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Abstract

Background

HIV prevalence data among pregnant women have been critical to estimating HIV trends

and geographical patterns of HIV in many African countries. Although antenatal HIV preva-

lence data are known to be biased representations of HIV prevalence in the general popula-

tion, mathematical models have made various adjustments to control for known sources of

bias, including the effect of HIV on fertility, the age profile of pregnant women and sexual

experience.

Methods and findings

We assessed whether assumptions about antenatal bias affect conclusions about trends

and geographical variation in HIV prevalence, using simulated datasets generated by an

agent-based model of HIV and fertility in South Africa. Results suggest that even when con-

trolling for age and other previously-considered sources of bias, antenatal bias in South

Africa has not been constant over time, and trends in bias differ substantially by age. Differ-

ences in the average duration of infection explain much of this variation. We propose an HIV

duration-adjusted measure of antenatal bias that is more stable, which yields higher esti-

mates of HIV incidence in recent years and at older ages. Simpler measures of antenatal

bias, which are not age-adjusted, yield estimates of HIV prevalence and incidence that are

too high in the early stages of the HIV epidemic, and that are less precise. Antenatal bias in

South Africa is substantially greater in urban areas than in rural areas.

Conclusions

Age-standardized approaches to defining antenatal bias are likely to improve precision in

model-based estimates, and further recency adjustments increase estimates of HIV inci-

dence in recent years and at older ages. Incompletely adjusting for changing antenatal bias

may explain why previous model estimates overstated the early HIV burden in South Africa.
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New assays to estimate the fraction of HIV-positive pregnant women who are recently

infected could play an important role in better estimating antenatal bias.

Introduction

A major goal of the Joint United Nations Programme on HIV/AIDS (UNAIDS) is to reduce

the annual number of new HIV infections by 75% over the 2010–2020 period, and by 90%

over the 2010–2030 period [1, 2]. However, monitoring of progress towards this and other

HIV incidence targets is challenging. Antenatal HIV prevalence data have been critical to the

estimation of trends in HIV prevalence and incidence in countries with generalized HIV epi-

demics [3–6], but because these data are representative only of pregnant women, they are

known to be biased representations of HIV prevalence patterns and trends. Since the early

2000s, many countries in sub-Saharan Africa have conducted national household-based sur-

veys, which are considered to be the ‘gold standard’ in evaluating HIV prevalence patterns and

trends [7, 8]. However, the infrequency of these household surveys and the absence of house-

hold survey data from the period before 2000 means that antenatal HIV prevalence data

remain very important in estimating prevalence and incidence trends. In recent years, many

countries have switched from conducting HIV testing in samples of pregnant women to

reporting programme statistics on the proportion of all women testing positive as part of pre-

vention of mother-to-child transmission (PMTCT) programmes, thus increasing the availabil-

ity of antenatal HIV prevalence data [5, 9].

Mathematical models are frequently fitted to antenatal HIV prevalence data in order to pro-

duce estimates of HIV prevalence and incidence trends. However, very few of these models

simulate the relationship between HIV and pregnancy in any detail. Instead, models have

attempted to account for the difference in HIV prevalence between pregnant women and the

general population (‘antenatal bias’) in a number of ways. Several models [10–12] have con-

trolled for the fact that HIV reduces fertility (particularly in the more advanced stages of HIV

infection [13–15]), which implies that antenatal HIV prevalence data may understate true HIV

prevalence levels in women; some of these models [10, 12] also make provision for a restora-

tion of fertility after women start ART, and hence a reduction in the extent of the understate-

ment as more women receive ART. Some models [10, 11] also control for the fact that

antenatal surveys represent only sexually experienced women, and thus may overstate HIV

prevalence (particularly in younger age groups, where a substantial fraction of women may be

virgins). In addition, a few models are fitted to age-specific antenatal HIV prevalence data

rather than aggregated antenatal HIV data [10, 11], recognizing that HIV prevalence trends

may differ by age, and that antenatal HIV data are mainly representative of younger women

[16]. However, few models have considered other potential sources of bias, and there has been

little effort to model antenatal bias mechanistically, using models that realistically simulate

both HIV acquisition and fertility. A particular concern is that when a high proportion of HIV

infections have been recently acquired (for example in early-stage HIV epidemics and in youn-

ger women), one might expect a strong positive correlation between HIV and fertility, as both

reflect recent unprotected sex. Another concern is that changes in sexual behaviour could

change both HIV incidence and fertility, potentially changing the extent of antenatal bias [17].

Another significant determinant of fertility is the duration of breastfeeding [18], which has

reduced substantially in HIV-positive women as a result of PMTCT programmes [19, 20].

Across sub-Saharan Africa there have been substantial increases in modern contraceptive use

since 1990 [21], and these could also potentially change patterns of antenatal bias. If models do
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not control for these sources of bias, there is the risk that they may incorrectly estimate HIV

prevalence and incidence trends.

Antenatal HIV prevalence data are also used to make inferences about differences in HIV

prevalence across countries and within countries [22–24], which are critical in deciding how

to allocate resources across regions [25]. However, previous studies have shown that the extent

of the antenatal bias may differ both across countries [8, 26] and within countries [26, 27]. For

example, Marsh et al. [26] found that antenatal bias was generally higher in rural areas than in

urban areas (though not in Southern African countries), and that antenatal bias was generally

greatest in Western and Central Africa. It is important to understand the factors that account

for antenatal bias in order to appropriately adjust for likely differences in the extent of antena-

tal bias across settings.

This study aims to understand antenatal bias in South Africa, the country with the largest

number of HIV infections in the world [28], and a country that continues to rely heavily on

antenatal HIV prevalence data for the purpose of producing HIV estimates [27]. Firstly, we

aim to compare different definitions of antenatal bias, and to assess whether antenatal bias

changes over time. Secondly, we aim to evaluate the extent to which different factors drive

antenatal bias, and how these factors influence changes in antenatal bias over time. Thirdly, we

assess age differences in antenatal bias, and propose an alternative definition of antenatal bias

that is more stable across age groups and over time. Fourthly, we aim to assess how antenatal

bias differs between urban and rural South African communities. Finally, we aim to assess how

model estimates of HIV prevalence and incidence trends change depending on the assump-

tions made about antenatal bias in the calibration process.

Materials and methods

Our approach is to use simulated datasets, generated by an agent-based model of HIV and fer-

tility in South Africa (MicroCOSM), to characterize the factors that contribute to antenatal

bias. We then test the effect of different assumptions about antenatal bias using a deterministic

model, Thembisa, which is typical of models used to estimate HIV prevalence trends from

antenatal HIV data. Whereas MicroCOSM simulates fertility (and its association with HIV) in

much detail, Thembisa relies on simple assumptions about age-specific fertility rates and

effects of HIV on fertility, without directly simulating the common determinants of fertility

and HIV transmission. Assumptions about the nature of antenatal bias are therefore required

(as inputs) in the Thembisa model, but not in MicroCOSM. Antenatal bias, defined in differ-

ent ways, can instead be calculated as an output of MicroCOSM. Although Thembisa requires

assumptions about the nature of antenatal bias, it does not depend directly on the MicroCOSM

outputs.

The MicroCOSM model

MicroCOSM (Microsimulation for the Control of South African Morbidity and Mortality)

simulates a nationally-representative sample of the South African population, starting in 1985

[29]. The initial sample consists of 20 000 individuals, and the simulated population size

changes as births and deaths occur. A number of the HIV, contraception and sexual behaviour

parameters are assumed to change over time (as summarized in Table 1). Each sampled indi-

vidual in the population is assigned a number of demographic variables (date of birth, sex and

race), as well as socio-economic variables that can change over time. Each individual is also

assigned a number of sexual behaviour characteristics, some of which are assumed fixed (e.g.

risk group, which is defined in terms of propensity for concurrent partnerships and commer-

cial sex), and some of which vary over the course of the simulation (e.g. number of current
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partners, sexual preference, marital status and consistency of condom use with current part-

ners). At weekly time steps the sexual activity of the simulated population is updated, allowing

for termination of existing partnerships, formation of new partnerships, changes in relation-

ship type (from short-term to married) and once-off sexual contacts. A more detailed descrip-

tion of the sexual behaviour model is provided elsewhere [29].

HIV is introduced into the simulated population in 1990, the same year that the first ante-

natal survey was conducted in South Africa. A small initial fraction of the high-risk population

(approximately 2%) is assigned an HIV-positive status, and each infected individual is ran-

domly assigned an initial HIV viral load and CD4 count, which are subsequently updated at

weekly time steps. HIV transmission is modelled based on an assumed transmission probabil-

ity per unprotected sex act, which depends on the HIV-positive partner’s viral load, sex and

type of sex act, male circumcision (if the susceptible partner is a male engaging in heterosexual

intercourse), age (if the susceptible partner is female) and the presence of other sexually trans-

mitted infections (STIs), which are dynamically simulated in the same way as HIV. In addi-

tion, the model assumes that pregnant women have an HIV acquisition risk 1.75 times that in

non-pregnant women [40–42], and that women who use injectable contraceptives have an

acquisition risk 1.28 times that in women who are using other non-barrier contraception or

no contraception [43]. After HIV acquisition, HIV-related mortality probabilities are calcu-

lated at weekly time steps, with untreated mortality rates being assumed to depend on the indi-

vidual’s current CD4 count.

The model allows for a number of HIV interventions. HIV communication programmes,

condom distribution and life skills programmes in schools are assumed to have led to

increased levels of condom use since the mid-1990s [10], though the model also makes provi-

sion for some decline in condom use in recent years (Table 1). HIV testing is assumed to have

increased steadily since 1990. HIV-diagnosed individuals are assumed to be more likely to use

condoms consistently, depending on whether they disclose their HIV status to their sexual

partner(s), and HIV-diagnosed mothers are assumed to be less likely to breastfeed than HIV-

negative mothers. PMTCT programmes are assumed to have led to increased HIV diagnosis

Table 1. Time-dependent variables in the MicroCOSM model.

Parameter Values Data sources

% of girls aged 15–19 using condoms

consistently with new short-term partners

1% (1985) to 42%

(2007) to 30%

(2017)

Calibration to national survey data (condom use

at last sex/for contraception), adjusting for mis-

reporting [29]

% of pregnant women offered testing for

HIV

0% (2000) to 90%

(2005+)

District Health Information System [30]

% of HIV-diagnosed mothers who

breastfeed

44% (2000) to 80%

(2013+)

National PMTCT surveys [31, 32]

% of ART-eligible patients who start ART

soon after diagnosis (asymptomatic)�
1% (2000) to 40%

(2012+)

Rates of ART initiation soon after diagnosis in a

systematic review of SA studies [33]

Relative rate of female sterilization

(relative to 1997)

(1997) to 0.5 (2007

+)

DHS data [34–36]

Odds of adopting hormonal contraception

among women aged 15–24 (relative to

1997)

1.0 (1997) to 0.2

(2005+)

Calibration to DHS [34–36] and other survey data

[37, 38]

Specificity of HIV testing algorithm in

ANC surveys

100% (1996) to

97.7% (1997+)

Bayesian analysis of ANC survey data [39]

� Higher rates apply in symptomatic patients and pregnant women; individuals can also link to ART at later

durations after diagnosis. ANC = antenatal clinic. ART = antiretroviral treatment. DHS = demographic and health

survey. PMTCT = prevention of mother-to-child transmission.

https://doi.org/10.1371/journal.pone.0242595.t001
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among HIV-positive mothers, as well as reduced mother-to-child transmission, in part

because of increased antiretroviral prophylaxis and in part because of reduced breastfeeding.

However, the withdrawal of free formula milk from public antenatal clinics since 2011 is

assumed to have contributed to a subsequent increase in breastfeeding by HIV-positive moth-

ers [32]. Antiretroviral treatment (ART) is assumed to have been introduced in the public

health sector since 2004, with associated reductions in both HIV mortality and HIV transmis-

sion risk.

In addition to condom use, the model simulates the use of three different types of non-bar-

rier contraception: oral contraception, injectable contraception and female sterilization. Rates

of sterilization in sexually active women are assumed to have dropped by 50% over the 1997–

2007 period, in order to match an observed decline in the fraction of women who are sterilized

[36]. Most hormonal contraceptive initiation is assumed to coincide with either (a) the forma-

tion of a new partnership, or (b) delivery or weaning. In the case of (a), the model assumes that

women are less likely to adopt hormonal contraception if they are using condoms consistently,

but if the couple subsequently discontinues consistent condom use the model allows for possible

initiation of hormonal contraception to ‘replace’ condoms. Discontinuation of hormonal con-

traception is assumed to occur in the absence of recent sexual activity, on falling pregnant, on

getting sterilized, or for other reasons (mostly desire for children or dissatisfaction with current

contraception). The model has been calibrated to patterns of contraceptive use reported in

Demographic and Health Surveys (DHSs) [34–36, 44] and other South African surveys [37, 38].

In order to match the model to the observed trends, it was necessary to assume an 80% reduc-

tion in the uptake of hormonal contraception by young women between 1997 and 2005.

A woman’s risk of falling pregnant is assumed to be proportional to her number of current part-

ners and frequency of unprotected contact with those partners. The risk of falling pregnant is

assumed to be reduced by 78% if the woman uses condoms or oral contraceptives, by 90% if the

woman uses injectable contraceptives and by 99.5% if the woman is sterilized [45–49]. The inci-

dence of pregnancy is also scaled by an individual-specific fecundability parameter, which varies

with respect to age (increasing as girls reach menarche and decreasing as women reach menopause)

and between women (allowing for natural variability in fertility [50]). Fertility rates in untreated

HIV-positive mothers are assumed to be reduced 8%, 20% and 27% at CD4 counts of�350, 200–

349 and<200 cells/μl respectively, but women on ART are assumed to have a 20% higher fertility

rate than HIV-negative women [13]. Women are assumed not to be at risk of falling pregnant if

they are currently breastfeeding. Rates of conception are scaled in such a way that the model

matches previously-estimated rates of fertility in South Africa, by age, race and calendar period [51].

The model has been fitted to age-specific antenatal HIV prevalence data from the 1997–

2015 period, as well as age- and sex-specific HIV prevalence data from national household sur-

veys conducted in 2005, 2008 and 2012. Although antenatal HIV survey data are also available

for the pre-1997 period, these early surveys have not been included because they did not follow

a standard sampling protocol, and are probably biased towards urban antenatal clinics.

Although the early surveys included retesting to confirm positive results, surveys conducted

since 1997 have relied on a single test per woman, with no confirmatory testing. In calibrating

the model to the antenatal data, we have therefore adjusted the model estimates of HIV preva-

lence in pregnant women to allow for an assumed 97.7% specificity [39]. We have also adjusted

the model estimates of HIV prevalence in pregnant women to take account of racial differ-

ences in the proportion of pregnant women who use public antenatal clinics: 86.2% in African

women, 77.1% in women of mixed race and 11.0% in white and Asian women (based on 1998

and 2016 DHS data). The model was calibrated by specifying prior distributions (representing

ranges of uncertainty) for 12 different HIV transmission and behaviour parameters, and sam-

pling 48 000 parameter combinations from these parameter combinations. For each parameter
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combination, the model was run, and a likelihood statistic was calculated to represent the level

of consistency between the model estimates of HIV prevalence in pregnant women (after

adjustment for specificity and public sector bias) and the antenatal survey estimates, as well as

the consistency between the model estimates and data from other HIV surveys. The 100

parameter combinations that yielded the highest likelihood values were selected, and in the

sections that follow, the results presented are the average results calculated from these 100

parameter combinations. A more detailed description of the model and calibration procedure

is provided elsewhere [29]. Fig 1 and S1 and S2 Figs in S1 File show the model fits to the ante-

natal and household survey HIV prevalence data.

Definitions of antenatal bias

We consider three definitions of antenatal bias. The first definition (‘unadjusted definition’) is

the definition of antenatal bias used in a number of UNAIDS Reference Group publications

[4, 8, 26]: the difference between HIV prevalence in pregnant women and adults aged 15–49,

on a probit scale. Mathematically, if ρt is the HIV prevalence in the population aged 15–49 in

year t, and αt is the HIV prevalence in pregnant women in year t, the antenatal bias in year t is

c1ðtÞ ¼ F� 1ðatÞ � F
� 1ðrtÞ;

where F-1(x) represents the probit transformation of x. This measure does not adjust for any

of the factors that might account for changes in antenatal bias over time (age differences in

samples, effects of HIV on fertility, differences in sexual behaviour, etc.). Note that αt is the

MicroCOSM model simulation of the HIV prevalence in a survey of pregnant women attend-

ing public antenatal clinics, not the actual HIV prevalence in previously-published survey

reports. In sensitivity analysis, we consider the effect of calculating the difference in prevalence

on a natural log scale rather than on a probit scale (i.e. ln(αt)–ln(ρt)).
The second definition (‘adjusted definition’) adjusts for a number of the factors that are

known confounders, including age differences between pregnant women and women in the

general population, the effect of HIV on fertility, and differences in sexual experience between

pregnant women and women in the general population. This definition is more applicable to

Fig 1. Comparison of HIV prevalence in pregnant women and population aged 15–49.

https://doi.org/10.1371/journal.pone.0242595.g001
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recent models that attempt to control for these sources of bias [10, 12]. Suppose that γs(x,t) rep-

resents the fraction of sexually experienced women aged x to x+4 in year t, who are HIV-posi-

tive and in stage s of HIV infection. If ρ'(x,t) is the expected HIV prevalence in pregnant

women aged x to x+4 in year t, then

r0ðx; tÞ ¼

X

s
gsðx; tÞRðsÞ

1þ
X

s
gsðx; tÞðRðsÞ � 1Þ

;

where R(s) is the ratio of HIV-positive fertility in HIV stage s to HIV-negative fertility in

women of the same age. The ρ'(x,t) variable therefore represents the HIV prevalence that

would be expected in pregnant women if sexual experience (implicit in the γs(x,t) term) and

HIV stage were the only factors affecting women’s fertility. For the sake of simplicity, we

assume values of R(s) that are the same as in MicroCOSM (i.e. values of 0.92, 0.80 and 0.73 for

untreated CD4 counts of�350, 200–349 and<200 cells/μl respectively, and 1.20 for women

on ART). Then if α(x,t) is the antenatal prevalence measured in year t in women aged x to x+4,

the antenatal bias in year t and in age group x to x+4 is

c2ðx; tÞ ¼ F� 1ðaðx; tÞÞ � F� 1ðr0ðx; tÞÞ;

and the average antenatal bias in year t is

c2ðtÞ ¼
1

5

X

x

c2ðx; tÞ;

where the summation is across the 5 age groups 15–19, 20–24, 25–29, 30–34 and 35–39 (we do

not include women over the age of 40 as these are typically a small fraction of all pregnant

women). Again note that α(x,t) is the model simulation of the prevalence that would be mea-

sured in a sample of pregnant women attending public antenatal clinics, not the actual preva-

lence measured in the antenatal surveys. As before, a sensitivity analysis is conducted to assess

the effect of defining the antenatal bias on the natural log scale instead of the probit scale.

The third definition (‘recency-adjusted definition’) is similar to the second but aims to

adjust also for potential bias due to the recency of infection (discussed below). If ρ�(x,t) is the

recency-adjusted expectation of HIV prevalence in pregnant women aged x to x+4 in year t,
this is calculated as ρ�(x,t) = ρ'(x,t) × λ(x,t)θ, where λ(x,t) is the fraction of sexually experienced

HIV-positive women aged x to x+4 who were infected in the last 12 months, at time t, and θ is

a scaling factor. When θ = 0, this yields the same model estimate of HIV prevalence in preg-

nant women as the second definition, but as θ increases above 0, the effect of the recency

adjustment becomes more strongly positive.

Scenarios and sensitivity analyses

The ‘default’ scenario refers to the set of assumptions used in the calibration of the Micro-

COSM model to available HIV prevalence and HIV programme data. It represents the most

realistic assessment of what has happened in South Africa up to 2017, taking into account the

HIV programmes that have been introduced, the changes in sexual behaviour that have

occurred and the changes in contraceptive uptake over time (see Table 1).

To understand the factors that contribute to antenatal bias, we consider a number of coun-

terfactual scenarios:

• ‘No change’ scenario: Assuming no HIV interventions, no change in patterns of contracep-

tive uptake or breastfeeding, and no changes in antenatal testing algorithm (antenatal testing

is assumed to be 100% specific);
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• ‘No change in breastfeeding’ scenario: Assuming no difference in breastfeeding durations

when comparing HIV-positive mothers and HIV-negative mothers, and no change in aver-

age breastfeeding durations over time;

• ‘No change in antenatal testing’ scenario: Assuming no dropping of confirmatory HIV test-

ing from 1997 and subsequent antenatal surveys (i.e. no addition of anticipated false-positive

test results when calculating α(x,t));

• ‘No pregnancy effect on transmission’ scenario: Assuming pregnancy has no effect on either

the male-to-female or female-to-male transmission probability per sex act;

• ‘Constant condom use’ scenario: Assuming no change in condom use over time;

• ‘No change in hormonal contraceptive use’ scenario: Assuming no change over time in hor-

monal contraceptive uptake among young women (ages 15–24); and

• ‘Proportional racial representation in public antenatal clinics’ scenario: Assuming all preg-

nant women are equally likely to use public antenatal facilities, regardless of their race.

No recalibration of the model to the HIV prevalence data is performed in any of the coun-

terfactual scenarios.

Comparisons based on the Thembisa mode1

To assess the practical significance of the different assumptions about antenatal bias, we compare

the results obtained using the Thembisa model. The Thembisa model is a deterministic HIV and

demographic model developed for South Africa. The model is fitted to antenatal HIV prevalence

data and household survey data, separately for each of South Africa’s nine provinces, using a

Bayesian procedure. A full description of the model is provided elsewhere [27, 52], and section 2

of the S1 File describes the calibration procedure under each of three approaches: (a) assuming

antenatal bias is constant when using the unadjusted definition, (b) assuming antenatal bias is

constant when using the adjusted definition, and (c) assuming antenatal bias is constant when

using the recency-adjusted definition. Version 4.2 of the model used the adjusted definition of

antenatal bias (although on a logit scale rather than a log scale) when calibrating to the antenatal

surveillance data, i.e. assuming that there is a constant difference (on the logit scale) between

modelled HIV prevalence in sexually experienced women and HIV prevalence in antenatal sur-

veys, after controlling for the effect of HIV on fertility. We compare the results from version 4.2

with the results obtained if we instead assume constancy of the unadjusted and recency-adjusted

measures of antenatal bias, for each of the nine provinces. We also compare these results with the

results obtained when calibrating the model only to household survey data (i.e. excluding antena-

tal HIV data and thus avoiding any assumptions about antenatal bias).

Results

Fig 1 shows the MicroCOSM model estimates of HIV prevalence trends, in pregnant women

and in the population aged 15–49, with comparisons to South African survey data. HIV preva-

lence in pregnant women increased rapidly during the 1990s, but stabilized after 2004. In con-

trast, HIV prevalence in the 15–49 population has increased steadily, with no sign of

stabilization in the period up to 2017.

Comparison of unadjusted and adjusted definitions of antenatal bias

In the default scenario, antenatal bias appears to have changed slightly over time on the probit

scale (Fig 2A). Using the unadjusted measure of antenatal bias, antenatal bias appears to have
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been roughly stable up to 2010, then gradually declined. Using the adjusted measure of antena-

tal bias, antenatal bias declined slightly over the 1997–2002 period, then increased slightly up

to 2008 before declining again. On the log scale, however, the antenatal bias appears to have

followed a more steady decline over time (Fig 2C). This decline in antenatal bias over time is

also apparent when considering the counterfactual scenario in which there is assumed to have

been no changes in sexual behaviour or contraception over time and no HIV interventions

(Fig 2B and 2D). However, on the probit scale the unadjusted measure of antenatal bias

increased steadily after 1995 (Fig 2B), as the probit transformation tends to inflate differences

in prevalence as HIV prevalence increases (S16a Fig in S1 File). The antenatal bias in the ‘no

change’ counterfactual scenario is substantially lower than that in the default scenario,

although in the case of the unadjusted definition there has been a degree of convergence in

antenatal bias in recent years when comparing the default and ‘no change’ scenarios.

Factors accounting for antenatal bias and change in antenatal bias over

time

To gain a better understanding of the declining trend in antenatal bias in the ‘no change’ sce-

nario (Fig 2D), we assessed the correlates of antenatal bias (adjusted definition, log scale) in

1995 (early epidemic) and 2005 (mature epidemic). The level of antenatal bias in 1995 was

strongly negatively correlated with the average duration of HIV in pregnant HIV-positive

women in 2000, a measure of the rate of epidemic expansion in the early epidemic (r = -0.65,

Fig 2. Comparison of different measures of antenatal bias. Solid lines represent means and dashed lines represent 95% confidence

intervals. Results for the default scenario are not shown for the pre-1997 period because changes in assumed test specificity imply a

discontinuity in antenatal bias, and because these data are not used in model calibration. However, earlier results are shown in the ‘no

change’ scenario as this scenario assumes no change in antenatal test specificity (100%).

https://doi.org/10.1371/journal.pone.0242595.g002
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Fig 3). This means that when the epidemic was expanding rapidly (short average duration of

infection), antenatal bias was substantial, probably because the HIV-positive women who were

recently infected were more likely to be represented in the pregnant population (by virtue of

having had recent unprotected sex). The relationship between antenatal bias and the average

duration of infection appears to be non-linear, suggesting that antenatal bias was driven

mainly by infections of short duration.

To better understand the higher antenatal bias in the default scenario (relative to the ‘no

change’ scenario) and the change in antenatal bias after the early epidemic growth phase, we

considered a number of counterfactual scenarios (Fig 4). Antenatal bias would have been sig-

nificantly lower if HIV-positive women had breastfed for the same duration as HIV-negative

women (Fig 4A), which would have led to fewer births in HIV-positive women due to longer

lactational amenorrhoea. The difference in bias (relative to the default scenario) was small in

1997 when relatively few HIV-positive women knew they were HIV-positive, then increased as

HIV testing and PMTCT programmes were rolled out, and finally declined around the time of

the withdrawal of free formula milk from PMTCT programmes in 2011. Antenatal bias would

also have been significantly lower if there had been no false positive results in the antenatal sur-

veys (Fig 4B); the difference in bias (relative to the default scenario) was particularly substantial

in 1997, when HIV prevalence was relatively low. A less important determinant of the antena-

tal bias was the effect of pregnancy on HIV acquisition (Fig 4C); if the rate of HIV acquisition

in pregnant women was the same as in non-pregnant women, the correlation between preg-

nancy and HIV would have been weaker and the antenatal bias would have been smaller. The

effect of the change in hormonal contraceptive use in young women on antenatal bias was neg-

ligible, although the antenatal bias was slightly higher among 15–24 year olds in the counter-

factual scenario in which hormonal contraceptive uptake was assumed to remain constant

over time (S18 Fig in S1 File).

Fig 3. Correlation between average duration of HIV infection in pregnant HIV-positive women and antenatal

bias. Antenatal bias is calculated using the adjusted definition (on a log scale) in the ‘no change’ scenario. Each dot

represents the results from a model simulation with a different input parameter combination. Different parameter

combinations were sampled from distributions that were considered plausible, and the 100 parameter combinations

that yielded the best fit to the HIV prevalence data were used to generate these 100 model simulations. The average

duration of HIV in pregnant women was calculated 5 years after the antenatal bias to provide a more sensitive metric

of the epidemic growth rate than would be obtained if average duration was calculated in the same year as the antenatal

bias.

https://doi.org/10.1371/journal.pone.0242595.g003
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The effect of changes in condom use on antenatal bias appears modest (Fig 4D). In the

absence of any change in condom use, the antenatal bias would have been higher than that in

the default scenario up to 2000, but lower thereafter. The association between increased gen-

eral condom use and increased antenatal bias in the post-2000 period is to be expected,

because as more women used condoms consistently, the antenatal surveys became less repre-

sentative of the general female population and the consistent condom users who were missed

by the antenatal survey were at lower risk of HIV infection, which implies that the antenatal

data were more likely to overstate HIV prevalence in the female population. The association

between increased condom use and reduced antenatal bias in the pre-2000 period is probably

due to an ‘early adopter’ effect in the early stages of condom promotion programme: the

model assumes that higher risk women (sex workers and women in short-term relationships)

were most likely to start using condoms, and thus in the early stages of the condom promotion

programme there appeared to be a positive relationship between condom use and HIV

Fig 4. Factors accounting for antenatal bias and change in antenatal bias over time. Antenatal bias is calculated using the adjusted

definition (on a probit scale). In all panels, the blue line corresponds to the default scenario. Solid lines represent means from 100

simulations. ANC = antenatal clinic, BF = breastfeeding.

https://doi.org/10.1371/journal.pone.0242595.g004
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prevalence. Only in the longer term, as the cumulative benefits of consistent condom use

became more substantial, did the relationship between condom use and HIV prevalence

switch to being negative.

Age differences in antenatal bias, and effect of recency adjustment

When considering the adjusted definition of antenatal bias, there were substantial differences

in antenatal bias by age, and trends in antenatal bias over time also differed substantially by

age (Fig 5A). Around 2000, levels of antenatal bias were similar across the five age groups con-

sidered, but in subsequent years, there was a trend toward increasing antenatal bias in the 15–

24 age group and a trend towards steeply declining antenatal bias in the 30–39 age group. The

antenatal bias appeared to be inversely associated with the average duration of HIV infection

in pregnant HIV-positive women, with the average duration of HIV infection in pregnant

women increasing over time in older women but remaining relatively stable in younger

women (Fig 5C). This led us to hypothesize that the recency-adjusted measure of antenatal

bias would yield more stable estimates of antenatal bias that differ less dramatically between

age groups. Estimates of the fraction of HIV infections in pregnant women that were recently

acquired (the λ(x,t) term in the recency adjustment formula) are shown in Fig 5D: the fraction

is estimated to have remained stable, at around 50% and 20% in the 15–19 and 20–24 age

Fig 5. Age differences in antenatal bias and average duration (in years) of HIV infection. Antenatal bias is calculated using the adjusted

definition (panel a) and the recency-adjusted definition (panel b), both on a probit scale. Average duration of HIV in pregnant HIV-

positive women increases after 2012 due to the survival of vertically-infected girls into adolescence as the epidemic matures (panel c).

https://doi.org/10.1371/journal.pone.0242595.g005
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groups respectively, but in women aged 25 and older the fraction is estimated to have declined

from around 20% in 1997 to 5% or less in recent years. Setting the θ scaling factor to 0.04 mini-

mized the standard deviation of the recency-adjusted bias estimates over the 1997–2017 period

(0.024 compared to 0.046 with the adjusted definition), and yielded greater similarity in ante-

natal bias estimates across age groups (Fig 5B).

Geographical differences in antenatal bias

Antenatal bias was significantly greater in urban areas than in rural areas (Fig 6A). We hypoth-

esized that these urban-rural differences were largely due to differences in the racial composi-

tion of urban and rural populations, combined with racial differences in use of public

antenatal services. To test this hypothesis, we considered a counterfactual scenario in which all

pregnant women were assumed to be equally likely to use public antenatal services, regardless

of their race (Fig 6B). In this scenario, antenatal bias in urban areas was substantially lower

than in the default scenario, reflecting the lower HIV prevalence in racial minorities (white,

Asian and mixed-race women), who are less likely to use public antenatal clinics. However,

antenatal bias in rural areas was almost identical in the counterfactual and default scenarios, as

racial minorities comprise a relatively small fraction of the rural population.

Testing the effect of different antenatal bias assumptions

When the Thembisa model was calibrated to provincial HIV prevalence data using the three

different definitions of antenatal bias, results were roughly similar for adjusted and recency-

adjusted definitions of antenatal bias, but substantially different when using the unadjusted

definition. Using the unadjusted definition of antenatal bias, Thembisa consistently estimated

higher levels of HIV prevalence in the earlier stages of the HIV epidemic, in all provinces (Fig

7), and 95% confidence intervals around HIV incidence estimates were consistently wider

than those obtained using the adjusted definition of antenatal bias (Fig 8 and S4 Table in S1

File). Although the use of the recency-adjusted definition of antenatal bias in the model cali-

bration had only a modest impact on the results of the Thembisa model, when compared to

the results obtained using the adjusted definition of antenatal bias, the use of the recency

adjustment led to slightly lower estimates of HIV prevalence in the early HIV epidemic but

slightly higher estimates of HIV prevalence in more recent years (Fig 7 and S13 Fig in S1 File).

The recency-adjusted estimates of HIV incidence in 2017 were on average 8% higher (range

Fig 6. Urban-rural differences in antenatal bias (unadjusted definition). In the default scenario (solid lines), pregnant women who are

African are more likely to use public antenatal facilities than those who are not African. In the counterfactual scenario (dashed lines), all

pregnant women are assumed to have the same probability of public antenatal clinic use, regardless of their race.

https://doi.org/10.1371/journal.pone.0242595.g006
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2–19%) than those obtained using the adjusted definition of antenatal bias (Fig 8A and S13d

Fig in S1 File), and recency-adjusted incidence estimates had slightly greater coefficients of

Fig 7. HIV prevalence in population aged 15–49, as estimated by the Thembisa model under different assumptions about constant

antenatal bias.

https://doi.org/10.1371/journal.pone.0242595.g007

Fig 8. HIV incidence in 2017, as estimated by the Thembisa model under different assumptions about constant antenatal bias. The

coefficient of variation (panel b) is defined as the standard deviation of the model incidence estimates divided by the mean model estimate.

EC = Eastern Cape, FS = Free State, GT = Gauteng, KZ = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NC = Northern Cape,

NW = North West, WC = Western Cape.

https://doi.org/10.1371/journal.pone.0242595.g008
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variation (Fig 8B). The difference between recency-adjusted and adjusted incidence estimates

was much more marked in the 25–49 age group than in the 15–24 age group (S13g and S13h

Fig in S1 File), meaning that youth account for a lower proportion of new infections in the 15–

49 age group, when using the recency adjustment (S13i Fig in S1 File). Thembisa estimates of

HIV prevalence and incidence were not sensitive to the choice of transformation in the ante-

natal bias definition: logit, log and probit transformations yielded similar estimates (S17 Fig in

S1 File).

When the Thembisa model was calibrated only to the household survey data (not including

antenatal data), estimates of HIV incidence in 2017 were mostly similar to those obtained when

including the antenatal data, except in the Western Cape (Fig 8A). However, coefficients of vari-

ation around the HIV incidence estimates were consistently higher than those obtained when

including the antenatal survey data in the calibration (Fig 8B). Further comparisons of HIV

prevalence and incidence estimates in earlier years are shown in S14 and S15 Figs in S1 File.

Discussion

Even in countries such as South Africa, where HIV prevalence has been measured in several

national household surveys, the inclusion of antenatal HIV prevalence data remains important

in improving the precision and accuracy of recent HIV estimates. However, biases in South

African antenatal HIV prevalence data are complex and arise for a number of reasons. In

using antenatal HIV prevalence data to assess trends in HIV prevalence and incidence, it is

particularly important to consider the ways in which this bias may change over time. Previous

modelling studies have demonstrated how bias may change over time due to differences in the

age distribution of pregnant women and women in the general population [16], the effect of

HIV on fertility [53], and changes in age at sexual debut [17]. In this modelling study we con-

sider a number of further factors that may contribute to changes in antenatal bias over time,

such as changes in recency of HIV infection in pregnant women, changes in condom use and

hormonal contraception, and changes in breastfeeding by HIV-positive mothers.

The recency of HIV infection in pregnant women is an important source of bias that has

not previously been assessed. When the average duration of infection is short, HIV-positive

women are relatively more likely to be represented in samples of pregnant women, as recent

pregnancy and recent HIV acquisition are both strongly dependent on recent unprotected sex.

When the average duration of HIV infection is long, the recently-infected women make up a

relatively small proportion of total HIV-positive women, and hence the correlation between

HIV infection and pregnancy is not as strong. This dynamic explains why adjusted antenatal

bias tends to decline over the course of an HIV epidemic, as HIV prevalence increases and as

average durations of infection increase. It also explains why in more mature epidemics there

are substantial age differences in antenatal bias, as younger HIV-positive women are much

more likely to have been recently infected than older HIV-positive women. The same age dif-

ferences are not apparent early in the epidemic because in the early stages of the epidemic,

most HIV-positive women are likely to have been recently infected, regardless of their age.

Most published data on differences in fertility between HIV-positive women and HIV-nega-

tive women are from mature HIV epidemics [54, 55], and our results suggest that relationships

between HIV and fertility are likely to be different in early-stage epidemics, when HIV inci-

dence rates are high. Recent moves to introduce rapid testing for recent infection [56] could be

important in assessing antenatal bias, as such tests, when conducted in pregnant women,

could be used to determine the proportion of infections that are recently acquired.

We have proposed an alternative measure of antenatal bias, which adjusts for the recency of

HIV infection, and have shown that this roughly halves the standard deviation of the antenatal
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bias terms (by age and by year) relative to that calculated when adjusting only for age, sexual

experience and HIV stage. Although this adjustment does not completely stabilize the bias

(due to factors discussed below), it does imply that there would be less error in assuming that

duration-adjusted antenatal bias terms are constant over time and by age. Using this recency-

adjusted measure of antenatal bias should ensure that models produce better estimates of HIV

prevalence trends and HIV prevalence patterns by age.

Changes in breastfeeding in HIV-positive women are another important explanation for

changes over time in antenatal bias, since lactational amenorrhoea is a major determinant of

fertility [18]. Prior to the introduction of PMTCT programmes, few HIV-positive mothers

knew their HIV status, and most would therefore have breastfed for durations similar to HIV-

negative mothers, implying minimal bias. However, WHO guidelines on breastfeeding in the

early 2000s promoted replacement feeding as the preferred feeding method for HIV-positive

mothers, and it was only in 2006 that WHO guidelines started to promote exclusive breastfeed-

ing and longer durations of breastfeeding as the ‘default’ recommendation for HIV-positive

mothers [57]. Most African countries have broadly followed these guidelines, implying an

increase in antenatal bias as early PMTCT programmes were introduced, followed by a reduc-

tion in antenatal bias as countries switched to promoting exclusive breastfeeding by HIV-posi-

tive mothers. However, countries have differed in the timing of these changes: in South Africa

the withdrawal of free formula milk occurred only in 2011 [58], and Botswana has only

recently switched away from promoting replacement feeding.

Although changes in condom use have probably caused some change in antenatal bias in

the South African setting, our simulations suggest that the effect is likely to be modest. In the

early stages of the behaviour change, the ‘early adopters’ of condoms tended to be higher-risk

women, and their lower likelihood of falling pregnant implied a reduction in antenatal bias.

However, in the longer term, the cumulative benefits of consistent condom use became more

substantial, and women who used condoms consistently had a lower risk of HIV as well as a

lower chance of falling pregnant, hence an increase in antenatal bias. The effect of changes in

condom use on antenatal bias is likely to have been minimal in most other sub-Saharan Afri-

can settings, where the proportions of women who report using condoms for contraceptive

purposes tend to be less than 5% [59], in contrast to the level of 15% in South Africa in 2016

[36].

Our simulations suggest that changes in levels of hormonal contraceptive use also have

almost no effect on the level of antenatal bias. To the extent that increases in hormonal con-

traceptive use among young women are associated with a modest increase in HIV risk, a small

reduction in antenatal bias might be expected to follow an increase in hormonal contraceptive

use, because this would increase HIV prevalence in women who are not at risk of falling preg-

nant. However, this finding is dependent on the assumption that injectable contraceptive use

increases women’s susceptibility to HIV. Although this assumption is supported by observa-

tional evidence [43], only one randomized clinical trial has been conducted to assess this ques-

tion; the trial found that HIV incidence rates were higher in women using injectable

contraception than in women using other contraceptive methods, but the difference was not

significant [60]. The trend toward declining hormonal contraceptive use among young South

African women is unusual; in most other sub-Saharan African countries, there have been sub-

stantial increases in hormonal contraceptive use over the last two decades [59].

There are several other factors that are important in explaining antenatal bias, and although

these factors do not necessarily account for changes in antenatal bias over time, they may nev-

ertheless be important in understanding inter-regional differences in antenatal bias. The sub-

stantial urban-rural differences in antenatal bias in South Africa are explained to a large extent

by racial differences in use of public antenatal facilities and urban-rural differences in the racial
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distribution of South Africa’s population, a legacy of apartheid policies that restricted settle-

ment patterns. The results of this study are consistent with a previous modelling study that

found antenatal bias in South Africa to be substantially higher in the highly urbanized prov-

inces (Gauteng and Western Cape) than in the rest of the country [27]. Although this dynamic

is probably unique to South Africa, it is possible that there may be socio-economic differences

in use of antenatal care in other settings that similarly affect antenatal bias. In many countries

a substantial proportion of pregnant women do not access antenatal care, and these women

are typically poorer and less likely to be married than those who seek antenatal care [61]. To

the extent that utilization of antenatal care differs substantially across regions, and to the extent

that HIV risk differs between attenders and non-attenders, inter-regional variation in antena-

tal bias may be expected.

Differences in HIV testing algorithms between antenatal surveys and household surveys are

another potential source of bias. In South Africa, the antenatal surveys that have been con-

ducted annually since 1997 have relied on a single ELISA test per subject, and in the absence of

confirmatory testing, some exaggeration might be expected due to false positive reactions [62].

However, the extent of this exaggeration is highly uncertain; in an analysis of HIV testing data

from 20 different Demographic and Health Surveys, Fishel and Garrett [62] found that the

fraction of initially reactive specimens that were confirmed positive on a second ELISA varied

between 31% and 97%. Our assumption of 97.7% specificity (equivalent to a positive predictive

value of about 95% when prevalence is 30%) might therefore appear optimistic, although in a

recent analysis of 2017 South African antenatal survey data, test specificity of close to 100%

was estimated (Adrian Puren, personal communication). False-positive reactions are likely to

cause a relatively large antenatal bias when HIV prevalence is low (i.e. in early epidemics and

in the youngest age groups). In recent years, many African countries have discontinued ante-

natal sentinel surveillance and are increasingly relying on routine programmatic data on HIV

testing at antenatal clinics for PMTCT purposes [5, 9], which potentially introduces a different

kind of bias. Most PMTCT programmes require two or more positive rapid tests before an

HIV diagnosis is made, and concern has been raised over the poor quality of testing in some

settings, which may result in HIV being under-diagnosed (i.e. the problem is mainly one of

false negative reactions) [63]. A more serious problem is that women who disclose that they

have already been diagnosed might not be included in the PMTCT prevalence calculation

(because they are not tested), or HIV-negative women may be double-counted (because of

guidelines to repeat HIV testing in pregnant women who were HIV-negative at their first ante-

natal visit) [28]. Such errors may render routine HIV prevalence data from PMTCT pro-

grammes meaningless.

Our comparison of the effect of different antenatal bias assumptions in the Thembisa cali-

bration process suggests that model results are sensitive to assumptions about antenatal bias.

The unadjusted approach to defining antenatal bias is particularly problematic, yielding HIV

incidence and prevalence estimates that are too high in the early stages of the HIV epidemic.

The unadjusted approach, because it does not require the use of age-specific antenatal preva-

lence data, also produces less precise HIV incidence estimates, with confidence interval widths

being up to twice as wide as those obtained using the adjusted approach (Fig 8B). The

improvement in precision and accuracy, under the adjusted approach, is important for the

purpose of assessing whether incidence reduction targets have been achieved. Previously pub-

lished HIV epidemic estimates based on the EPP model [64] and Global Burden of Disease

Study [65] overstated the early growth and peak of the epidemic in South Africa, and conse-

quently also overstated the numbers of AIDS deaths in South Africa [66]. These estimates used

the unadjusted approach for estimating the course of the South African HIV epidemic from
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antenatal surveillance data, which may explain the overestimation of historical epidemic

growth and AIDS deaths.

Although the recency adjustment to the antenatal bias did not substantially change the

Thembisa model estimates, it did lead to a slightly later epidemic peak, with HIV prevalence

and incidence being estimated to be slightly higher in recent years than estimated using the

adjusted definition of antenatal bias. HIV incidence rates in 2017 were between 2% and 19%

higher when using the recency-adjusted approach, which is potentially important when evalu-

ating whether targets for epidemic control have been achieved [2]. Most significantly, the

recency adjustment leads to a shift in the age distribution of HIV incidence (relatively more

incident HIV in older adults). However, incidence estimates are slightly less precise under the

recency-adjusted approach than under the adjusted approach (Fig 8B), as the bias under the

recency-adjusted approach is itself a function of the incidence rate.

A limitation of this analysis is that MicroCOSM, the source of our simulated data, does not

perfectly match observed age patterns of HIV prevalence in pregnant women and women in

the general population, nor does it perfectly match observed trends in HIV prevalence over

time (S1 and S2 Figs in S1 File). We cannot claim to have characterized antenatal bias or

changes in antenatal bias in South Africa with perfect accuracy; our objective is only to gain

qualitative insights into the factors that might plausibly account for antenatal bias in South

Africa. Parameters such as the specificity of the ELISA used in the antenatal surveys and the

effect of injectable contraception on women’s susceptibility to HIV are difficult to estimate

from available data sources, and estimates of antenatal bias may be sensitive to changes in

these assumptions. Due to the complexity of the MicroCOSM calibration process, it was not

feasible to consider the uncertainty around these parameters in the model calibration. There is

also uncertainty regarding the effect of HIV on fertility and–more significantly–the effect of

ART on fertility [67]. We have used the same assumptions about HIV and ART effects on fer-

tility in the adjusted definitions as are assumed in the MicroCOSM model, to ensure internal

consistency within the simulated population. However, to the extent that the adjusted defini-

tions are applied to ‘real’ data, from populations in which the true effects of HIV and ART on

fertility are unknown, this uncertainty remains a concern.

Another limitation is that–although we have modelled the effect of other STIs on HIV

transmission–we have not modelled STI effects on infertility. An early modelling study sug-

gested that infertility caused by STIs could lead to a change in antenatal bias over time, with

the highest-risk women who suffer the most from infertility acquiring HIV early in the epi-

demic [53]. However, most STI-associated infertility occurs in older women [68], and this

might therefore not be a major source of bias.

These results suggest that in the South African setting, antenatal bias has not remained sta-

ble over time. This finding holds across a number of alternative definitions of antenatal bias.

Importantly, the finding holds even in a ‘no change’ scenario, which suggests findings may be

relevant to other African settings, where HIV interventions and changes in contraceptive pat-

terns may have been different from those in South Africa. These results have important impli-

cations for efforts to estimate HIV incidence trends from antenatal HIV prevalence data,

which are critical in light of global targets for HIV epidemic control.
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2005; 19: 443–445. https://doi.org/10.1097/01.aids.0000161776.30815.44 PMID: 15750400

16. Eaton JW, Rehle TM, Jooste S, Nkambule R, Kim AA, et al. Recent HIV prevalence trends among preg-

nant women and all women in sub-Saharan Africa: implications for HIV estimates. AIDS. 2014; 28

(Suppl 4): S507–514. https://doi.org/10.1097/QAD.0000000000000412 PMID: 25406753

17. Zaba B, Boerma T, White R. Monitoring the AIDS epidemic using HIV prevalence data among young

women attending antenatal clinics: prospects and problems. AIDS. 2000; 14: 1633–1645. https://doi.

org/10.1097/00002030-200007280-00020 PMID: 10983651

18. Bongaarts J. A framework for analyzing the proximate determinants of fertility. Pop Dev Rev. 1978; 4:

105–132.

19. Goga AE, Van Wyk B, Doherty T, Colvin M, Jackson DJ, et al. Operational effectiveness of guidelines

on complete breast-feeding cessation to reduce mother-to-child transmission of HIV: results from a pro-

spective observational cohort study at routine prevention of mother-to-child transmission sites, South

Africa. J Acquir Immun Defic Syndr. 2009; 50: 521–528. https://doi.org/10.1097/qai.

0b013e3181990620 PMID: 19408359

20. Coutsoudis A, Pillay K, Kuhn L, Spooner E, Tsai WY, et al. Method of feeding and transmission of HIV-1

from mothers to children by 15 months of age: prospective cohort study from Durban, South Africa.

AIDS. 2001; 15: 379–387. https://doi.org/10.1097/00002030-200102160-00011 PMID: 11273218

21. Alkema L, Kantorova V, Menozzi C, Biddlecom A. National, regional, and global rates and trends in con-

traceptive prevalence and unmet need for family planning between 1990 and 2015: a systematic and

comprehensive analysis. Lancet. 2013; 381: 1642–1652. https://doi.org/10.1016/S0140-6736(12)

62204-1 PMID: 23489750

22. McGillen JB, Anderson SJ, Dybul MR, Hallett TB. Optimum resource allocation to reduce HIV incidence

across sub-Saharan Africa: a mathematical modelling study. Lancet HIV. 2016; 3: e441–e448. https://

doi.org/10.1016/S2352-3018(16)30051-0 PMID: 27562745

23. Zulu LC, Kalipeni E, Johannes E. Analyzing spatial clustering and the spatiotemporal nature and trends

of HIV/AIDS prevalence using GIS: the case of Malawi, 1994–2010. BMC Infect Dis. 2014; 14: 285.

https://doi.org/10.1186/1471-2334-14-285 PMID: 24886573

24. Anderson SJ, Cherutich P, Kilonzo N, Cremin I, Fecht D, et al. Maximising the effect of combination HIV

prevention through prioritisation of the people and places in greatest need: a modelling study. Lancet.

2014; 384: 249–256. https://doi.org/10.1016/S0140-6736(14)61053-9 PMID: 25042235

25. Meyer-Rath G, McGillen JB, Cuadros DF, Hallett TB, Bhatt S, et al. Targeting the right interventions to

the right people and places: the role of geospatial analysis in HIV program planning. AIDS. 2018; 32:

957–963. https://doi.org/10.1097/QAD.0000000000001792 PMID: 29547437

26. Marsh K, Mahy M, Salomon JA, Hogan DR. Assessing and adjusting for differences between HIV prev-

alence estimates derived from national population-based surveys and antenatal care surveillance, with

applications for Spectrum 2013. AIDS. 2014; 28 (Suppl 4): S497–505. https://doi.org/10.1097/QAD.

0000000000000453 PMID: 25203158

27. Johnson LF, Dorrington RE, Moolla H. HIV epidemic drivers in South Africa: a model-based evaluation

of factors accounting for inter-provincial differences in HIV prevalence and incidence trends. South Afr J

HIV Med. 2017; 18: a695. https://doi.org/10.4102/sajhivmed.v18i1.695 PMID: 29568631

28. Mahy M, Marsh K, Sabin K, Wanyeki I, Daher J, et al. HIV estimates through 2018: Data for decision

making. AIDS. 2019; 33 (Suppl 3): S203–211. https://doi.org/10.1097/QAD.0000000000002321 PMID:

31343430

29. Johnson LF, Kubjane M, Moolla H. MicroCOSM: a model of social and structural drivers of HIV and

interventions to reduce HIV incidence in high-risk populations in South Africa. BioRxiv. 2018: 310763.

30. Day C, Monticelli F, Barron P, Haynes R, Smith J, et al. District Health Barometer: Year 2008/09. Dur-

ban: Health Systems Trust. 2010. Available: http://www.hst.org.za/publications/864. Accessed 25 June

2010.

31. Goga AE, Dinh TH, Jackson DJ. Evaluation of the Effectiveness of the National Prevention of Mother-

to-Child Transmission (PMTCT) Programme Measured at Six Weeks Postpartum in South Africa, 2010.

South African Medical Research Council, National Department of Health of South Africa and PEPFAR/

US Centers for Disease Control and Prevention. 2012. Available: http://www.doh.gov.za/docs/reports/

2012/pmtcteffectiveness.pdf. Accessed 12 June 2012.

PLOS ONE HIV estimation using antenatal HIV prevalence data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242595 November 20, 2020 20 / 22

https://doi.org/10.1097/01.qai.0000148529.58963.83
https://doi.org/10.1097/01.qai.0000148529.58963.83
http://www.ncbi.nlm.nih.gov/pubmed/16010167
https://doi.org/10.1097/01.aids.0000161776.30815.44
http://www.ncbi.nlm.nih.gov/pubmed/15750400
https://doi.org/10.1097/QAD.0000000000000412
http://www.ncbi.nlm.nih.gov/pubmed/25406753
https://doi.org/10.1097/00002030-200007280-00020
https://doi.org/10.1097/00002030-200007280-00020
http://www.ncbi.nlm.nih.gov/pubmed/10983651
https://doi.org/10.1097/qai.0b013e3181990620
https://doi.org/10.1097/qai.0b013e3181990620
http://www.ncbi.nlm.nih.gov/pubmed/19408359
https://doi.org/10.1097/00002030-200102160-00011
http://www.ncbi.nlm.nih.gov/pubmed/11273218
https://doi.org/10.1016/S0140-6736%2812%2962204-1
https://doi.org/10.1016/S0140-6736%2812%2962204-1
http://www.ncbi.nlm.nih.gov/pubmed/23489750
https://doi.org/10.1016/S2352-3018%2816%2930051-0
https://doi.org/10.1016/S2352-3018%2816%2930051-0
http://www.ncbi.nlm.nih.gov/pubmed/27562745
https://doi.org/10.1186/1471-2334-14-285
http://www.ncbi.nlm.nih.gov/pubmed/24886573
https://doi.org/10.1016/S0140-6736%2814%2961053-9
http://www.ncbi.nlm.nih.gov/pubmed/25042235
https://doi.org/10.1097/QAD.0000000000001792
http://www.ncbi.nlm.nih.gov/pubmed/29547437
https://doi.org/10.1097/QAD.0000000000000453
https://doi.org/10.1097/QAD.0000000000000453
http://www.ncbi.nlm.nih.gov/pubmed/25203158
https://doi.org/10.4102/sajhivmed.v18i1.695
http://www.ncbi.nlm.nih.gov/pubmed/29568631
https://doi.org/10.1097/QAD.0000000000002321
http://www.ncbi.nlm.nih.gov/pubmed/31343430
http://www.hst.org.za/publications/864
http://www.doh.gov.za/docs/reports/2012/pmtcteffectiveness.pdf
http://www.doh.gov.za/docs/reports/2012/pmtcteffectiveness.pdf
https://doi.org/10.1371/journal.pone.0242595


32. Goga AE, Jackson DJ, Singh M, Lombard C. Early (4–8 weeks postpartum) population-level effective-

ness of WHO PMTCT option A, South Africa, 2012–2013. South African Medical Research Council and

National Department of Health of South Africa. 2015.

33. Rosen S, Fox MP. Retention in HIV care between testing and treatment in sub-Saharan Africa: a sys-

tematic review. PLoS Med. 2011; 8: e1001056. https://doi.org/10.1371/journal.pmed.1001056 PMID:

21811403

34. Department of Health. South Africa Demographic and Health Survey 1998: Full Report. 1999.

35. Department of Health. South Africa Demographic and Health Survey 2003: Preliminary Report. Pretoria

2004. Available: http://www.doh.gov.za/docs/reports/2003/sadhs2003/part2.pdf. Accessed 6 Jan 2012.

36. Department of Health, Statistics South Africa, South African Medical Research Council, ICF. South

Africa Demographic and Health Survey 2016: Key Indicator Report. Pretoria 2017. Available: http://

www.mrc.ac.za/sites/default/files/files/2017-05-15/SADHS2016.pdf. Accessed 1 Aug 2019.

37. Shisana O, Rehle T, Simbayi LC, Parker W, Zuma K, et al. South African National HIV Prevalence, HIV

Incidence, Behaviours and Communication Survey, 2005. Cape Town: HSRC Press. 2005. Available:

http://www.hsrcpress.ac.za. Accessed 1 Dec 2005.

38. Chersich MF, Wabiri N, Risher K, Shisana O, Celentano D, et al. Contraception coverage and methods

used among women in South Africa: A national household survey. S Afr Med J. 2017; 107: 307–314.

https://doi.org/10.7196/SAMJ.2017.v107i4.12141 PMID: 28395681

39. Johnson LF, Dorrington RE, Matthews AP. An investigation into the extent of uncertainty surrounding

estimates of the impact of HIV/AIDS in South Africa. S Afr J Sci. 2007; 103: 135–140.

40. Thomson KA, Hughes J, Baeten JM, John-Stewart G, Celum C, et al. Increased risk of female HIV-1

acquisition throughout pregnancy and postpartum: a prospective per-coital act analysis among women

with HIV-1 infected partners. J Infect Dis. 2018; 218: 16–25. https://doi.org/10.1093/infdis/jiy113 PMID:

29514254

41. Mugo NR, Heffron R, Donnell D, Wald A, Were EO, et al. Increased risk of HIV-1 transmission in preg-

nancy: a prospective study among African HIV-1-serodiscordant couples. AIDS. 2011; 25: 1887–1895.

https://doi.org/10.1097/QAD.0b013e32834a9338 PMID: 21785321

42. Gray RH, Li X, Kigozi G, Serwadda D, Brahmbhatt H, et al. Increased risk of incident HIV during preg-

nancy in Rakai, Uganda: a prospective study. Lancet. 2005; 366: 1182–1188. https://doi.org/10.1016/

S0140-6736(05)67481-8 PMID: 16198767

43. Ralph LJ, McCoy SI, Shiu K, Padian NS. Hormonal contraceptive use and women’s risk of HIV acquisi-

tion: a meta-analysis of observational studies. Lancet Infect Dis. 2015; 15: 181–189. https://doi.org/10.

1016/S1473-3099(14)71052-7 PMID: 25578825

44. Burgard S. Factors associated with contraceptive use in late- and post-apartheid South Africa. Stud

Fam Plann. 2004; 35: 91–104. https://doi.org/10.1111/j.1728-4465.2004.00011.x PMID: 15260211

45. Ngure K, Heffron R, Mugo NR, Celum C, Cohen CR, et al. Contraceptive method and pregnancy inci-

dence among women in HIV-1-serodiscordant partnerships. AIDS. 2012; 26: 513–518. https://doi.org/

10.1097/QAD.0b013e32834f981c PMID: 22156966

46. Reid SE, Dai JY, Wang J, Sichalwe BN, Akpomiemie G, et al. Pregnancy, contraceptive use, and HIV

acquisition in HPTN 039: relevance for HIV prevention trials among African women. J Acquir Immun

Defic Syndr. 2010; 53: 606–613.

47. Pyra M, Heffron R, Mugo NR, Nanda K, Thomas KK, et al. Effectiveness of hormonal contraception in

HIV-infected women using antiretroviral therapy. AIDS. 2015; 29: 2353–2359. https://doi.org/10.1097/

QAD.0000000000000827 PMID: 26544706

48. Minnis AM, van der Straten A, Gerdts C, Padian NS. A comparison of four condom-use measures in

predicting pregnancy, cervical STI and HIV incidence among Zimbabwean women. Sex Transm Infect.

2010; 86: 231–235. https://doi.org/10.1136/sti.2009.036731 PMID: 19880972

49. Trussell J. Contraceptive failure in the United States. Contraception. 2011; 83: 397–404. https://doi.

org/10.1016/j.contraception.2011.01.021 PMID: 21477680

50. Bongaarts J. A method for the estimation of fecundability. Demography. 1975; 12: 645–660. PMID:

1213216

51. Actuarial Society of South Africa. ASSA2008 AIDS and Demographic Model. 2011. Available: http://

aids.actuarialsociety.org.za. Accessed 5 April 2011.

52. Johnson LF, Dorrington RE. Thembisa version 4.2: A model for evaluating the impact of HIV/AIDS in

South Africa. University of Cape Town. 2019. Available: https://www.thembisa.org/.

53. Garnett GP, Gregson S. Monitoring the course of the HIV-1 epidemic: the influence of patterns of fertility

on HIV-1 prevalence estimates. Math Pop Studies. 2000; 8: 251–277.

PLOS ONE HIV estimation using antenatal HIV prevalence data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242595 November 20, 2020 21 / 22

https://doi.org/10.1371/journal.pmed.1001056
http://www.ncbi.nlm.nih.gov/pubmed/21811403
http://www.doh.gov.za/docs/reports/2003/sadhs2003/part2.pdf
http://www.mrc.ac.za/sites/default/files/files/2017-05-15/SADHS2016.pdf
http://www.mrc.ac.za/sites/default/files/files/2017-05-15/SADHS2016.pdf
http://www.hsrcpress.ac.za
https://doi.org/10.7196/SAMJ.2017.v107i4.12141
http://www.ncbi.nlm.nih.gov/pubmed/28395681
https://doi.org/10.1093/infdis/jiy113
http://www.ncbi.nlm.nih.gov/pubmed/29514254
https://doi.org/10.1097/QAD.0b013e32834a9338
http://www.ncbi.nlm.nih.gov/pubmed/21785321
https://doi.org/10.1016/S0140-6736%2805%2967481-8
https://doi.org/10.1016/S0140-6736%2805%2967481-8
http://www.ncbi.nlm.nih.gov/pubmed/16198767
https://doi.org/10.1016/S1473-3099%2814%2971052-7
https://doi.org/10.1016/S1473-3099%2814%2971052-7
http://www.ncbi.nlm.nih.gov/pubmed/25578825
https://doi.org/10.1111/j.1728-4465.2004.00011.x
http://www.ncbi.nlm.nih.gov/pubmed/15260211
https://doi.org/10.1097/QAD.0b013e32834f981c
https://doi.org/10.1097/QAD.0b013e32834f981c
http://www.ncbi.nlm.nih.gov/pubmed/22156966
https://doi.org/10.1097/QAD.0000000000000827
https://doi.org/10.1097/QAD.0000000000000827
http://www.ncbi.nlm.nih.gov/pubmed/26544706
https://doi.org/10.1136/sti.2009.036731
http://www.ncbi.nlm.nih.gov/pubmed/19880972
https://doi.org/10.1016/j.contraception.2011.01.021
https://doi.org/10.1016/j.contraception.2011.01.021
http://www.ncbi.nlm.nih.gov/pubmed/21477680
http://www.ncbi.nlm.nih.gov/pubmed/1213216
http://aids.actuarialsociety.org.za
http://aids.actuarialsociety.org.za
https://www.thembisa.org/
https://doi.org/10.1371/journal.pone.0242595


54. Chen WJ, Walker N. Fertility of HIV-infected women: insights from Demographic and Health Surveys.

Sex Transm Infect. 2010; 86 (Suppl 2): ii22–27. https://doi.org/10.1136/sti.2010.043620 PMID:

21106511

55. Marston M, Nakiyingi-Miiro J, Kusemererwa S, Urassa M, Michael D, et al. The effects of HIV on fertility

by infection duration: evidence from African population cohorts before antiretroviral treatment availabil-

ity. AIDS. 2017; 31 (Suppl 1): S69–S76. https://doi.org/10.1097/QAD.0000000000001305 PMID:

28296802

56. Kim AA, Behel S, Northbrook S, Parekh BS. Tracking with recency assays to control the epidemic: real-

time HIV surveillance and public health response. AIDS. 2019; 33: 1527–1529. https://doi.org/10.1097/

QAD.0000000000002239 PMID: 31021850

57. Moland KM, de Paoli MM, Sellen DW, van Esterik P, Leshabari SC, et al. Breastfeeding and HIV: expe-

riences from a decade of prevention of postnatal HIV transmission in sub-Saharan Africa. International

Breastfeeding Journal. 2010; 5: 10. https://doi.org/10.1186/1746-4358-5-10 PMID: 20977709

58. National Breastfeeding Consultative Group. The Tshwane declaration of support for breastfeeding in

South Africa. S Afr J Clin Nutr. 2011; 24: 214.

59. Tsui AO, Brown W, Li Q. Contraceptive practice in sub-Saharan Africa. Pop Dev Rev. 2017; 43 (Suppl

1): 166–191. https://doi.org/10.1111/padr.12051 PMID: 29081552

60. Evidence for Contraceptive Options and HIV Outcomes Trial Consortium. HIV incidence among women

using intramuscular depot medroxyprogesterone acetate, a copper intrauterine device, or a levonorges-

trel implant for contraception: a randomised, multicentre, open-label trial. Lancet. 2019; 394: 303–313.

https://doi.org/10.1016/S0140-6736(19)31288-7 PMID: 31204114

61. Simkhada B, Teijlingen ER, Porter M, Simkhada P. Factors affecting the utilization of antenatal care in

developing countries: systematic review of the literature. J Adv Nurs. 2008; 61: 244–260. https://doi.

org/10.1111/j.1365-2648.2007.04532.x PMID: 18197860

62. Fishel JD, Garrett D. Performance of enzyme immunoassays for HIV serology in surveys conducted by

the Demographic and Health Surveys program. Rockville, USA: ICF International. 2016. Available:

https://dhsprogram.com/pubs/pdf/CR39/CR39.pdf. Accessed 18 Feb 2019.

63. Johnson CC, Fonner V, Sands A, Ford N, Obermeyer CM, et al. To err is human, to correct is public

health: a systematic review examining poor quality testing and misdiagnosis of HIV status. J Int AIDS

Soc. 2017; 20 (Suppl 6): 21755. https://doi.org/10.7448/IAS.20.7.21755 PMID: 28872271

64. Rehle TM, Shisana O. Epidemiological and demographic HIV/AIDS projections: South Africa. Afr J

AIDS Res. 2003; 2: 1–8. https://doi.org/10.2989/16085906.2003.9626554 PMID: 25871934

65. Wang H, Wolock TM, Carter A, Nguyen G, Kyu HH, et al. Estimates of global, regional, and national inci-

dence, prevalence, and mortality of HIV, 1980–2015: the Global Burden of Disease Study 2015. Lancet

HIV. 2016; 3: e361–387. https://doi.org/10.1016/S2352-3018(16)30087-X PMID: 27470028

66. Johnson LF, May MT, Dorrington RE, Cornell M, Boulle A, et al. Estimating the impact of antiretroviral

treatment on adult mortality trends in South Africa: a mathematical modelling study. PLoS Med. 2017;

14: e1002468. https://doi.org/10.1371/journal.pmed.1002468 PMID: 29232366

67. Yeatman S, Eaton JW, Beckles Z, Benton L, Gregson S, et al. Impact of ART on the fertility of HIV-posi-

tive women in sub-Saharan Africa. Trop Med Int Health. 2016; 21: 1071–1085. https://doi.org/10.1111/

tmi.12747 PMID: 27371942

68. Davies B, Turner KM, Frolund M, Ward H, May MT, et al. Risk of reproductive complications following

chlamydia testing: a population-based retrospective cohort study in Denmark. Lancet Infect Dis. 2016;

16: 1057–1064. https://doi.org/10.1016/S1473-3099(16)30092-5 PMID: 27289389

PLOS ONE HIV estimation using antenatal HIV prevalence data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242595 November 20, 2020 22 / 22

https://doi.org/10.1136/sti.2010.043620
http://www.ncbi.nlm.nih.gov/pubmed/21106511
https://doi.org/10.1097/QAD.0000000000001305
http://www.ncbi.nlm.nih.gov/pubmed/28296802
https://doi.org/10.1097/QAD.0000000000002239
https://doi.org/10.1097/QAD.0000000000002239
http://www.ncbi.nlm.nih.gov/pubmed/31021850
https://doi.org/10.1186/1746-4358-5-10
http://www.ncbi.nlm.nih.gov/pubmed/20977709
https://doi.org/10.1111/padr.12051
http://www.ncbi.nlm.nih.gov/pubmed/29081552
https://doi.org/10.1016/S0140-6736%2819%2931288-7
http://www.ncbi.nlm.nih.gov/pubmed/31204114
https://doi.org/10.1111/j.1365-2648.2007.04532.x
https://doi.org/10.1111/j.1365-2648.2007.04532.x
http://www.ncbi.nlm.nih.gov/pubmed/18197860
https://dhsprogram.com/pubs/pdf/CR39/CR39.pdf
https://doi.org/10.7448/IAS.20.7.21755
http://www.ncbi.nlm.nih.gov/pubmed/28872271
https://doi.org/10.2989/16085906.2003.9626554
http://www.ncbi.nlm.nih.gov/pubmed/25871934
https://doi.org/10.1016/S2352-3018%2816%2930087-X
http://www.ncbi.nlm.nih.gov/pubmed/27470028
https://doi.org/10.1371/journal.pmed.1002468
http://www.ncbi.nlm.nih.gov/pubmed/29232366
https://doi.org/10.1111/tmi.12747
https://doi.org/10.1111/tmi.12747
http://www.ncbi.nlm.nih.gov/pubmed/27371942
https://doi.org/10.1016/S1473-3099%2816%2930092-5
http://www.ncbi.nlm.nih.gov/pubmed/27289389
https://doi.org/10.1371/journal.pone.0242595

