbidity on the risk of infection, we therefore apply two cause-specific Cox
proportional-hazard models: one to estimate the effect of the covariate on the rate of infection and one to estimate the
effect on the competing event. To take into account competing risks when we estimate both the incidence of infection and
the cause specific hazards, we apply a simple multi-state model with three states as depicted in Figure 1. We used the
Nelson-Aalen estimator for the cumulative cause specific hazard rates and the Aalen-Johansen estimator of the
cumulative incidence function (CIF) to estimate cumulative incidences over time.® These estimators give unbiased
estimates, whereas the common Kaplan — Meier estimator would lead to biased results in the competing risk setting.’

The R code (R version 4.1.1) and respective packages we used for the analysis can be found in the supplement under
the heading Appendix 1 — R code of Publication.® For further reading on implementation and interpretation of competing
risks see.*> The section Appendix 2 — R tutorial in the supplement supports to calculate your weights and apply these
methods to your data.

Study Designs and the Application of IPW

Nested Case-Control Studies

In a NCC study, the reduced cohort is obtained by including all cases and by selecting a fixed number of controls each
time a case occurs in the full cohort among those who are still at risk of infection (incidence density sampling) (Figure 2
top right). These sampling sets are illustrated by grey rectangles in the graphical abstract. As an extension, controls can
also be matched on additional confounding factors.'® For the sake of simplicity, we omit this option. Each patient may act
as a control for several different cases. Furthermore, a patient selected as a control may acquire an infection at a later
time, and thus contribute data to the analysis as both a control and a case. While the time-matching of controls to cases
facilitates consistent estimates for risk factor effects on the main event of interest, it can become problematic for the
analysis of additional outcomes (ie, competing risks).'' However, an adapted method using inverse probability weighting
can be employed to break the time matching and up-weight the controls for use in analyses of further endpoints.'? By
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Figure 2 lllustration of sampling designs using Lexis diagrams. Each solid line represents a patient and their length of hospital stay. The black dots represent the moment
when a patient becomes infected. From this point onwards the patient is considered a case (dark line). The dashed lines mark the time of sampling. In the nested case-
control design, all cases are included and controls (white circles) are sampled at the case’s event time. In the case-cohort study a specified fraction of all patients is included
and additionally all cases in the full cohort occurring outside of the sub-cohort. In the point prevalence study patients are sampled at a specific point in time.

using this method we are able to analyze the discharge hazard even though the matching of cases and controls was carried
out on the basis of the infection times. Selected controls are weighted with the inverse probability of their inclusion,
creating a dataset in which each control is assigned a different weight. The weights are higher for controls sampled earlier
after hospital admission and lower for those sampled later after admission, when only patients with longer stays can be
selected. A number of inclusion probability estimators have been proposed for NCC studies, however standard logistic
regression model-type weighting (generalized linear model) is preferred as it has a smoothing effect on the weight
distribution and weights are less prone to extreme values than in other methods."® In order to calculate this inclusion
probability for cases and controls in the NCC setting, entry and event/censoring times are required for the full cohort.
This information is a base requirement for every NCC study, so applying IPW for estimation of competing events comes
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at no additional “cost” to the researcher. The adapted method has been shown to perform well in both simulated data and
in a real hospital setting.'*

Case-Cohort Studies

In the CC design, a random sub-cohort of the full cohort is selected at the beginning of the study. Patients in the sub-
cohort are accentuated with a grey rectangle in the CC image of the graphical abstract. All incident cases that arise in the
full cohort (filled with dark color) are compared with the controls from the sub-cohort (filled with grey color). Cases
outside of the sub-cohort enter the analysis at the time of incidence (Figure 2 bottom left).'> Thus, covariate information
for analysis is only required from the sub-cohort plus cases that occur from outside the sub-cohort. As sampling of the
sub-cohort takes place independently of time and disease status, it is possible to evaluate multiple disease outcomes using
the same sub-cohort. As a consequence of the study design, however, infected patients (eg, cases) are over-represented
relative to the full cohort, or conversely non-cases are under-represented (Table 1).

Weighting patients in the sub-cohort by the inverse of the sampling fraction (ie, the proportion of the full cohort
selected for the sub-cohort denoted by y), as proposed by Barlow,'® can account for this imbalance. Thus, each sub-
cohort member is weighted by 1/y. If cases occur from within the sub-cohort, their weights change to 1 at the time of
incidence.' Cases from outside the sub-cohort enter the analysis only at the time of incidence, again with a weight of 1,
since cases are always selected in this design.

To analyze the event of interest (eg, infection), the weighted case-cohort sample (sub-cohort and all patients with
events) is used. When analyzing the competing event, which occurs more frequently, only the sub-cohort is used without

weighting, as it is a random sample of the full cohort.'”"'®

Point Prevalence Studies

As the name suggests, PP surveys are cross-sectional studies in which patients are sampled at a single point in time
(represented in Figure 2 on the bottom right by the dashed vertical line) to determine the prevalence of diseases. All
patients who are in the hospital on the date of the survey are sampled and data, both current and retrospective (eg, from
medical records), are gathered. Patients sampled are visualized in the graphical abstract by the grey rectangle. Some cases
(dark outlined figure) are missing in the sample. If the study is intended to include prospective information, as we do here
for the total length of stay, PP survey data is gathered at a second later date, but only for the originally-sampled patients.
The main advantage of PP studies is that they can be carried out in relatively short time periods. One key limitation of PP
studies is that patients are not sampled from the population with equal probability. It is more likely that patients who have
long at-risk times (eg, longer hospital stays) will be recruited into the study, whereas patients with short at-risk times will

Table | Comparison of the Selection Bias Across the Study Designs and the Corresponding Inverse Probability VWeights

Nested Case-Control (NCC) Case-Cohort (CC) Point Prevalence (PP)
Challenge controls are under-represented, especially controls with controls are under-represented | short-stayers are under-
a short length of stay represented
Weights for | within sub-cohort: | /length of stay
cases -time before infection:

| /sampling fraction;
-time since infection: |
outside sub-cohort:
-time before infection: 0

-time since infection: |

Weights for controls who later turn out to be cases: | | /sampling fraction | /length of stay
controls controls who stay controls: | /inclusion probability
Notes: A weight of “|” is equivalent to unweighted. A patient with a weight of “0” is uninfluential for the analysis. Length of stay is typically expressed in number of days.

Italic font identifies information used to create inverse probability weights. The underlined text highlights that in the case-cohort design, cases are weighted differently
depending on their sub-cohort membership.
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be underrepresented. The analysis of prevalence is unaffected by this, but when incidences and risks are also in focus,
this leads to a selection bias called “length bias”.'>*° Since longer at-risk times will often be associated with other risk
factors, the PP survey sample might be unrepresentative of the target population in terms of risk factors, eg, patients who
stay in hospital longer tend to be sicker than average. The probability of being sampled is therefore proportional to
patients’ time-at-risk, ie, the length of their hospital stay. This bias can be corrected by weighting patients inversely

proportional to their time-at-risk (Table 1).2'*

Comparison of Study Designs

Table 1 provides a brief overview of the selection bias associated with each sampling design and shows the weights
applied to cases and controls. In contrast to NCC and PP weights, which are time-fixed, CC weights are time-dependent.
In the CC design patients outside the sub-cohort, who are event free yet have a weight of 0. A patient’s weight changes to
1 at the time of the event (eg, infection). In contrast, a patient’s weight remains constant in the NCC and the PP
designs.'**? The amount of patient information required for the consideration of the competing risks is the same for the
sampled cohort in all sampling designs (event of interest and competing event time, time of censoring). However, the
information to construct IPW differs for each design. CC requires the number of patients in the full cohort, which patients
were part of the cohort from the beginning and the time of the event for each patient. PP requires the lengths of stay for
each sampled patient. For the calculation of weights in the NCC design, we need the most information because controls
are sampled at the time a case occurs. Therefore, in addition, we need to know the time of entry into the study population,
the time of each event (including competing events), and time of censoring to be able to calculate the inclusion
probability for each patient.'?

Description of the Dataset

We used data from a prospective single-center observational cohort study from the Burdenko Neurosurgery Institute in
Moscow, Russia, carried out to determine, among other outcomes, the incidence of and risk factors for nosocomial blood
stream infections (BSI).’

The study complies with the Declaration of Helsinki and the Institutional Review Board of the Burdenko
Neurosurgery Institute approved the original study performed from 2011 to 2018 and granted a consent waiver status.
Based on the non-intervention nature of the study with no additional interventions besides those in the regular therapeutic
regimen, the study presented no more than minimal risk of harm to subjects and it was decided that no informed consent
from the patient was required (criteria 45 CFR 46.117(c) and its Russian analogue).?>*® The data base was de-identified
prior to downloading. All protected health information was removed.

Patients had a length of ICU stay from 1 to 898 days (median = 9, interquartile range (IQR) = 5-21). All patients
included in the study are from the intensive care unit. The length of stay in the neurosurgical ICU may be longer than in
other types of ICU but still comparable to other acute care settings. As risk factor, we used the Charlson Comorbidity
Index (CCI),*” a validated measure of prognostic comorbidity. Patients with missing CCI at admission were excluded
(n = 33). In our data example, the CCI ranged from 0 to 12 with a median (IQR) of 3 (2—-5). For simplicity, we assume
a linear effect of the CCI.

We sampled patients from the full cohort according to each of the three study designs (Supplement Table 1). To

reduce the variability by the sampling process, we sampled each study design 100 times and pooled the calculated
estimates. We chose a sampling fraction of 15% for the CC design and selected four controls for each case in the NCC
study. We randomly assigned a pseudo-sampling day (between 0 and 137, the 0.99 quantile of the length of stay in the
full cohort) for the simulation of the PP study. If the length of stay in the ICU was larger than the random number, the
patient was sampled. Therefore, patients were sampled with a ‘length bias’ as would be the case in a real PP study.

Results

We first show how to interpret the results of the competing event analysis with the full cohort. Afterwards, we
demonstrate the influence of selection bias on the analysis for the three sampling designs and illustrate how IPW
corrects this bias.
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Figure 3 Inverse probability weighting corrects the cumulative hazards for infection (top) and discharge without infection (alive or death) (bottom) for the three study
designs. The weighted estimates are close to the full cohort estimates. Each study design was sampled 100 times from the full cohort. One random sample is shown in the
plot. For the calculation of the cumulative hazard of discharge in the CC study in the "weighted" analyses, only the random sub-set was used and no inverse probability
weights were applied.

Abbreviations: Full, Full cohort; CC, case-cohort; NCC, nested case-control; PP, point prevalence.

How to Interpret the Results of the Full Cohort
In the data example, we were interested in how the daily hazards change over time of ICU stay, and what is the
probability of a patient to acquire a BSI or a competing event.

The daily hazard of acquiring a BSI is almost steadily the same (Figure 3 top, slope of the solid line). The daily
hazard of being discharged alive or dead is high in the first 10 days of the ICU stay and decreases from the 10th day
onwards (Figure 3 bottom, slope of solid line). The risk of being discharged (alive/death) without BSI is a lot greater
than the risk of acquiring a BSI. On the condition that the patient still is in the ICU, the probability to acquire a BSI in
the first 60 days of the ICU stay is 5% (Figure 4). In addition, we were interested if the morbidity on admission,

Clinical Epidemiology 2022:14 htps: 1059

Dove:


https://www.dovepress.com
https://www.dovepress.com

Staus et al Dove
Infection
unweighted weighted
o o
N e --- CC
E A - 1o NCC
8 N o e N4 ---- PP
c O Jd ” o
5 el
-2 -
£ I,
02 | (I Lr1 2
2o r’ e —— T T o
(_g r.'l ,’_'-/
E 7 ':7 /-/ - CCEL s S
> -,
Sg| 2 s|
0 10 20 3 40 5 60 - 6 10 20 30 40 50 60
Days since admission Days since admission
Discharge/Death without Infection
unweighted weighted
o | o
c Al b
S
g © | ©
-E o o
8
c © | ©
O O o
°
(8]
£ < | <
o O o
=
Sy N
= o o
>
©o | o
o o

T T T T T T T

40
Days since admission

50 60

T T T T T T T

30 40
Days since admission

50 60
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Abbreviations: Full, Full cohort; CC, case-cohort; NCC, nested case-control; PP, point prevalence.

measured by the CCI, had an influence on acquiring a BSI. When analyzing the full cohort, a direct influence of the CCI
on the rate of acquiring a BSI was undetectable (Figure 5 top left, the CI includes 1). However, the CCI seems to
influence the length of stay (Figure 5 top right, the CI excludes 1) and therefore may also indirectly influence the
absolute risk of infection (ie, the cumulative incidence). This is because the CIF depends on all competing events,
including the hazards of the competing events. Patients with a higher CCI seem to be discharged at a lower rate (HR <1)
and therefore might have a prolonged risk to acquire a BSI. The indirect effect of the CCI on the risk of acquiring BSI is
also reflected by the odds ratio (OR >1) of infection (Figure 5 bottom left). Furthermore, we were interested in how
many patients acquired a BSI, independent of the influence of comorbidity. This answers the baseline odds for
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infection, which can be interpreted as follows: in the group of patients with a CCI Score of 0 (most healthy, younger
than 50), there are for every patient without a BSI, 0.05 (95% CI 0.03—0.06) patients who acquired a BSI (Figure 5
bottom right).

Which Effect Has the Sampling Bias on the Results

Now we compare the results of the three sampling designs. The probability of becoming infected and being discharged
over time as absolute risks measures are heavily biased. The cumulative hazard/ CIF for infection is overestimated, as
cases are overrepresented in the sampled cohorts. The unweighted CC cohort analysis depicted in Figure 4 estimates the
probability to have acquired a BSI at 60 days of ICU stay, when still in the ICU to be 25% compared to a probability of
5% analyzed with the full cohort. The cumulative hazard/ CIF for discharge without infection in contrast is under-
estimated by the naive analysis of the NCC and PP design, as controls are underrepresented (Figure 3, Figure 4). The
probability of a patient to be discharged at day 60 was estimated around 60% compared to 90% estimated with the full
cohort. For the sake of simplicity only one randomly selected sample of the 100 performed is shown in Figures 3 and 4.
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The unweighted infection cumulative hazard/ CIF of the CC study are the most biased compared to the NCC and the PP
study design in our setting because the case proportion differs greatest from the full study population. In our setting 28.6
+1% of sampled patients were cases in the CC design, 25.7+0.5% in the NCC designs, and 15.5+1.4% in the PP design
compared to 5.7% in the full cohort (mean + standard deviation). The discharge cumulative hazard/ CIF of the CC study
is less biased as controls are less underrepresented. In addition, the estimation of the CIF in the unweighted CC design
has a greater variability, which is reduced by weighting (see Supplement Figure 1).

The naive PP design most closely resembles the full population in terms of case proportion and therefore also in terms
of the infection cumulative hazard/CIF in the unweighted analysis. Applying IPW can restore the cumulative hazard/CIF
of the full cohort. When comparing relative risk measures as seen in Figure 5 for the HR of infection, the HR of
discharge without infection and the OR for infection, the sampling bias is small. The selection bias is large when
analyzing baseline odds, which are absolute risk measures. The baseline risk for infection is heavily overestimated by the
naive analysis of the sampling designs, as cases are overrepresented in the sampled cohorts. IPW can reconstruct the
baseline odd estimates of the full cohort.

Discussion

To our knowledge, the different inverse probability weighting methods have not previously been compared side-by-side
for the three study designs. In addition, the weighting methods combined with a competing risk approach, explained here,
together solve several common pitfalls in the analysis of nosocomial infection studies.

For demonstration in this tutorial paper, we were interested in the incidence of blood stream infections acquired in the
ICU and the effect of the CCI comorbidity measure at ICU admission on the infection rate. Using this example, we
explained two common biases and how they can be solved. First, sampling bias was introduced by design (see Box 1).
Second, competing risk bias was introduced due to the setting (see Box 2).

The Effect of the Sampling Bias Can Be Repaired by IPW

We showed that especially absolute risks are affected by the sampling bias. Relative risk measures are only slightly
affected in the naive analysis, as the ratio remains the same even when nominator and dominator are skewed. We
demonstrated how this bias is counterbalanced by the integration of IPW. In NCC studies, controls are time-matched only
to cases of a particular disease or event. IPW relaxes this time-matching, therefore exposures associated with other
outcomes can be analyzed (eg, the competing risks discharge and death). CC studies are designed to estimate risk factors

Box | Selection Biases by Design

® By design, case-cohort and nested-case control cohorts differ by case proportion from the full cohort (“selection bias”).

® Nested case-control and point prevalence designs preferably sample patients with a longer length of stay (“length bias™).

® Their naive analyses lead to biased absolute risks.

® The solution is inverse probability weighting: patients with a low inclusion probability into the study are up-weighted to reconstruct the full
cohort.

® With inverse probability weighting you can estimate absolute risks more precisely.

® |nverse probability weighting is easy to perform and possible for case-cohort, nested-case control and point prevalence studies.

Box 2 Competing Risk Bias by Setting

® |n the setting of nosocomial infections, discharge and death constitute competing risks.

® Competing risks change the probability for the event of interest.

® Common approaches assume no change in probability when the patients are censored. This leads to biased estimation of the risk of infection and
biased analysis of the influence of covariates (“competing risks bias”).

® A solution is the use of multi-state models and event-specific Cox proportional hazard models.

® These models can also be used to examine composite effects of covariates on the risk of infection, which include effects on competing events.

® Several tutorials and software are available to implement these methods for your analysis.
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for several outcomes. PP studies are designed to evaluate prevalences. IPW extends the naive analysis of NCC, CC and
PP studies to be able to evaluate incidences and absolute risks. Applying IPW enables a re-evaluation of valuable datasets
to exploit their full potential. This is possible without the cost of collecting additional information in NCC and CC
studies. For PP studies, a follow-up is needed to capture the information of the total length of stay.

Competing Risk Bias Can Be Addressed by Using a Multi-State Model
In this setting, competing risks needed to be taken into account. As a result, we were able to investigate the direct and
indirect effects of the covariate CCI on infection.

The results of the data example suggested that the CCI does not have a direct influence on the rate of infection. Using
two separate Cox proportional hazards model, we could show that there is an indirect influence of the CCI on infection. As
the CCI changes the rate of the competing risk discharge before infection, the CCI changes also the time at risk to acquire
an infection. This is a common finding in nosocomial infection studies and further explained in Wolkewitz et al 2014.* In
this example, we were first and foremost interested in nosocomial infections in the ICU. Therefore, we emphasized that
patients leaving the ICU are no longer at risk to acquire a nosocomial-ICU infection. When interested in surgical site
infections for example, discharged patients are still at risk to acquire an infection. However, these infections are recorded
less frequently when patients leave the hospital. Thus, the incidence of infections in these situations might be under-
estimated. Still, the competing event discharge has a large impact on whether the infection is observed and therefore an
assumption of non-informative censoring is wrong. Therefore, discharge and death should still be acknowledged as
competing risks as they change the probability to detect or to acquire an infection. Some selected tutorials for

a competing risk analyses are.*>

Possible Extensions of the Methods

The quite simple competing risk modelling approach we used can be adapted to more complex settings with several
states and more complex Cox models with several covariates. For example, one could investigate the different effect of
a covariate on discharge alive compared to death, which we combined due to simplicity. When interested in the
consequences of infection, rather than the risk of infection, the analysis can be expanded for all three study designs as
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shown nicely by von Cube et al'® for the case-cohort design, by Feifel et al*® for the nested-case cohort design and by

Doerken et al*® for the point-prevalence design.

Summary
We want to emphasize with this paper that very simple weighting strategies can effectively avoid selection bias and
expand your data analysis. The R code in the supplement can support the reader with their own analysis.
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