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Abstract

Background

Current tissue engineering methods are insufficient for total joint resurfacing, and chondro-

cytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated

chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan

(GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived ex-

tracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance

human articular chondrocyte expansion and maintain re-differentiation potential.

Methods

Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devi-

talized synoviocyte matrices were compared against tissue culture plastic for their ability to

support human chondrocyte expansion. Expansion was further compared at both low (5%),

and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent

chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen

tension. Aggregates were assessed for their GAG and collagen content both biochemically

and histologically.

Results

Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue

culture plastic, and cells retained their re-differentiation capacity for twice the number of

population doublings. There was no significant difference in growth rate between low and at-

mospheric oxygen tension. There was significantly less collagen type I, collagen type II,
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aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue

culture plastic. There were also significant effects due to oxygen tension on gene expres-

sion, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 ex-

pression on tissue culture plastic compared to synoviocyte matrix. There was a significant

increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiat-

ed at low oxygen tension over that achieved in atmospheric oxygen conditions.

Conclusions

Synoviocyte-derived matrix supports enhanced expansion of human chondrocytes such

that the chondrocytes are maintained in a state from which they can re-differentiate into a

cartilage phenotype after significantly more population doublings. Also, low oxygen tension

supports GAG, but not collagen, accumulation. These findings are a step towards the pro-

duction of a more functional, tissue engineered cartilage.

Introduction
Human articular cartilage has long been known to have a poor repair capacity [1]. Cartilage
consists of a largely avascular, hypocellular, collagen and glycosaminoglycan (GAG) matrix
[2]. Current orthopedic clinical practice attempts to relieve pain, aid repair or delay damage
using non-steroidal anti-inflammatories, steroid injections, or hyaluronic acid injections. For
large lesions, or those that do not respond to these treatments, surgeons have several options,
including: microfracture, mosaicplasty [3], autologous chondrocyte implantation (ACI) [4],
matrix assisted autologous chondrocyte implantation (MACI) [5], or, finally, total joint re-
placement. There are advantages and disadvantages to each technique. Microfracture and
mosaicplasty have the advantage of being performed in a single surgery, but are only applicable
to small lesions, and microfracture often results in a fibrous repair [5]. Both ACI and MACI
are autologous cell transplantation techniques, which have the disadvantage of requiring two
surgical procedures; cartilage biopsies are taken from low load-bearing regions, grown in cul-
ture and then implanted. However, ACI is a generally accepted technique, with good long-term
outcomes when assessed by patient scoring systems [6, 7]. In an objective assessment of chon-
drogenesis, biopsies of 406 ACI patients showed hyaline cartilage in only 14.9% of patients,
mixed hyaline and fibrous cartilage in 27.5%, fibrocartilage in 47.7% and fibrous repair in the
remaining 9.9% [8]; similar results have been reported elsewhere [9]. This lack of hyaline carti-
lage formation could be due to the limited ability of human chondrocytes to expand on tissue
culture (TC) plastic and their progressive loss of chondrogenic phenotype [10–12] and de-
creased capacity to re-differentiate [13]. Without the formation of hyaline cartilage that is able
to provide mechanical support during joint function, the long-term prognosis for these re-
paired joints is poor. In addition, joints with even larger lesions are unlikely to see any clinical
benefit from these procedures. As such, it is currently unfeasible for a human total joint to be
resurfaced with autologous chondrocytes without improved expansion conditions that pre-
serve chondrogenic potential.

Synoviocyte matrix has previously been shown to provide an environment that enhanced
the growth and reduced the dedifferentiation of porcine articular chondrocytes [14], but this
has not been shown for human chondrocytes. Previous work on synoviocyte matrices has used
detergent as a decellularization method [14, 15]. However, detergent decellularization removes

Synoviocyte Derived-Extracellular Matrix Enhances Chondrogenesis

PLOS ONE | DOI:10.1371/journal.pone.0129961 June 15, 2015 2 / 21

Competing Interests: The authors have declared
that no competing interests exist.



some extracellular matrix and disrupts collagen [16], and it is also difficult to completely re-
move detergents, which can have detrimental effects on cell viability [17]. This report describes
the assessment of three non-detergent methods of devitalization [16], including a novel etha-
nol-based devitalization, of synoviocyte matrix for the expansion of human chondrocytes.

Low O2 (5%) tension during expansion culture has been reported to trend towards en-
hanced growth rate in rabbit chondrocytes [18], but to have no significant effect on human ar-
ticular chondrocyte growth [19]. When cells are re-differentiated in low O2, chondrogenesis
has been elevated in rabbit [18], bovine [20], and human [19, 21] articular chondrocyte cul-
tures. However, it has also been shown to have negative effects on chondrogenesis in bovine ar-
ticular chondrogenesis [22] and highly donor dependent results with human bone marrow
MSCs [23]. Due to the conflicting results found in the study of chondrocyte expansion under
low or atmospheric oxygen tensions (Table 1) [24], we considered oxygen tension to be an

Table 1. Effect of reduced oxygen tension on in vitro human chondrogenesis.

Cells Differentiation
Format

GAG Collagen Gene Harvest time Expansion Differentiation
O2 tension (%)

Ref

*BC **H *BC **H Sox9 Col1 Col2 Col10 ACAN (d = days,
wk = weeks)

Passages
(P) and O2

tension (%)

ACs Micropellets + = + - = + - + d4, d7, d11,
d14

P3 2% 2, 20% [21]

ACs Pellet = = na = na = + = + d7, d14, d28 P3 5, 20% 5, 20% [19]

ACs Pellet + + + + na na + na + 2wk, 4wk P2 5, 19% 5, 19% [49]

ACs Pellet + na - = na + + + + d14 P1-3, 20% 2, 20% [48]

ACs Alginate beads = na = na na na na na na d1, d2, d4 P3 5% <1, 2, 5, 21% [52]

ACs Alginate beads + na na na + = + na + d7,d14,d28 P3 20% 5, 20% [53]

ACs Alginate beads na na na na = = = na = d5 P3 21% 5, 20% [54]

ACs Alginate beads na na na na + = + na + d21 P2-3 21% 5, 21% [55]

ACs fibrin glue,
genipin cross-
linked

= = - = = = + na = d1, 2.5wk,
7wk

P0 21% 5, 21% [56]

ACs MPEG-PLGA na na na na + = + na + d1, d2, d6 P2 21% 1, 5, 21% [57]

ACs Monolayer na na + na + na + na + d3 P0-3 20% 1, 20% [58]

AC
explants

Explants na na na na + na + = + d3 P0-3 20% 1, 20% [59]

ACs Type I and III
collagen sponge

+ na + na + - + = + d0, d3, d7,
d14

P1 21% 3, 21% [60]

BM
MSCs

Alginate beads na + na = + + + + + d1, d3, d7,
d21

P5 21% 5, 21% [61]

BM
MSCs

Pellet +/- +/- +/- +/- na +/- +/- +/- na 4wk P2-4 21% 5, 20% [23]

NCs Pellet + + na = na na na na na d21 P2 21% 1, 5.25, 21% [62]

Assessment of the effect of reduced oxygen tension on chondrogenesis: several of the manuscripts were comparing the effects of factors other than

oxygen tension. Where the normoxic/hypoxic responses were not compared, assessment was made comparing the data presented for normoxic and

hypoxic conditions in the same format; + indicates overall positive results,—indicates overall negative results and = indicates overall no significant effect,

the +/- indicates that different donors responded differently;

*BC = biochemical assay,

**H = histological assessment;

ACs = articular chondrocytes, BM MSCs = bone marrow mesenchymal stem cells, NCs = nasal chondrocytes; for gene expression, an increase in

expression of Sox9, Collagen type 2 (Col2) and Aggrecan (ACAN), and a decrease in expression of Collagen type1 (Col1) and collagen type 10 (col10)

were considered positive in terms of articular chondrogenesis.

doi:10.1371/journal.pone.0129961.t001
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important parameter to investigate. Therefore, low O2 conditions were tested in conjunction
with chondrocyte expansion on synoviocyte matrices and their subsequent re-differentiation in
aggregate culture.

The present study looked at two factors vital to improved cartilage tissue engineering: 1) in-
creased cell expansion; and 2) maintenance of chondrogenic potential. It was hypothesized
that devitalized synoviocyte matrix would both increase the expansion of human chondrocytes
and preserve their chondrogenic potential. Initial studies determined that detergent-based de-
vitalization methods, even at low concentrations or after extended washes, caused the majority
of the synoviocyte cell matrix to detach, and did not improve human chondrocyte expansion.
To address these problems, three alternative synoviocyte extraction methods were assessed:
freeze/thaw; freeze/thaw plus sonication; dry ice-cooled ethanol. All three showed high reten-
tion of the devitalized synoviocyte matrix and supported human chondrocyte growth. These
three methods were compared to identify the one which produced the greatest population ex-
pansion while maintaining differentiation potential. It was also hypothesized that low O2 ten-
sion would support chondrocyte growth and re-differentiation. It was further hypothesized
that the combination of the synoviocyte matrix and low O2 tension would have an additive ef-
fect on cell growth and re-differentiation. Re-differentiation was assessed by GAG and collagen
content biochemically, and by GAG and type II collagen staining histologically. Re-differentia-
tion into hyaline- like articular cartilage is defined by GAG and collagen accumulation, specifi-
cally type II collagen.

In summary, it was hypothesized that synoviocyte matrix expansion would support human
chondrocyte chondrogenesis over more population doublings (PDs); that low O2 tension
would support chondrogenesis; and that the combination of the synoviocyte matrix expansion
and low O2 tension would have a cumulative effect on chondrogenesis.

Materials and Methods

Ethics Statement
Human chondrocytes were obtained from discarded tissue from total joint replacement surger-
ies with written informed consent under an IRB approved protocol: IRB # IRB08-00104 of The
Metro Health System, Cleveland, OH. Synovial tissue was obtained from humanely euthanized
sows after their use in surgical training (unpublished, not connected with this research). The
surgical training lab was conducted under an IACUC approved protocol. Pigs were used in a
terminal procedure and euthanized by lethal injection of Euthasol (pentobarbital sodium and
phenytoin sodium) per protocol at the end of the lab, but prior to tissue harvesting (Case West-
ern Reserve University and University of Washington).

Synoviocyte isolation, culture and devitalization methods
Synoviocytes were isolated and cultured much as previously described [15]. Briefly, synovial
membrane tissue was isolated from the knees of ~6-month-old sows within 2 h postmortem
using sterile surgical technique (n = 5). The isolated membrane was then minced and digested
with bovine testicular hyaluronidase (Sigma; 660 Units/ml in DMEM-LG) for 15 min at 37°C,
centrifuged (500 RCF, 5 min) and the supernatant discarded. The tissue was then digested with
trypsin/EDTA (Gibco; 0.25% (w/v)) for 30 min at 37°C, centrifuged (500 RCF, 5 min) and su-
pernatant discarded before a final digestion in type II collagenase (Worthington Biochemical
Corp.; 583 Units/ml) for 3 h at 37°C. The resulting solution was passed through a 70 μm filter
and centrifuged (690 RCF; 10 min). Cells were counted and flasks seeded at 3,000 cells/cm2

and cultured in DMEM-LG, 10% (v/v) FBS, Pen/Strep (100 Units/100 μg/ml) until confluent.
At the end of primary culture (P0) and second passage (P2) stocks were made by controlled

Synoviocyte Derived-Extracellular Matrix Enhances Chondrogenesis

PLOS ONE | DOI:10.1371/journal.pone.0129961 June 15, 2015 4 / 21



rate freezing in FBS containing 10% (v/v) DMSO and stored under liquid nitrogen. For the pro-
duction of synoviocyte matrix-coated flasks, P2 cells were thawed from frozen stocks and seed-
ed on TC flasks (Corning) at 6,000 cells/cm2. They were grown in DMEM-LG + FBS (10% v/v)
until 80–90% confluence (~7 days), and then switched to DMEM-LG + FBS (10% v/v) contain-
ing 50 μM ascorbate-2-phosphate for an additional 7 days. Fully confluent flasks were rinsed
with PBS, the PBS removed and quick frozen on dry ice-cooled ethanol (190 proof). Flasks
were either stored at -80°C for later devitalization or immediately devitalized by one of three
methods: 1) 3 cycles of thawing/freezing (F-SCM); 2) 3 cycles of thawing/freezing followed by
1 min of sonication (S-SCM); 3) addition of dry ice cooled ethanol (200 proof) onto the syno-
viocyte matrix surface (30 s) on dry ice-cooled ethanol (E-SCM). The ethanol extract was dis-
carded and the flask dried in a laminar flow sterile environment for approximately 30 min. The
flasks were rinsed twice with PBS and then used for the culture of human chondrocytes.

Human chondrocyte expansion
Human chondrocytes were thawed from the end of P0 stocks, rinsed in expansion medium
(DMEM-LG with 10% v/v FBS [human MSC selected lot [24]] containing penicillin/strepto-
mycin [Invitrogen]), centrifuged (500 RCF, 5 min), resuspended in expansion medium, and a
trypan blue-stained aliquot was counted in a hemacytometer. Cells were seeded into T175 TC
plastic flasks (Corning) at 1 x 106 cells/flask at both low (5%) and atmospheric (20%) O2. At
confluence (end of P1), flasks were trypsinized (0.25% w/v trypsin/EDTA), the trypsin neutral-
ized with FBS, centrifuged (500 RCF, 5 min), trypan blue stained, counted and split between
synoviocyte matrix-coated or uncoated flasks under the same O2 tension as the prior expansion
at 6,000 cells/cm2 (Fig 1). At confluence (end of P2, P3, P4), flasks were trypsinized, viable cells
counted using trypan blue and passaged to a new flask under the same conditions and aggre-
gate cultures made (Fig 1). PDs were calculated from the point the cells were split between each
condition using the formula PD = (log10 (harvested cell count)—log10 (seeded cell count)) x
3.32 and sequential passages summed to give cumulative population doublings [25].

qPCR chondrocyte gene expression analysis
qPCR experiments were conducted in accordance with the minimum information for publica-
tion of quantitative real-time pcr experiment (MIQE) guidelines[26]. Human chondrocytes (7
donors) were thawed from end of P0 stocks, and expanded as described above except on T75

Fig 1. Experimental culture conditions overview.Human articular chondrocytes were thawed from frozen
stocks and initially expanded on TC plastic before being split between each of the surfaces (TC plastic,
F-SCM, S-SCM and E-SCM) and expanded for 3 passages with aggregates made at each passage. All steps
were conducted at either (20%) atmospheric or low (5%) O2 tension.

doi:10.1371/journal.pone.0129961.g001
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flasks and only comparing TC plastic with E-SCM (Fig 1). Flasks were harvested at day 6 (P1),
day 11 (P2), day 16 (P3) and day 21 (P4) during the logarithmic growth phase with 1 flask
being extracted for RNA analysis with TRK Lysis buffer (E.Z.N.A. Tissue RNA Kit, Omega
Bio-Tek) and the lysate frozen on dry ice and stored (-80°C, 1–6 weeks). The other flask was
trypsinized, counted and seeded into a new flask. Total RNA was isolated from the lysates after
thawing on ice using column purification (Direct-zol RNA mini-prep, Zymo Research), as per
the manufacturer’s instructions with on-column DNA digest (DNase I, Zymo Research). RNA
purity was analyzed by 260 nm / 280 nm ratio (Tecan Nanoquant) and degradation assessed
using an Agilent Bioanalyzer (Genomic and RNA Profiling Core at Baylor College of Medi-
cine). cDNA was synthesized from 500 ng of RNA using a Superscript III First Strand RT-PCR
kit with oligo(dT)20 priming, according to the manufacturer’s instructions (Invitrogen). Quan-
titative real-time PCR was performed on a LightCycler Instrument (Roche) (2 μl of cDNA at a
1:8 dilution; with 16.5 μl of a mix containing 9.6 μl water (Roche), 2 μl of forward and reverse
primers (50 nM), 2 μl Master mix (LightCycler FastStart DNAMaster SYBR Green I, Roche),
2.4 μl MgCl2 (25 mM, Roche) with 0.4 μl of Uracil-DNA Glycosylase [Roche]). Cycling param-
eters were: 95°C for 10s then 45 cycles of 95°C 10s, 60°C 7s, 72°C 20s, followed by melt curve
analysis. Seven reference genes (Ribosomal 18S, Glyceraldehyde 3-phosphate dehydrogenase,
Beta-2 microglobulin, Hydroxymethylbilane synthase, Beta-actin, Tata-box binding protein
and Hypoxanthine Phosphoribosyltransferase 1 (HPRT) were assessed for stability on a subset
of samples. HPRT was determined to be the most stable across all conditions and therefore
used as the internal control (reference gene) to normalize gene expression (primer sequences
used are shown in S1 Table). All quantification cycles (Cq) were within the linear portion of
log dilution analyses and>2 cycles higher than the negative control, melting temperatures
were also consistent (S2 Table). Data for the comparison of expansion on TC plastic or E-SCM
is presented as the expression of the target gene vs HPRT relative to the P1 sample on TC plas-
tic. In the comparison of the effect of oxygen tension, each donor’s normalized gene expression
at low oxygen tension was compared to its expression at atmospheric oxygen tension.

Human chondrocyte re-differentiation—Aggregate cultures
Differentiation media contained DMEM-HG, ascorbate-2-phosphate (120 μM;Wako Pure
Chemicals), dexamethasone (100 nM; Sigma), ITS + Premix (1% v/v; BD Biosciences), TGFβ1
(10 ng/ml; Peprotech), and sodium pyruvate (1 mM; Invitrogen) [27]. Trypsinized cells were
resuspended in differentiation media and aggregate cultures made using 250,000 cells/aggre-
gate (200 μl) seeded in each well of a polypropylene v-bottom 96-well plate. Plates were then
centrifuged (600 RCF, 5 min), and placed in an incubator at the same O2 tension as that in
which they were expanded. Media was changed on aggregates after 1 day, and every other day
after that until harvest at day 21. At harvest, aggregates were weighed and either frozen (-80°C)
for biochemical assays or fixed in neutral buffered formalin for histology.

Biochemical analyses
Aggregates were thawed and papain digested (200 μl of papain digest buffer: 25 μg/ml papain
(Sigma) in aqueous 2 mM cysteine (Sigma); 50 mM sodium phosphate (Sigma); 2 mM EDTA
(Sigma); adjusted to pH 6.5 with 1 M HCl/NaOH) for 3 h at 65°C with vortexing every 30 min.
Digests were then split between two tubes for either DNA/GAG assay [28] or hydroxyproline
assay [29–32]. For the DNA/GAG assay, papain digestion was arrested by the addition of
200 μl of 0.1 M NaOH, incubated at RT for 30 min. This solution was then neutralized with
200 μl phosphate buffer (100 mMNaHPO4 (Sigma) pH 7.2; 0.1 M HCl). The DNA content
was analyzed in triplicate against a standard curve produced with calf thymus DNA (Sigma)
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diluted in neutralized papain digest buffer using Hoechst dye (Hoechst 33258; Sigma; 0.667 μg/
ml in 0.2 M phosphate buffer, pH 8). Fluorescence was read on a Fusion plate reader (Excita-
tion 365 nm, Emission 460 nm; Packard Biosciences) using black 96-well plates (Greiner).
GAG content was assessed from the same neutralized solution against a standard curve gener-
ated using chondroitin sulfate (Seikagaku) diluted in neutralized papain buffer. Colorimetric
assays using Safranin-O were performed as previously described [28], and absorbance read at
536 nm (Optimax microplate reader, Molecular Devices). For the hydroxyproline assay, modi-
fications to previously-described methods were made [29–32]. Briefly, 1 ml of HCl (6 M) was
added to the digest and the sample hydrolyzed by incubation at 100–110°C overnight. Samples
were then dried by incubation at 65–70°C for 1–2 days. Dried samples were then solubilized in
100 μl of 18 megaohm water (Nanopure, Thermo Scientific) and 20 μl transferred to a 96-well
clear plate in triplicate. A standard curve of hydroxyproline diluted in papain buffer was also
added. To these, 20 μl of 0.15 M CuSO4 and 20 μl of 2.5 M NaOH was added and incubated at
50°C for 5 min, followed by the addition of 20 μl of 6% (v/v) H2O2 and a further incubation at
50°C for 10 min. Plates were allowed to cool to RT before addition of 80 μl of 1.5 M H2SO4,
then 40 μl of Ehrlich’s reagent (10% (w/v) p-dimethyl-amino-benzaldehyde (Sigma) in 60% (v/
v) isopropanol, 18.2% (v/v) perchloric acid, 21.8% (v/v) megaohm water) and incubation at
70°C for 16 min. Following this, plates were allowed to cool to RT before analysis of absorbance
(505 nm, Optimax microplate reader, Molecular Devices).

Histological assessment
Aggregates, fixed in neutral buffered formalin (Azer Scientific), were paraffin-embedded and
sectioned (5 μm). Sections were stained for GAG: 6 min in 0.1% (w/v) Safranin-O solution con-
taining 1% (v/v) acetic acid and counterstained for 2 min in 1% (w/v) Fast Green containing 7%
(v/v) acetic acid. For immunohistochemistry, unstained sections were de-paraffinized, outlined
with a mini pap pen (Diagnostic Biosystems) and covered with pronase (1 mg/ml (Sigma) in
PBS containing 5 mM CaCl2) and incubated at RT for 10 min. Sections were then rinsed with
PBS, blocked with PBS/BSA 1% (w/v) (10 min RT), incubated with primary antibody overnight
at 4°C (type II collagen: 1/500 in PBS/BSA 1% (w/v) [mouse monoclonal IgG1, raised against
chicken collagen type II; II-II6B3 cell culture supernatant, DSHB]; type X collagen: 1/500 in
PBS/BSA 1% (w/v) [mouse monoclonal, a kind gift from Dr. Gary Gibson, Henry Ford Hospi-
tal]; elastin: 1/400 in PBS/BSA 1% (w/v) [mouse monoclonal clone 10B8 raised against chick
tropoelastin, MAB2505; Chemicon]). Following this they were rinsed with PBS and incubated
for 1 h at RT with secondary antibody (Horse anti-mouse, 1/2000 in PBS/BSA 1% (w/v); BA-
2000, Vector Labs), rinsed with PBS then incubated with streptavidin-conjugated horseradish
peroxidase for 45 min at RT (1/400 in PBS/BSA 1% (w/v), SNN1004, Gibco), rinsed with PBS
then incubated with peroxidase substrate (VIP substrate, Vectashield) for 10 min at RT. Slides
were rinsed in distilled water and counterstained with Fast Green (0.0125% (w/v) in 24.25% (v/
v) ethanol, 0.875% (v/v) acetic acid; Alfa Aesar) before rinsing in distilled water, and dehydra-
tion with ethanol then xylene, before drying and mounting (Permount, Fisher Scientific). Im-
ages were taken on a DME Upright brightfield microscope (Leica) at RT using a 10x 0.25 NA
lens, using Leica Acquisition Software EZ (v1.7.0) with a Leica EC3 camera and background
corrected and tiled using GNU Image Manipulation Program (GIMP 2.8.6).

Statistical analyses
Comparisons between regression curves were made using a method equivalent to an Analysis
of Covariance (ANCOVA, GraphPad Prism V.6.02). Comparisons of growth rates were made
using one-way repeated measures analysis of variance (ANOVA) with Sidak’s correction for
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multiple comparisons (GraphPad Prism V.6.02). Matrix accumulation results were compared
with repeated measures two-way ANOVA with Holm-Sidak’s correction for multiple compari-
sons (GraphPad Prism V.6.02). Relative gene expression values were compared between sur-
faces at each passage with a ratio paired t-test (GraphPad Prism V.6.02) using Bonferroni
correction to indicate significance (i.e. p< 0.05/3). For comparison between oxygen tensions,
ratio paired t-tests were used (GraphPad Prism V.6.02) using Bonferroni correction to indicate
significance. Comparisons of gene expression with the control (P1 TC plastic expansion) were
performed with Linear trend post-hoc analysis (GraphPad Prism V.6.0.2). Values quoted in
the text are mean ± S.D.

Results

Expansion
We found significantly enhanced growth of human chondrocytes on all synoviocyte matrix-
coated flasks compared to cells on TC plastic alone (uncoated) at both atmospheric (20%) O2

(Fig 2A) and low (5%) O2 (Fig 2B) conditions, regardless of the method used to devitalize the
matrix. Although none of the growth curves on devitalized matrix were significantly different
from each other, they were all significantly different from those on uncoated plastic (p< 0.01).

Fig 2. Human chondrocyte expansion on plastic and devitalized synoviocyte matrix.Cumulative
population doublings; 5 independent experiments from 4 donors with 3 passages in each condition. A)
treatment comparison at atmospheric O2. B) treatment comparison at low O2. Linear regressions frommatrix
expanded cells were significantly different compared to uncoated controls (p < 0.01).

doi:10.1371/journal.pone.0129961.g002
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The growth rate on matrix-coated flasks was approximately double that on uncoated flasks
(Fig 3A and 3B) with all devitalized synoviocyte matrix-coated flasks yielding significantly
greater cell numbers than uncoated flasks (p< 0.002). Devitalization using the dry ice-cooled
ethanol method (E-SCM) resulted in the most consistent surface, with no detachment of the
cell layer, giving a significant increase in growth rate at atmospheric O2 over that found with
the other methods (F-SCM & S-SCM; Fig 3A). At low O2, this increase in growth rate over the
two other methods was less pronounced and only statistically significant between the E-SCM
and S-SCM groups (Fig 3B). Within each expansion surface, oxygen tension did not have a sig-
nificant effect on growth rate (Figures A and B in S1 Fig). Control comparisons between
human chondrocyte growth on TC plastic, and expansion on TC plastic coated with gelatin,
collagen type I, or fibronectin showed no apparent morphological or proliferative benefit from
the coatings (S2 Fig).

Fig 3. Population doubling rate on plastic and devitalized synoviocyte matrix. The population doubling
rate from 5 independent experiments from 4 donors with 3 passages in each condition. A) treatment
comparison at atmospheric O2. B) treatment comparison at low O2. Conditions which do not share the same
letter were significantly different (p < 0.002).

doi:10.1371/journal.pone.0129961.g003
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Gene expression
RNA isolated from monolayer culture had high 260/280 nm ratio (2.03 ± 0.02) and good yield
(377 ± 147 ng/μl giving 18.8 ± 7.4 μg total). RNA integrity numbers (RIN) also showed intact
RNA (9.04 ± 0.83). Reference gene analysis showed HPRT to be the most stable across the con-
ditions (S1 Table) and was similar for passage 1–3 with increased expression at P4 (Figure B in
S3 Fig), and a linear trend was evident within each condition against population doublings
(Figure A in S3 Fig). Further analysis showed that, within each passage, there was no significant
difference in HPRT expression between the groups tested (Figures C-F in S3 Fig). Relative gene
expression was therefore tested within passages, and comparison between passages was only
made up to P3. Expansion on E-SCM significantly decreased collagen type I expression at both
atmospheric and low oxygen tensions (Fig 4A). Collagen type I expression increased with pas-
sage on TC plastic (p = 0.0003 at Atm O2, p = 0.0010 at Low O2) with no significant trend on
E-SCM. Type II collagen expression was also significantly lower when cultured on matrix at
both oxygen tensions (Fig 4B). Type II collagen also showed a trend toward increased expres-
sion with passage on TC plastic (p = 0.0116 at Atm O2, p = 0.0075 at Low O2) with no signifi-
cant trend on E-SCM. Type X collagen was unaffected by culture on synoviocyte matrix at
either oxygen tension with no trend across passages (Figure A in S4 Fig). Aggrecan expression
was significantly lower in chondrocytes cultured on synoviocyte matrix at both oxygen ten-
sions (Fig 4C) with a negative linear trend on E-SCM at Low O2 (p< 0.0001). A statistically
significant effect on SOX9 expression was only evident at P4 with an increase in expression on
E-SCM over TC plastic (Figure B in S4 Fig). There was no significant effect on matrillin-1 ex-
pression under either oxygen tension (Figure C in S4 Fig) but the samples did appear to sepa-
rate into two distinct levels of response at both oxygen tensions. MMP13 was significantly
increased by expansion on E-SCM at both oxygen tensions (Fig 4D) with a negative linear

Fig 4. Effect of expansion culture surface on gene expression.Human chondrocytes from 7 donors were expanded on TC plastic or E-SCM at either
atmospheric or low O2. Each point represents a donor, and lines connect the condition. A) Fold change of COL1A1 relative to P1 TC plastic expansion. B)
Fold change of COL2A1 relative to P1 TC plastic expansion. C) Fold change of ACAN relative to P1 TC plastic expansion. D) Fold change of ACAN relative
to P1 TC plastic expansion. p values and significance are indicated above comparisons.

doi:10.1371/journal.pone.0129961.g004
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trend on TC plastic at both oxygen tensions (p = 0.0049 at Atm O2, p = 0.0239 at Low O2) and
no trend on E-SCM.

Examining effect of oxygen tension on gene expression, there was a significant increase in
collagen type I expression on TC plastic at P1 and P3 but not on E-SCM (Fig 5A). A statistically
significant increase in collagen type II expression was observed only at P1 on TC plastic, with
later passages showing a trend towards increased expression on TC plastic but not on E-SCM
(Fig 5B). Oxygen tension had no effect on collagen type X expression under any condition
(Figure A in S5 Fig). At first passage on TC plastic, there was a significant increase in aggrecan
expression at low O2 with trends evident at other passages, but not on E-SCM (Figure B in S5
Fig). SOX9 expression was significantly increased under low oxygen tension on TC plastic, but
was not significantly different on E-SCM (Fig 5C). When plotted against population doublings
(Figure A in S6 Fig), SOX9 showed a strong negative linear trend with population doubling on
TC plastic (r2 = 0.23, p = 0.0001 at Atm O2; r

2 = 0.52, p = 0.0002 at Low O2), while the negative
slope was minimal on cultures on E-SCM. Oxygen tension had no significant effect on matril-
lin-1 expression (Figure C in S5 Fig). There was a significant decrease in MMP13 expression at
lower oxygen tension at P3 on TC plastic, with trends apparent in other groups (Fig 5D).
MMP13 expression showed a significant negative trend with increasing passage on TC plastic
(Figure B in S6 Fig; r2 = 0.45, p = 0.0008 at Atm O2, r

2 = 0.41, p = 0.0017 at Low O2).

Re-differentiation
At atmospheric O2, cells that were expanded on devitalized matrix accumulated as much
(F-SCM, E-SCM) or more (S-SCM) GAG than cells expanded on TC plastic alone, both in

Fig 5. Effect of oxygen tension during expansion on gene expression.Human chondrocytes from 7 donors were expanded on TC plastic or E-SCM at
either atmospheric or low O2. Each point represents a donor, and lines connect the condition. A) HPRT normalized COL1A1 expression. B) HPRT
normalized COL2A1 expression. C) HPRT normalized SOX9 expression. D) HPRT normalized MMP13 expression. p values and significance are indicated
above comparisons.

doi:10.1371/journal.pone.0129961.g005
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terms of total GAG and GAG/DNA (Fig 6). At low O2, there was no significant difference in
GAG accumulation between the groups. A comparison between low and atmospheric O2

showed significantly more GAG accumulation at low O2 in all conditions (Fig 6). Regression
analysis of the GAG/DNA content vs. PDs indicated that there was no significant difference in
the slope of the lines for uncoated or coated flasks, but that there was a significant difference in
the intercept, indicating that, for the same GAG content, cells expanded on devitalized matrix
would have undergone a greater number of cell divisions while still producing the equivalent
amount of GAG per DNA (Figures D and I in S7 Fig).

Cells which were expanded on E-SCM accumulated significantly more hydroxyproline
(HP), corresponding to collagen, at both atmospheric and low O2 (Fig 7). Regression analysis of
HP/DNA content vs. PDs indicated that coated flasks had similar slopes to uncoated flasks (or
rates of loss of collagen content) but a higher intercept, indicating that at similar PDs, cells ex-
panded on devitalized matrix would have greater collagen content (Figures E and J in S7 Fig).

Histologically, aggregates that were expanded on devitalized synoviocyte matrices showed
Safranin-O staining that correlated qualitatively with the quantitative results seen by the GAG
assay. Synoviocyte matrix-expanded cells in aggregates stained positively for GAG to a similar
or greater extent despite having undergone significantly more PDs (Fig 8A). Immunohis-
tochemistry for collagen type II showed similar or greater levels of staining in aggregates ex-
panded on devitalized matrix, which was even more pronounced at low O2 (Fig 8B).
Immunohistochemistry for secondary antibody alone, collagen type X and elastin were nega-
tive, and rabbit and human controls were positive (S8 Fig).

Discussion
This study showed a significant improvement in human chondrocyte expansion with all 3 devi-
talized synoviocyte matrices compared to standard TC plates. In addition, low O2 promoted

Fig 6. Glycosaminoglycan accumulation of differentially expanded human chondrocytes. Human
chondrocyte aggregates from 4 donors were analyzed from 3 passages on TC plastic and SCM devitalized
by 3 methods; aggregates were cultured at atmospheric (open symbols) and low (closed symbols) O2

tension. Each point represents the average of the aggregates assessed for that experiment (n = 1–3); beside
these are the overall mean of all 3 passages for the 4 donors ± S.D., n = 12.

doi:10.1371/journal.pone.0129961.g006
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greater chondrogenesis during differentiation culture for both TC plastic- and synoviocyte ma-
trix-expanded chondrocytes. The synoviocyte matrix-expanded chondrocytes, having under-
gone significantly more PDs, had levels of chondrogenesis similar to those for cells expanded
on TC plastic.

This study also showed, in agreement with other studies, that expansion conditions can
have a dramatic effect on chondrogenic capacity [18, 33–35]. Growth factor supplementation
during expansion (basic fibroblast growth factor [bFGF]), epidermal growth factor, platelet de-
rived growth factor, TGFβ1) has been investigated for its effect on human chondrocyte expan-
sion [33, 35]. Both studies showed greater re-differentiation after bFGF-supplemented
expansion, but only one achieved an increased growth rate [33]. It is likely that the devitalized
matrix, in addition to providing a 3D surface that is amenable to chondrocyte growth, contains
a mix of growth factors which will be investigated in future studies. It is interesting to note that
co-culture experiments of synoviocytes and chondrocytes have shown a decrease in chondro-
genesis [36, 37]. This was true for both bovine cartilage/synovium [37] and osteoarthritic
human cartilage/synovium [36], so whatever detrimental effects living synoviocytes had on the
chondrocytes was not present in the extracted matrix.

Some decellularization methods include a DNase treatment in the processing of the tissue
[38]; this was not included in our protocol as DNase treatment after devitalization had no ben-
eficial effect on the proliferation rate of the cells. Also, DNases are naturally present in FBS
used in the expansion media. In our study, the synoviocyte-matrix is not acting as a conduit for
transplantation as is the case with many decellularized tissues, so residual nuclear material is a
diminished concern. To ensure synoviocytes were devitalized, serum-containing media was in-
cubated on the devitalized matrix, and no growth or nuclei were discernible using Hoechst
(3 μg/ml in PBS with Mg and Ca, 33342; Life Technologies) staining after 6 days (S7 Fig).

Fig 7. Hydroxyproline accumulation of differentially expanded human chondrocytes. Human
chondrocyte aggregates from 4 donors were analyzed from 3 passages on uncoated flasks and synoviocyte
matrix devitalized by 3 methods; aggregates were cultured at atmospheric (open symbols) and low (closed
symbols) O2 tension. Each point represents the average of the aggregates assessed for that experiment
(n = 1–3); mean and standard deviations are shown beside the individual data points, n = 12; * significantly
different vs. uncoated at low O2 tension; there were no significant differences between hydroxyproline
accumulation at different O2 tensions within the same culture conditions.

doi:10.1371/journal.pone.0129961.g007
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We concur with Pei and He [14] in their description of the synoviocyte matrix as “a tissue-
specific three-dimensional microenvironment for ex vivo expansion of articular chondrocytes”.
Similar expansion and differentiation results were achieved with human chondrocytes in our
study as those previously described with porcine chondrocytes [14]. While Pei et al. have
found detergent-based decellularization methods acceptable for porcine chondrocytes [14],
porcine synovial stem cells [15], and human mesenchymal stem cells (MSCs) [39], we did not
find that to be the case for human chondrocytes. This may have been due to residual detergent
[17], the extensive loss of porcine synoviocyte matrix components, or from inherent differences

Fig 8. Histological assessment. A) Glycosaminoglycan accumulation in aggregates—Human chondrocyte
aggregates from all three passages on the different substrates were fixed, embedded and sectioned then
stained with Safranin-O/Fast Green for analysis. Representative images from one donor/set of experiments
are shown. All images are at the same magnification (100x). Numbers in the bottom left corner for each image
indicate the cumulated population doublings for those cells. B) Type II collagen immunohistochemistry—
Human chondrocyte aggregates stained with anti-type II collagen antibody from the first passage (P1) are
shown. Representative images from one donor/experiment are shown. All images are at the same
magnification (100x). Numbers in the bottom left corner for each image indicate the cumulated population
doublings for those cells.

doi:10.1371/journal.pone.0129961.g008
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between osteoarthritic human chondrocytes and healthy porcine chondrocytes. While the
chondrocytes in this study were harvested from macroscopically normal areas, all donors were
undergoing total joint replacement, so these cells represent a realistic sampling of the kinds of
cells that would be used for ACI. Of the devitalization methods tested, dry ice cooled Ethanol-
based devitalization proved to be the most consistent and facile method as it was rapid and
showed little loss of the cell matrix layer. TC plastic expansion is known to de-differentiate
chondrocytes, their ability to redifferentiate diminishing with increased passage number. In
this study, we observed that the cells on synoviocyte matrix-coated plastic still lost the ability to
re-differentiate, but the curve has been shifted to the right to give greater PDs (5–10 depending
on the metric), with the same amount of GAG and collagen. For example, in the TC plastic vs.
E-SCM samples at atmospheric O2, at 5 μg GAG/DNA the TC plastic expanded sample has un-
dergone 3.3 PDs while the E-SCM expanded sample has gone through 10.5 PDs. From an aver-
age Carticel biopsy of 180,000 to 455,000 cells [4], TC plastic flasks could yield 1.8–4.4 x 106

cells with chondrogenic potential, whereas E-SCM flasks could yield 2.6–6.4 x 108 cells with
equivalent chondrogenic properties.

The effect of the matrix support on gene transcription has given some interesting insights
into chondrocyte biology. While many mature chondrocyte genes were downregulated during
expansion on synoviocyte matrix, they clearly rebound during differentiation. This highlights
an important point: Chondrocyte expansion is a separate function from differentiation, and
seeking to induce the expression of mature chondrocyte genes during expansion might be a
misstep. These studies clearly showed that the culture surface has a dramatic effect on gene ex-
pression, and a relationship between the surface and oxygen tension was also evident. The di-
minished changes with passage observed between the control P1 condition and increased
passages on E-SCM support the hypothesis that the chondrocytes cultured on E-SCM are
maintained in a state from which they can redifferentiate more readily.

The effect of oxygen tension on gene expression during expansion was more pronounced at
earlier passages and often abrogated by E-SCM expansion. This dulled effect is unlikely to be
due to the increased proliferation rate causing hypoxia. Although the cells would have in-
creased oxygen consumption, the diffusion rate of oxygen is high in vitro [40]. An increase in
collagen type II expression was observed with increasing passage along with a concurrent de-
crease in SOX9 expression; this was most evident on TC plastic, which presents an interesting
dichotomy. Aigner et al. [41] found that SOX9 did not correlate with COL2A1 expression in
adult human articular chondrocytes, which was proposed to be due to post-translational
events/subcellular localization and could also be valid reasoning in our studies. In contrast to
the study by Lin et al. [42], we found increased levels of COL2A1 and COL1A1 and no effect
on ACAN with increasing passage. This disparity could be due to the use of confluent cultures
or the use of GAPDH as a reference gene. Ma et al. also report decreased COL2A1 expression
with increased passage, but no data is reported for ACAN or COL1A1 [11]. This difference
could also be due to expansion conditions as Ma et al. cultured cells at a high density (25,000
cells/cm2) and did not report population doublings. Our choice of timing was made with the ef-
fect of culture confluence in mind, such that cells were harvested before confluence was
achieved on either TC plastic or E-SCM, ensuring the cells were in as similar a proliferative
stage as possible. It has been suggested that the relative expression of type II collagen/type I col-
lagen is critical in terms of articular chondrogenesis [43]. Surprisingly, in our study, a relatively
high expression of collagen type II was maintained throughout the expansion on both TC plas-
tic and E-SCM and was even seen to increase compared to P1 on TC plastic. A similarly high
expression of type II collagen was observed when cells were cultured on cartilage matrix [44].
A comparison of the normalized data demonstrates that a high COL2A1/COL1A1 ratio was
maintained throughout expansion culture (Fig 5A and 5B).
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Although oxygen tension has long been realized to be important in chondrogenesis [45], its
mechanism and chondrogenic outcomes are not clear [46] (Table 1). In contrast to Egli et al.
[47], Qu et al. [22] and Schrobback et al.[19], but in agreement with Markway et al.[48] and
Strobel et al.[49], re-differentiation of chondrocytes under low O2 increased GAG accumula-
tion within the aggregates. No significant increase in collagen content was found in cells cul-
tured and re-differentiated at low O2, which is in contrast to the results of Strobel et al.[49] but
in agreement with Markway et al.[48]. However, an increase in collagen deposition in aggre-
gates from cells that had been cultured on E-SCM was found. This, in addition to the collagen
type II staining, could point towards an enhancement of chondrogenic capacity which was lost
through culture on TC plastic. It is clear that the cell type, species, expansion conditions, time
in culture and differentiation conditions are all important. Concentrating on only human cells,
the overall impression is that low oxygen tension is beneficial in one or more outcome mea-
sures, especially for articular chondrogenesis (Table 1). However, some groups have seen nega-
tive effects of low oxygen tension, with others observing no significant effects, on one or more
outcome measures. It is clear that more work is needed to investigate this important parameter
in tissue culture.

In contrast to MSC chondrogenesis, where type X collagen and hypertrophy are commonly
reported [27, 50], we observed no type X collagen protein expression in any of our chondrocyte
cultures and very low relative gene expression. This is supportive of the use of chondrocytes as
the cell of choice for tissue engineering of articular cartilage.

Donor and passage number were significant sources of variability within this study in terms
of both gene expression and matrix synthesis. Large donor variability has been described by
others [23, 51], with over a 1,000-fold difference in collagen gene expression at the end of first
passage, which was not related to age or gender. Despite this, synoviocyte matrix coated flasks
gave significantly more cells with all donors. Ideally, we would also have been able to compare
between aggregates made from cells expanded on the different surfaces at the same number of
PDs. A close approximation to this can be seen in the Safranin-O histology (Fig 6A) where, at
P1, E-SCM-expanded cells at atmospheric O2 have undergone 5.7 PDs and, at P2, TC plastic-
expanded cells have undergone 5.5 PDs, and there is significantly greater Safranin-O staining
for the E-SCM-expanded cells. The lack of GAG staining in the later passage supports the work
presented by Giovanni et al., in which a 3.6–4.2 PD limit for chondrogenic capacity of human
chondrocytes is suggested [13]. However, expansion on synoviocyte matrix seems to extend
this limit to upwards of 8 PDs.

These data clearly indicate that, relative to TC plastic, synoviocyte-derived matrix supports
enhanced expansion of human-derived chondrocytes, such that the chondrocytes are main-
tained in a state from which they are able to re-differentiate into a cartilage phenotype after sig-
nificantly more PDs.

Supporting Information
S1 Table. Assessment of reference genes for qPCR.
(DOCX)

S2 Table. qPCR primer characteristics.
(DOCX)

S1 Fig. Effect of oxygen tension on human articular chondrocyte growth. A) Comparison of
population doubling rate between each surface at atmospheric (open symbols) and low (5%)
oxygen tension (closed symbols). B) qPCR expansion data, recapitulating the increased
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expansion rate and lack of effect of oxygen on human chondrocyte expansion.
(TIF)

S2 Fig. Common tissue culture coated surface comparison. Analysis of growth and morphol-
ogy on common surface coatings. Chondrocytes were seeded on each of the surfaces and
tracked for 7 days. All images are at the same magnification (100x).
(TIF)

S3 Fig. Reference gene analysis.HPRT was assessed across all conditions for its stability. A)
Regression curve analysis vs. population doublings in each condition. B) Quantification cycle
(Cq) assessment by passage, P4 was significantly different to all other passages (p< 0.0001,
ANOVA). C) Comparison of Cq at P1 in each condition. D) Comparison of Cq at P2 in each
condition. E) Comparison of Cq at P3 in each condition. F) Comparison of Cq at P4 in each
condition. No significant differences were found for C-F.
(TIF)

S4 Fig. Effect of expansion surface on the expression of COL10A1, SOX9 and MATN1.
Human chondrocytes from 7 donors were expanded on TC plastic or E-SCM at either atmo-
spheric or low O2. Each point represents a donor and lines connect the condition. A) Fold
change of COL10A1 relative to P1 TC plastic expansion. B) Fold change of SOX9 relative to P1
TC plastic expansion. C) Fold change of MATN1 relative to P1 TC plastic expansion. p values
and significance are indicated above comparisons.
(TIF)

S5 Fig. Effect of oxygen tension during expansion on COL10A1, ACAN and MATN1.
Human chondrocytes from 7 donors were expanded on TC plastic or E-SCM at either atmo-
spheric or low O2. Each point represents a donor and lines connect the condition. A) HPRT
normalized COL10A1 expression. B) HPRT normalized ACAN expression. C) HPRT normal-
ized MATN1 expression. p values and significance are indicated above comparisons.
(TIF)

S6 Fig. Correlation of SOX9 and MMP13 with cumulative population doublings. A) Corre-
lations of SOX9 expression with cumulative population doublings (P1–P3) in each condition
were made. B) Correlations of MMP13 expression with cumulative population doublings (P1–
P3) in each condition were made.
(TIF)

S7 Fig. Regression analysis for synoviocyte-matrix expanded chondrocytes. Regression anal-
yses of biochemical measures against population doublings. Regressions were made combining
all data from all 3 donors (n� 23). A-E Atmospheric oxygen tension, F-J Low (5%) oxygen
tension; A, F) Wet weight vs. population doublings; B,G) Total GAG (per aggregate) vs. popu-
lation doublings; C,H) Total HP (per aggregate) vs. population doublings; D, I) Normalized
GAG (GAG/DNA) vs. population doublings; E,J) Normalized HP (HP/DNA) vs.
population doublings.
(TIF)

S8 Fig. Immunohistochemistry controls. Representative sections of control tissues: rabbit
(Rb) articular and auricular cartilage and human (Hu) articular cartilage. Representative sec-
tions from aggregates produced from cells expanded at atmospheric O2 on tissue culture plastic
(uncoated) or E-SCM are also shown.
(PPTX)
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S9 Fig. Growth media catalysed DNA degradation. Synoviocyte-derived matrix was incubat-
ed with DMEM/FBS or PBS for 6 days; wells were then stained with Hoechst and imaged for
nuclear staining (Fluorescence).
(TIF)
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