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Abstract Cells contracting in extracellular matrix (ECM) can transmit stress over
long distances, communicating their position and orientation to cells many tens of
micrometres away. Such phenomena are not observed when cells are seeded on sub-
strates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for
fibrous substrates to support far reaching stress and strain fields has implications for
many physiological processes, while the mechanical properties of ECM are central
to several pathological processes, including tumour invasion and fibrosis. Theoretical
models have investigated the properties of ECM in a variety of network geometries.
However, the effects of network architecture on mechanical cell–cell communication
have received little attention. This work investigates the effects of geometry on net-
work mechanics, and thus the ability for cells to communicate mechanically through
different networks. Cell-derived displacement fields are quantified for various network
geometries while controlling for network topology, cross-link density and microme-
chanical properties. We find that the heterogeneity of response, fibre alignment, and
substrate displacement fields are sensitive to network choice. Further,we show that cer-
tain geometries support mechanical communication over longer distances than others.
As such, we predict that the choice of network geometry is important in fundamental
modelling of cell–cell interactions in fibrous substrates, as well as in experimental
settings, where mechanical signalling at the cellular scale plays an important role.
This work thus informs the construction of theoretical models for substrate mechanics
and experimental explorations of mechanical cell–cell communication.
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1 Introduction

How cells interact with their substrate is of fundamental importance to many physio-
logical processes, ranging from cell communication (Reinhart-King et al. 2008;Winer
et al. 2009),motility andmigration (Lo et al. 2000), cell fate (Engler et al. 2006;Gilbert
et al. 2010) and morphology (Yeung et al. 2005). While changes in ECM may be sig-
natures of pathology, including tumour invasion (Provenzano et al. 2006) and fibrosis
(Wells 2005), it is increasingly clear that the passive mechanical properties of matrices
are important for intrinsic cell function (Discher et al. 2005; Peyton et al. 2007). The
major load-bearing structure in animal matrix is a fibrous network that is comprised of
collagen, elastin and other proteins, which exhibits a geometrically complex and hier-
archical structure. A clear understanding of this microenvironment is challenging, in
part due to the non-affine response of the substrate (Wilhelm and Frey 2003; Chandran
andBarocas 2006). Further complexity is introduced in cell-matrix interactions, which
occur in a feedback loop termed ‘dynamic reciprocity’. Substrate reorganises under
cell-generated tractions, leading to a strain-stiffening response which feeds back into
an intracellular response. In particular, realignment of network fibres under traction
leads to fibre bundling along the load direction, contributing to a stiffer mechanical
response. Stress fibres, actomyosin bundles important for cell contraction, are subse-
quently recruited to sites of high stiffness, leading to further cell contraction, whence
the feedback loop continues (Discher et al. 2005). Investigating how matrix align-
ment and stiffness are related is important for developing a better understanding of
cell-matrix interactions.

Substrates derived from matrix proteins have diverse mechanical properties, con-
tributing to their function. Perhaps, most striking is the ability to support long-ranging,
cell-generated strain fields. In a series of experiments,Winer et al. (2009) demonstrated
that fibroblasts and human mesenchymal stem cells (hMSCs) could significantly
deform substrate more than five cell diameters away. This effect was notably absent
in cells seeded on linear elastic substrates, such as polyacrylamide (PA) gels. Cell
shape was acutely affected, with the round morphology displayed on linearly elastic
substrates changing to larger spread area and greater elongation on strain-stiffening
gels, similar to other investigations into cell morphology (Yeung et al. 2005).

It is now well established that cells respond to micromechanical cues within the
substrate. Seminal experiments found that strong fibre alignment is induced between
tissue explants seeded in collagen gels. These aligned fibres form tracts, which may
function as topographic guides for cell migration (Stopak and Harris 1982). This
phenomenon, termed ‘contact guidance’, is observed in tumour cell invasion, where
cells migrate along aligned regions within ECM (Friedl et al. 1997; Jacques et al.
1998). Similar behaviour on the scale of individual cells has been identified in the
formation of tethers, dense regions of highly aligned matrix fibres, between pairs of
fibroblasts seeded on fibrin substrates (Notbohm et al. 2015). Cells have also been
observed to migrate up stiffness gradients found within gels, a process known as
‘durotaxis’ (Lo et al. 2000; Plotnikov et al. 2012). Reinhart-King’s work, on cells
seeded in compliant substrates (Reinhart-King et al. 2008), found that the motility
of pairwise endothelial cells was dependent on both substrate stiffness and cell–cell
interactions. Similar responses were absent on substrates that were either too soft, thus
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not supporting far reaching strain fields, or too stiff, in which cell tractions are unable
to significantly deform the substrate. These studies provide evidence that mechanical
cues, transmitted through the substrate, allow for pairwise cell interactions.

Various studies have also suggested that cells within matrix-derived gels can detect
distant boundaries. While cells cultured upon PA gels can fail to sense substrate prop-
erties more than approximately 20μm beyond the cell membrane, hMSCs seeded on
collagen-I gel appear to detect rigid boundaries further than 100μm away (Leong
et al. 2010). Within a newmodel system, in which regular boundaries were introduced
around cells on fibrous substrates, Mohammadi et al. (2014) found that cell-induced
displacements extended beyond 500μm, but failed to reach boundaries 1700μm dis-
tant (Mohammadi et al. 2014). Interestingly, when cells detected boundaries, they
produced a greater number of protrusions, and these processes were longer on aver-
age, suggesting further physiological changes in cells introduced by the mechanical
microenvironment.

Theoretical efforts have investigated phenomena such as nonlinear (strain-
stiffening) matrix response and fibre realignment. With a strain-stiffening continuum
model for the matrix, the relation between the far-field and local responses to active
forces has been investigated, and scaling laws derived (Shokef and Safran 2012). Fur-
ther, models in which the extracellular material stiffens under extension, and softens
under compression due to fibre buckling, have shown that cell-derived traction forces
may extend further than when such nonlinearities are omitted (Xu and Safran 2015).
Other recent investigations have focussed on whole network models to represent the
fibre matrix, in part due to the non-affine and heterogeneous response of fibrous sub-
strates. Such models explicitly include fibres within a network structure, and break
from affine assumptions found elsewhere in the literature (Heussinger et al. 2007). As
the in vivo geometry and topology of matrices is not well established, it is often neces-
sary to use either segmented imaging data, or to adopt an artificial geometry. Confocal
microscopy data for a collagen-I network was used by Sander (2013) to propose a
critical radius within which alignment of network fibres, due to cell contraction, is
localised. Imaging of three-dimensional collagen networks allowed Stein et al. (2011)
to confirm that geometric realignment, rather than filament-associated nonlinearity,
could lead to the network strain-stiffening response. Cell communication was inves-
tigated through segmented images of fibroblast seeded collagen, demonstrating an
increased range of stress transmission in fibrous substrates when compared with lin-
ear or strain-stiffening continua (Ma et al. 2013). Imaging data have the clear advantage
that, in some sense, they represents the ground truth. However, in practice imaging
artefacts are introduced, for example, through sample depth or misidentification of
cross-links, entanglements or branching points. These artefacts limit the extent to
which these networks may be taken as representative. Further, the difficulty of seg-
mentation on the nano- and micro-scale limits the scope of using imaged networks.
As such, there is great utility in the ability to generate representative artificial network
architectures in silico.

While many models have employed artificially generated networks, the choice
of network geometry remains relatively free (Picu 2011). Lattice models, such as
triangular or Kagome, use regular, periodic geometries to represent the biopolymer
network; such geometries may be diluted, say through bond deletion, until a desired
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density or persistence length is reached. Such models have recently been used to
improve understanding of how contractile forces may be transmitted through 2 and
3D networks (Ronceray et al. 2016). Many models have also used less regular random
structures, such as Mikado-type networks, generated by placing fibres of uniform
length and random orientation within a two-dimensional domain (Head et al. 2003a, b;
Onck et al. 2005). A cross-link is given by the intersection of two model fibres; as
such network nodes have coordination z = 2, 3, or 4 once dangling ends have been
removed. In a similar construction, presented by Chandran and Barocas (2006) and
termed either ‘micromesh’ or ‘growth’ networks, uniformly seeded points are assigned
an orientation, from which fibres grow until meeting another, whence a cross-link is
formed and growth halts. Nodes in such networks have coordination z = 3. Voronoi-
type geometries, which also have node coordination 3, have been used, where Voronoi
edges are viewed as fibre segments, with vertices as cross-links. In two dimensions,
Voronoi networks derived from random seed points also have coordination z = 3. If
initial conditions are selected randomly, and a sufficiently large domain is chosen,
these algorithms all produce isotropic networks.

The response of growth type networks was found to be non-affine, with little cor-
relation between initial and final fibre orientation (Chandran and Barocas 2006). The
ability for such networks to reorganise significantly reduced fibre strains. Growth
geometries were used by Stylianopoulos and Barocas (2007b) to form a represen-
tative volume element (RVE). This RVE was used to motivate a macroscopic finite
element model for collagen, finding good agreement with experiment. Investigations
into polymer networks with a Mikado geometry have identified affine and non-affine
regimes, the transition between which was described (Head et al. 2003a, b). More
recent work involvingMikado-type networks underlined the importance of cell aspect
ratio in long-range cell mechanical communication (Abhilash et al. 2014). Voronoi
networks have been used to represent a discrete collagen scaffold, embedded within a
continuous, neo-Hookean solid (Lake et al. 2012). This model resulted in good agree-
ment with collagen gel data, and represented an holistic model, in which the fibrous
network contributed to whole matrix mechanics. Other modelling approaches, along-
side further details of those described above, are discussed in the thorough review by
Broedersz and MacKintosh (2014).

While the above modelling efforts have developed the discrete fibre network into a
powerful modelling tool, the freedom of choice in network geometry raises questions
on the generality of their results. While it is known that prealigned geometries exhib-
ited a far stiffer response at high strain (Lee et al. 2014), whether different isotropic
networks behave differently is not addressed. We investigate the mechanical response
of different isotropic networks that possess similar topology. We aim to quantify the
significance of network architecture, comparing different geometries in a range of
systems. In particular, we investigate the effects of network choice on the deforma-
tion field around a contractile cell, the degree of fibre reorganisation and alignment
within the matrix, and the heterogeneity in mechanical response. We further inves-
tigate whether constituent fibre strain distributions are affected by geometry choice,
and the plausibility of mechanical cell–cell communication within networks of differ-
ent architectures. In summary, while controlling for material properties, together with
network topology and cross-link density, we systematically investigate the relevance
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of geometry to the mechanical response of networks under uniaxial extension, local
cell-derived tractions and cell–cell mechanical communication. These investigations
are therefore likely to inform the theoretical modelling of substrate mechanics, as well
as motivating experimental explorations into the micromechanical characteristics of
fibrous substrates.

2 Methods

2.1 Model Fibre Choices

Wepresent a whole networkmodel for a biological matrix, in which fibres are included
explicitly. Entropic effects are neglected, so that the model is athermal and purely
mechanical. In particular, fibre segments are modelled as elastic springs, which form a
network structure through point cross-links that are freely rotating. Fibres are assumed
to have uniform diameter, so that the force-extension behaviour for each segment is
equivalent. As such, our model takes the form of a central force network. Preliminary
investigations, where deformations were induced by contracting cells, found that indi-
vidual fibre strains were small, with very few fibres above 5% strain. Further, material
nonlinearity emerges due to fibre network structure, rather than individual fibre prop-
erties (Stylianopoulos and Barocas 2007a).We therefore model fibres within the linear
regime. To account for fibre buckling, a far softer fibre response in compression is used
(Chandran andBarocas 2006), giving a piecewise linear force-extension law. The force
F resulting from a fibre under extension or compression is therefore given by:

F = k�L ,

where�L is difference between initial and final fibre lengths,�L = l−L . The spring
constant k is given through a representative Young’s modulus E , fibre cross-sectional
area A and initial fibre length L as k = E A/L . A diameter of 200 nm was used as
representative of a typical substrate fibre. A Young’s modulus Et = 1MPa was used
for fibre extension. To represent the softer compressive or buckling response of fibres
under compression, preliminary investigations were undertaken with Young’s moduli
between 0.1 and 100 kPa. It was found that the mechanical network response was
insensitive to this choice (results not shown), and for the results presented below a
value of Ec = 10kPa has been used for the Young’s modulus of a fibre under com-
pression. The above modelling choices are similar to several existing studies in the
literature (Chandran and Barocas 2006; Hudson et al. 2010; Lee et al. 2014; Notbohm
et al. 2015).

Solutions are obtained through an overdamped, quasistatic scheme developed in
the MATLAB (2014). Small fixed displacements are iteratively enforced at domain
boundaries and interior nodes relax to effective equilibrium. In particular, for xn , the
position vector of the nth cross-link, we have :

dxn

dt
= 1

μ

∑

i

kni
(
lni − Ln

i

)
tni ,

where summation is over nodal fibres, li , Li are current and initial (natural) fibre
lengths and ti gives the current fibre direction, ||tni || = 1. kni gives the relevant spring
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constant for extension or compression, and μ is a damping term. For numerical solu-
tions, the above equation is non-dimensionalised with scales chosen such that there is
unit damping. The overdamped system relaxes; numerically, the termination condition
for this relaxation is given by the requirement that the maximum force on any network
cross-link is six orders of magnitude smaller than the force scale associated with fibre
extensions on the scale of the natural length, ensuring effective force balance. While
units are given as representative of substrate fibres, we emphasise that these values are
taken so as to facilitate a comparative study into different network geometries rather
than relate to experiment. As such, results are insensitive to these parameter choices
within the overdamped limit.

2.2 Network Geometry

Network architecture is definedbyboth a graph structure, the network topology, and the
network geometry, that is the spatial embedding of the graph. In order to investigate the
impact of geometry on the network mechanical response, we select artificial networks
of a given type. In two dimensions (2D), it is possible to select networks used in exist-
ing models which have distinct geometric properties, but whose topology is similar.
Furthermore, many of the interesting properties of fibre networks, including strain-
stiffening, non-affine response and fibre alignment are observed in both two and three
dimensions (Onck et al. 2005;Hu et al. 2012).We therefore restrict ourselves to 2Dnet-
works, whichwill also be of greater relevance to themany 2D studies published to date.

Throughout, network nodes are viewed as permanent cross-links between two fibre
segments. We investigate networks with node coordination z = 3, similar to typical
values for fibrin networks (Notbohm et al. 2015). In particular, Voronoi- and ‘growth’-
type geometries are studied. Voronoi networks are generated by seeding n random
points uniformly in a given domain as generators, from which a Voronoi diagram is
formed. The resulting Voronoi edges are viewed as fibre segments, between either
fibre branching points or cross-links. For comparison, we also produce growth type
networks, as outlined by Chandran and Barocas (2006). These networks are generated
by again seedingn randompointswithin the computational domain, and assigning each
seed a random direction. Fibres extend forwards and backwards in this direction until
contacting either another fibre segment or a domain boundary, whence a cross-link is
formed and the growth terminates.

Producing Voronoi networks from random seed points produces a random network
with little local structure. In contrast, each interior node in growth geometries supports
precisely two parallel edges, so that an angle of π is present between two fibre seg-
ments at each node (see Fig. 1c). Aswewish to investigate the importance of geometry,
we control for network topology as follows. Two further network types, which can be
viewed as geometric ‘perturbations’ of the two networks architectures considered, are
introduced. Firstly, using the same Delaunay triangulation corresponding to a given
Voronoi network, we produce a different dual graph. This is achieved by introduc-
ing nodes at each triangle centre, which are then connected to neighbouring centres
through shared triangle edges. In this manner, a network with similar topology to the
Voronoi case is generated. We refer to this geometry as ‘dual’- type throughout. A
perturbation to growth networks is performed by introducing a small tension into each
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Fig. 1 Visualisation of the local structure and geometry for each model architecture. Details for network
generation are given in Sect. 2.2

fibre segment, whence the system is allowed to relax to equilibrium. This equilibrium
state is then taken as a strain-free network. In this way, the local structure observed
at each node in growth networks, where each node shares two fibre segments sepa-
rated by an angle of π , is removed. This perturbed network is thus a different spatial
embedding of the same graph produced by growth networks, and differences in the
mechanical response of these two network types derive purely from this geometric
perturbation, rather than from the network topology. Throughout, these networks are
referred to as ‘perturbed’-type. The Kolmogorov–Smirnov test (Massey Jr 1951) was
used to confirm that all networks considered were nominally isotropic, in the sense
that networks exhibited no preferential fibre orientation. All networks are considered
initially stress free, so that initial and natural fibre lengths coincide. Visualisations of
each model geometry are shown in Fig. 1.
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As cross-link and fibre density cannot be independently specified for each geometry
in 2D, we control for cross-link density, which has been found to strongly influence
fibre network mechanics (Lin and Gu 2015). Except where otherwise specified, net-
works of cross-link density 0.2μm2 are used. This gives corresponding mean fibre
densities of 0.63, 0.70, 0.8 and 0.67μm/μm2 for dual, Voronoi, growth and perturbed
networks respectively. We note the slightly lower fibre density for dual geometries and
slightly higher density for growth networks, which is a consequence of fixing cross-
link density.

Three mechanical tests are employed to investigate the importance of network
geometry at different scales. Firstly, networks are subjected to uniaxial extension, as
in Fig. 2a. Boundaries are defined so as to include boundary polygons, thus avoiding
free nodes. A domain size of approximately 100μm is selected to ensure an isotropic
distribution in fibre orientation. Boundary nodes (marked in red, Fig. 2a) are subjected
to fixed horizontal displacement. Single cell contractions are modelled by removing a
circular region from a network, as in Fig. 2b. The inner circular region, representing a
cell, is allowed to contract radially, while nodes attached to the outer boundary remain
fixed. Model cells have initial diameter of 20μm and final diameter of 10μm, within
a domain of diameter 120μm. Mechanical cell–cell communication is investigated
by introducing cells (final diameter 10μm) into a larger rectangular domain such that
boundaries are never closer than in the single cellular case, as shown in Fig. 2c. A
cell separation distance ranging between 50–70μm, corresponding to separations of
5–7 final cell diameters, is used to investigate the ability for cells to communicate
mechanically. All results are averaged across 20 network realisations, allowing for an
investigation of network to network variability. Additional simulations on networks
with more distant boundaries ensured that boundary effects did not significantly affect
the results given.

In summary, we investigate the mechanics of four different network architectures.
Each network is paired with another of similar or identical graph structure, to reduce
the effects of topology.We control for density by fixing cross-linking density across all
networks. Equivalentmaterial parameters are used for all network choices.Mechanical
tests are performed so as to investigate bulk and local responses of different network
architectures. As such, this model is designed to isolate the importance of geometry
to the mechanical response.

3 Results

3.1 Network Stiffness Under Uniaxial Extension is Dependent on Network
Choice

We first investigate the response of different networks under uniaxial extension, as
shown schematically in Fig. 2a. Many substrate gels and ECM exhibit a strain-
stiffening response, with characteristic toe, heel and linear regions (Fratzl 2008, chap.
17). Engineering stress–strain curves for each network considered are given in Fig. 3a.
As strain increases to 50%, all networks exhibit a strain-stiffening response. Interest-
ingly, a far stiffer response is present in Voronoi than growth networks, with stress
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Fig. 2 (Colour figure online) Model domains for computational tests. Displaced boundary nodes are high-
lighted in red. a Uniaxial extension of a dual type network. Boundary nodes are displaced horizontally. b
Single cell contraction within a Voronoi network. An interior circle is removed from the domain, and inner
boundary nodes are displaced in the radial direction towards the centre, with outer nodes fixed. c Pairwise
mechanical cell communication within a dual network. Two interior circles are removed from a network
within a rectangular domain. Cells contract as in the single cell case. The separation distance between
pairwise cells is defined to be the shortest membrane–membrane distance. Triangular markers signify fixed
boundary nodes

at 50% strain in Voronoi geometries almost double that found in the growth case. To
investigate the qualitative difference in response, we compare the second derivative of
stress with strain, that is a measure of strain-stiffening, in Fig. 3b. The onset of strain-
stiffening in perturbed and Voronoi networks occurs around 10% strain, with a later
response in dual networks, and later again for growth cases, above 15% strain. Given
that fibres follow a piecewise linear force-extension curve, this nonlinear response is
purely geometric, due to the reorganisation of network fibres. As such, the pertur-
bation to the growth type geometry, has the effect of changing both the quantitative
stiffness and the qualitative shape of the stress–strain curve under uniaxial extension,
suggesting that geometry plays a key role in substrate network mechanics.

We investigate the cause of this increase in stiffness from a micromechanical
perspective, looking at single fibre properties. Firstly, we investigate network fibre
alignment. We introduce the orientation parameter:
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Fig. 3 (Colour figure online) Mechanical response of networks under uniaxial extension. a Engineering
stress–strain curves show that Voronoi networks are relatively stiff, while growth cases exhibit the softest
response. The inset shows the uniaxial test performed.bThe second derivative of stresswith strain is plotted.
All networks exhibit strain-stiffening, though the onset of strain-stiffening occurs later in dual and growth
architectures. Voronoi and perturbed networks display similar strain-stiffening response. c The orientation
parameter �XX increases with strain for all networks, as constituent fibres reorient with the direction of
extension. d Cumulative fibre stretch (λ) distributions within different network geometries at 50% strain
underline micromechanical differences, with far fewer strained, and more buckled, fibres present in growth
networks than in Voronoi geometries. Bars give 1 SD about the mean value

�i j :=
∑

k p
k
i p

k
j∑

k |pk | , (1)

as a measure of geometric alignment. Here, p are vectors describing a given family
of k network fibres, while i, j are axis directions. For alignment with the direction of
extension that is with the horizontal, we have:
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�XX :=
∑

k |pk | cos2 θk∑
k |pk | , (2)

where θk is the angle between fibre and the positive x-axis. A value of 0.5 represents
nominal isotropy, while a value of 1 gives a perfectly aligned network. We expect
fibres to buckle rather than compress, whence alignment ceases to be meaningful.
We therefore neglect to include fibres with λ < 1, where stretch ratio λ := l/L
gives the ratio of final to initial fibre length. The change in orientation parameter as
strain increases is shown in Fig. 3c, showing increasing alignment in all networks.
Orientation response is similar in dual, perturbed and Voronoi cases, with significant
differences in growth networks, as strain increases. However, significant reorientation
of network fibres with the direction of loading is observed in all networks, with similar
alignment from 30% strain.

Individual fibre strain throughout the network is investigated for bulk uniaxial
extension. Cumulative frequency distributions for fibre stretch are shown in Fig. 3d.
Interestingly, growth type networks contain considerably more buckled, and fewer
strained fibres than other network geometries. As buckled fibres are not included in
our consideration of alignment, this provides a partial explanation for the different
orientation response of growth networks. In contrast, Voronoi geometries favour a
greater number of strained fibres.

Given the above differences in stiffness under a bulk mechanical test, we proceed
to investigate whether these differences persist under local perturbations, and the
implications for cell function in different network architectures.

3.2 Displacement Fields Arising from Single Contractile Cells Exhibit
Qualitative Differences with Choice of Initial Network Geometry

Adherent cells contract and reorganise their substrates, leading to long-range dis-
placement fields, extending many cell diameters (Winer et al. 2009). It is therefore
important to quantify network response to local perturbations, and to investigate how
far cell-derived substrate displacements reach. Interestingly, the choice of geometry
profoundly affects cell-derived displacement fields. The magnitude of these displace-
ment fields, given a uniformly contracting cell adhered to the substrate, is visualised in
Fig. 4a–d. All networks supported a long-ranged displacement field, with significant
substrate displacements (above 1μm) between four and five cell diameters distant,
similar to experimental results (Winer et al. 2009). The average mean displacement
decay over 20 networks of each type is given in Fig. 5a, showing displacement fields
reaching the outer boundary in dual, perturbed and Voronoi geometries. Remarkably,
a similar mean displacement decay rate is observed in these three geometries, while
growth networks supported a shorter-ranged mean field.

Inspection of the displacement fields arising in individual growth networks, as
in Fig. 4c, shows that localised regions display network displacements of several
micrometres many cell diameters away, while other regions are relatively unperturbed.
As such, growth geometries support symmetry-breaking, which is also observed to
a lesser extent in dual and perturbed networks. As a measure of asymmetry, each
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Fig. 4 (Colour figure online) Displacement fields |U| (μm) due to a contractile cell show strong qualitative
differences as network architecture is changed. In particular, largely symmetric fields are observed in
Voronoi geometries, while a highly heterogeneous field, involving symmetry breaking, results in growth
networks.Black arrows give displacement vectors for fibremidpoints. Continuous plots here and throughout
are generated through natural neighbour interpolation

annular domain was binned into 12 angular segments. Mean displacement within
each binned region was calculated, and normalised to the maximum value across
all bins. The standard deviation in these quantities provides a measure of angular
variation in the displacement fields, and therefore symmetry-breaking, as shown in
Fig. 5b.WhileVoronoi networks yield approximately radially symmetric displacement
fields, considerable angular variation is present in the other three geometries tested.
In particular, growth type networks display high displacement field asymmetry.

Despite purely radial cell contraction, considerable transverse network displace-
ments are observed. Visualisations of these displacement fields |Uθ| are shown in
Fig. 6a–d, and quantified in Fig. 5c; except for in Voronoi cases, significant transverse
motion is observed, particularly in growth networks.
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Fig. 5 (Colour figure online) Comparison of displacement fields due to a contracting cell in different
networks. a Mean displacement |U| is plotted with distance from the cell membrane; long-range effects
are observed for all cases considered, though growth networks extend considerably less far. In Voronoi,
dual and perturbed networks, mean substrate displacement above 1μm is observed more than 3 (final) cell
diameters distant.Dashed line shows equivalent displacement decay in a homogeneous elastic continuum. b
Asymmetry in cell-derived displacement fields, showing the highly asymmetric fields in growth geometries,
and the more symmetric fields induced within Voronoi networks. c Mean transverse displacement |Uθ| as
distance from the cell membrane increases. Significant transverse motion is present in growth networks,
while displacement is largely radial in Voronoi cases. Bars give 1 SD about the mean value

The above results describe a uniform radial contractionwithin a nominally isotropic
network inducing an asymmetric displacement field in certain geometries. This has
important implications for cells communicating through substrate displacements
(Reinhart-King et al. 2008), as the extent and direction of displacement is not robust
in certain network geometries.
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Fig. 6 (Colour figure online) Visualisations of transverse displacement fields |Uθ| (μm) due to a single
contractile cell in each network. Considerable transverse displacements, above 1μm, are observed in growth
networks a large distance from the cell membrane, while almost all displacement in Voronoi geometries is
radial

3.3 Network Choice Strongly Influences Stress Transmission and Membrane
Reaction Force

Next, we consider the nature of stress transmission through different network archi-
tectures. Cells contracting within compliant substrates transmit stress over long
distances, allowing for the detection of distant cells and boundaries (Leong et al. 2010;
Mohammadi et al. 2014). We investigate constituent fibre strains induced through the
contraction of a single cell. To investigate stress transmitted through the substrate,
individual fibre strain energy densities (SED) were calculated, according to:

Wf = 1

2
Eε2 ,

where Wf is fibre SED, ε = (l − L)/L is fibre strain, and E is the relevant Young’s
modulus for extension or compression. Resulting fibre SED fields in each network
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Fig. 7 (Colour figure online) Strain energy density (SED) fields derived from single cells contracting in
each network. Highly heterogeneous, shorter-ranged fields are observed in growth geometries, while long-
range stress transmission to the distant boundary is observed in Voronoi and perturbed networks. Note the
order of magnitude differences between architectures, as illustrated by log scale colour bars

geometry are visualised in Fig. 7, highlighting order of magnitude differences. In
particular, growth geometries support limited stress transmission, in which localised
families of fibres are strained and little stress is transmitted to the outer boundary. In
contrast, Voronoi and perturbed networks support largely symmetric and far reaching
fields. Stress transmission in dual networks is qualitatively similar to that in Voronoi
and perturbed cases, though a greater degree of symmetry-breaking is observed, along-
side a far lower SED. The decay of mean fibre SED with distance from the cell
membrane is quantified in Fig. 8a, averaged over 20 network realisations. The decay
of fibre SEDwith distance from the contracting cell is notably similar in perturbed and
Voronoi networks, with SED decaying to a constant value far from the cell, suggesting
the transmission of stress to the outer boundary. In contrast, significant strain is not
transmitted beyond roughly one cell diameter distant in growth and dual cases. We
note that despite a similar displacement decay rate for dual, Voronoi and perturbed
architectures, significant differences arise in the ability to transmit stress through the
network.
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Fig. 8 (Colour figure online) The transmission of stress in fibre networks. aMeanfibre strain energy density
(SED) is plotted, showing far greater range of stress transmission in Voronoi and perturbed geometries than
in growth or dual networks, with considerable strain energy more than 5 cell diameters distant. b Cells
contracting in Voronoi and perturbed networks experience a far stiffer response than those in growth and
dual networks. c Stress reaches the distant outer boundary in perturbed and Voronoi geometries, even at
low cell contraction while in growth networks the distant boundary experiences very little stress. d Cell
contraction leads to 20% of growth network fibres buckling. The more shallow sigmoid found in Voronoi
and perturbed geometries suggests that fibre strain is more equally distributed in these networks. Bars give
1 SD about the mean value

Cells respond sensitively to substrate stiffness, likely through a stress-limitedmech-
anism (Winer et al. 2009; Discher et al. 2005). We quantify the stress at the cell
membrane as a measure of how stiff a substrate appears to a contractile cell in Fig. 8b.
In particular, we calculate normal membrane stress as the sum, over fibres connected
to the cell membrane, of the normal components of fibre reaction forces, divided by the
original cellmembrane area. Despite equivalent cross-link density andmaterial param-
eters, cells contracting in Voronoi and perturbed geometries experience a significantly
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stiffer response than those in growth or dual networks. The onset of strain-stiffening
is observed in Voronoi and perturbed geometries at a contraction of approximately
1.5μm, and to a lesser extent in dual networks at around 3μm. The strain-stiffening
response is notably weak in growth networks, which could have a profound effect
on cell behaviour (Wen and Janmey 2013). The transmission of stress to the distant
outer boundary is quantified in Fig. 8c. Cell contraction induces a reaction force at the
outer boundary in Voronoi and perturbed geometries, even for small cell contractions.
Within dual type networks, significant stress response at the outer boundary occurs
once cell contraction reaches approximately 2.5μm, leading to a clear stress signal at
full contraction. In contrast, very little stress is transmitted to the boundary in growth
networks, suggesting long-range detection of boundaries might not be possible in this
geometry.

We investigate the fibre scale origins of these significant differences in strain and
stress transmission. Cumulative fibre stretch distribution is given in Fig. 8d for each
of the four networks considered. Importantly, approximately 20% of fibres in growth
networks buckle or compress under cell contraction, with significant strain, above
1%, localised to just 10% of total fibre segments. Fibres within dual networks do not
display the same extent of buckling, though have generally lower fibre stretch, with
the steep sigmoid suggesting dominant contributions to strain energy are contained
within relatively few fibres. In contrast, strain is distributed more evenly throughout
perturbed and Voronoi geometries, with fewer buckled fibres, and 80–90% of fibres
above 1% strain. Similarities between strain distributions in perturbed and Voronoi
cases suggest that the perturbation applied to growth networks encourages a geometry
which favours long-range stress transmission.

3.4 Fibre Reorganisation Far from the Cell Membrane Depends on Geometry
Choice, and Correlates with Fibre Strain

We now seek an explanation for the qualitative differences identified in the displace-
ment and SED fields in contrasting network geometries. In particular, we investigate
correlations between fibre stretch ratio and fibre alignment, and the rotation of con-
stituent fibre segments with distance from the cell membrane.

The parameter �rr, the radial analogue of Eq. (1), measures the radial alignment of
fibres. Fig. 9 a shows the relation between this alignment parameter and fibre stretch.
In all networks, increasing fibre stretch correlates with increased alignment. In growth
networks, the most strained fibres are almost all highly aligned in the radial direction.
This result is largely true in dual networks, though fibre strains are larger in general.
However, the lower alignment value for �rr in perturbed and Voronoi cases suggests
that the most strained fibres can exist in a variety of conformations, both aligned and
unaligned. Interestingly, in both Voronoi and perturbed cases, we see that fibres up to
1% strain are more likely to exist in an unaligned configuration. As such, geometric
differences in these networks allow for stretched fibres to exist in a greater range of
configurations, allowing for enhanced stress transmission in comparison with growth
and dual networks.
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Fig. 9 (Colour figure online) Alignment and reorganisation of non-buckled fibres. a Orientation of fibre
families with increasing stretch ratio is plotted, showing a strong correlation between increasing fibre stretch
and radial alignment in all networks. The strain distribution in Voronoi and perturbed geometries allows
for families of fibres under significant strain (1–2%) to remain unaligned with the direction of bulk stretch.
b Mean rotation (radians) of constituent fibres within a network is plotted. Considerable fibre rotation is
observed in growth networks, and far from the cell boundary in dual networks. The geometry of Voronoi
and perturbed networks restricts rotation of fibres far from the cell membrane, and encourages stretching
of individual network fibres. Bars give 1 SD about the mean value

To investigate why fibres undergo higher stretch in some geometries, thus propagat-
ing stress, we quantify fibre rotation, that is the angle through which constituent fibres
rotate, with distance from the cell membrane in Fig. 9b. Fibre segments in growth
networks move through larger rotation arcs on average, implying that these network
architectures allow for the reorganisation of fibres. The rotational behaviour of fibres
in Voronoi and perturbed cases is very similar, with little rotation far from the cell
boundary. Given that fibre SED extends far from the cell membrane, this implies that
fibres are constrained to stretch rather than rotate, thus allowing for the greater extent
of stress transmission, as seen in Fig. 7. Dual networks behave similarly toVoronoi and
perturbed cases close to the cell membrane, though the higher degree of fibre rotation
beyond two cell diameters away suggests that this geometry is not as constrained with
regards to fibre reorganisation. It is interesting to note that a purely geometric differ-
ence, between growth and perturbed networks, encourages or discourages fibre stretch
over rotation. These results offer a micromechanical explanation as to how geometry
can promote qualitative differences in network response to local perturbations.

3.5 The Dependence of Mechanical Response upon Network Geometry Persists
at Higher Densities

Before comparing the ability for pairwise cells to mechanically communicate through
networks of different geometries, we first investigate whether the differences in stress
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Fig. 10 (Colour figure online) Important differences in network response persist for a range of densities.
a Mean displacement |U| is plotted with distance from the cell membrane, for three cross-link densities.
A slight variation, within 1 SD, is found upon increasing fibre density. b Cumulative frequency plots for
fibre stretch ratio is shown. The distributions do not vary significantly under a twofold increase in cross-link
density. As such, fibre micromechanics are heavily dependent on network architecture for the range of
densities investigated. Bars represent 1 SD about the mean value

transmission and displacement fields depend strongly on network density. That is, we
investigate whether the differences are robust to increases in density. As such, we com-
pare displacement and fibre stretch results for networks of 1.5 and 2 times cross-link
density, which corresponds to cross-link densities of 0.3 and 0.4μm2 respectively.
As network density increases, inter-cross-link length reduces and we might expect
networks to approach an affine limit. Displacement with distance from the cell mem-
brane for Voronoi and growth networks of the three densities considered are shown
in Fig. 10a. We find that variation in results is slight, and clearly within one standard
deviation for individual networks of equal density, suggesting the extent of cell-derived
displacement fields persists at a range of relevant densities. Further, cumulative fibre
stretch distributions shows no discernible differences as network density increases,
as shown in Fig. 10b. As such, important differences persist as network density is
increased. This insensitivity to a twofold increase in cross-link density suggests that
differences arising from network architecture are relevant on a range of scales, and
allows for the investigation of pairwise interactions at a single density without loss of
generality.

3.6 Pairwise Contractile Cells can Mechanically Signal Through Transmitted
Stress in Certain Architectures

Cells possess the ability to communicate mechanically through substrates, with
pairwise cell motility influenced by substrate compliance (Reinhart-King et al. 2008),
and alignment of both cells and substrate over long distances (Winer et al. 2009).
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Fig. 11 (Colour figure online) Visualisations of fibre strain energy density for pairwise contracting cells at
a separation distance of 50μm = 5 final cell diameters. Increased strain energy density in the intercellular
region is clear in all networks, as evidence by the bright band in between cells. Note the log scale colour
bars, underlining order of magnitude differences in strain energy fields. b (Inset) to highlight the presence
of SED banding between cells in the Voronoi case, a rescaled plot is included. Logarithmic colour scaling
gives one order of magnitude difference. a Dual, b Voronoi, c growth, d perturbed

We investigate the ability for mechanical signals to be transmitted between pairs
of cells through different network geometries, as shown schematically in Fig. 2c.
Fibre SED within networks containing pairs of cells at three distances, corresponding
to separations of 5, 6 and 7 (final) cell diameters, is investigated. Single network
visualisations are shown in Fig. 11 for cell separations of five cell diameters. In this
case, where the separation distance is relatively small, clear bands of high strain energy
are visible between contracting cells. At greater separations, corresponding to 7 cell
diameters, as shown in Fig. 12a–b, increased SEDbetween cells is still clear inVoronoi
networks (a), while this banding is minimal or absent in growth geometries (b). We
define a mechanical signal between the two cells to be the difference in normal stress
between the two halves of the cell, that is the halves facing towards and away from
the other cell. In particular, if the cell membrane stress on the half facing towards a
distant cell is greater than that on the other half, this signal is positive. For a separation
distance of 5 cell diameters, this signal with increasing cell contraction is shown in
Fig. 13a. A clear stress signal at maximum radial contraction (5μm) is observed
across all geometries. However, the larger standard deviation in this signal for the
growth network cases highlights the possibility that cells in these geometries fail
to communicate mechanically. In contrast, the stronger signal, and smaller standard
deviation, in Voronoi networks implies that there exists robust transmission of stress
signal between cells.
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Fig. 12 (Colour figure online) Visualisations of fibre strain energy density for cells contracting atmaximum
separation distance 70μm = 7 cell diameters. a Increased strain energy between cells is observed for cells
contracting in Voronoi networks at a higher separation distance of 7 cell diameters. Inset is a rescaled plot to
highlight SEDbanding between cells. Logarithmic colour scaling gives one order ofmagnitude difference in
this case.bNo such increase is found in growth networks, suggesting that cells cannot robustly communicate
mechanically over such distances in this architecture

Figure 13b shows the signal parameter in each network geometry for maximum
radial contraction (5μm) as separation distance is increased. Robust signalling persists
in Voronoi networks, even at a larger separation of 7 cell diameters. A smaller signal is
observed in both dual and perturbed networks on average, while growth geometries do
not support a meaningful signal at high separation distance. Further, the large standard
deviations for growth cases at all separation distances underline the possible failure
of cells to achieve a signal. In all cases, the most robust (smallest standard deviation)
and largest mean signals derive from Voronoi network geometries. Interestingly, the
change in geometry type, from growth to perturbed, yields two networks whose ability
to support mechanical signalling, as defined above, is entirely different. Perturbed
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Fig. 13 (Colour figure online) Mechanical communication via stress transmission through different net-
work architectures. a The stress signal at the cell membranes as cell contraction increases is plotted for
separation distance of 50μm = 5 final cell diameters. A robust, stronger signal is observed in Voronoi
networks, with weaker, variable signal in growth geometries. Large standard deviation in perturbed cases
underlines high network-to-network variability in signal propagation. b The stress signal at maximal con-
traction (5μm) for increasing cell separation is plotted. Significant signal is transmitted between cells which
are 7 cell diameters distant in Voronoi networks, while robust stress transmission beyond 5 cell diameters
of separation fails in growth networks. Bars give 1 SD about the mean value

networks support signals of four times the amplitude found in growth cases at the
shortest distance considered, and with a stronger signal at 7 cell diameter separation
than found in growth networks at 5 cell diameter separation, emphasising that stress
transmission can be sensitive to network geometry.

4 Conclusions

We have presented a whole network model for fibrous substrates which employed four
different geometries. These architectures were chosen to investigate the importance of
geometry for network mechanical response in a variety of biologically relevant cases.
The dominant effect of network geometrywas investigated by controlling for topology,
with each network paired with another of highly similar or identical topology. All
networks considered were nominally isotropic at the whole network scale, as verified
by the Kolmogorov–Smirnov test. Through a simple model for constituent fibres and
cross-links, we demonstrated that purely geometric differences can have a profound
effect on network mechanics. These effects were investigated for networks under
uniaxial extension, as well as for systems of one and two cells contracting within a
network. No two network geometries exhibited similar results under all computational
tests performed, and these results were found to be robust to a factor two change in
network cross-link density. The primary conclusions from this work may be described
as follows.
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4.1 Qualitative Differences in Long-Ranged Displacement Fields Due to Single
Contracting Cells

All networks supported long-ranged displacement fields, with significant substrate
displacement beyond four cell diameters. However, growth type geometries had a
considerably shorter mean displacement field, and substantial displacements were
localised to branching regions from the cell membrane. Significant asymmetry was
observed for growth geometries, and to a lesser extent for dual and perturbed networks,
though Voronoi architectures supported largely symmetric displacement fields. Sig-
nificant transverse network displacements that were greater than 1μm in magnitude
arose from uniform radial cell contraction in growth networks. As such, we found that
certain geometries supported heterogeneous, asymmetric displacement fields arising
under uniform contraction in isotropic networks. Importantly, the geometric pertur-
bation of growth networks substantially increased the extent of cell-derived mean
displacement fields, and reduced the degree of asymmetry.

4.2 Stress Transmission Through Fibrous Networks is Dependent on Network
Choice

The degree towhich stress could be transmitted through fibre networkswas found to be
heavily dependent on geometry. In central force networks stress is transmitted through
constituent fibre strain. In Voronoi and perturbed geometries, cell-derived network
deformations transmitted stress to boundaries more than 5 cell diameters distant, even
at low contraction. In these architectures, cells experienced greater membrane stress,
with strain-stiffening response for increasing contraction. In contrast, little stress was
transmitted to the distant outer boundary in growth or dual networks. Cells experi-
enced these networks to be softer, with minimal strain-stiffening in growth networks.
As such, the perturbation performed to growth networks fundamentally changed phe-
nomena characterised in the context of local deformations. Interestingly, fibre strain
distributions showed that many more fibres buckled in growth networks, suggesting
that the softer response may be due to a geometry encouraging fibre buckling.

4.3 Choice of Geometry can Favour or Limit Fibre Reorganisation

High radial alignment of fibres was found in the pericellular region, within 1 cell
diameter of the cell membrane, in all network choices. However, the extent of fibre
reorganisation with increasing distance from the cell membrane depended heavily on
network architecture. Voronoi and perturbed geometries limited the degree to which
fibres far from the cell membrane could rotate. This allowed for families of stretched,
but unaligned fibres to exist within a network, amplifying stress transmission. In
contrast, growth and dual networks allowed for a greater rotation of distant fibres,
so that strains induced by cell contractions could be contained in fibre reorganisation
rather than fibre stretch. Strong correlation between fibre stretch and alignment was
identified in all network architectures.
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4.4 Mechanical Communication Between Distant Cells is Geometry Dependent

Distant model cells, separated by 5 (final) cell diameters, were able to transmit a
mechanical signal through fibre networks, with regions of higher strain energy banding
in between cells. However, as separation distance increased, up to seven cell diam-
eters, a meaningful signal was not transmitted in growth networks. At all separation
distances investigated, more significant and robust signalling was present in Voronoi
networks, underlining the possibility of long-range cell–cell mechanical communica-
tion in this architecture. Weaker signalling on average, compared to the Voronoi case,
was present in dual and perturbed networks, with the latter exhibiting larger standard
deviations highlighting the less robust response. Importantly, in growth networks sig-
nal transmission was minimal or absent at 6–7 cell diameter separation; in contrast
their perturbed counterparts, possessing identical network topology, supported signif-
icantly stronger signals, suggesting a key role for geometry in mechanical cell–cell
communication.

5 Discussion

The above results provide an insight into the potential importance of network geometry
to cell behaviour. Throughout, specific fibre material properties were not discussed,
so as to facilitate a comparative study between different geometries. We might expect
that stiffer filaments, such as semiflexible polymers characterised by long persis-
tence lengths, would favour geometries in which correlations of fibre orientations are
maintained through model cross-links. While this was the case in growth networks,
such correlations were, in general, lost through nodes in the other architectures dis-
cussed, as seen in Fig. 1. However, different geometries are achievable in semiflexible
polymer networks through variation of gelation temperatures. Indeed, collagen gels
formed at lower temperatures exhibit more fibrous architectures, compared with those
polymerised at higher temperatures, which appear more homogeneous even after sub-
sequent cooling. Further, many biopolymers exhibit fibre branching, where filament
bifurcations lead to network nodes with coordination three. As such, the results pre-
sented above are likely relevant to a wide range of substrate gels, though further work
should investigate how different geometries might relate to in vitro networks.

We found that key aspects of a network’s response, such as the distribution of
fibre strains, persisted even as cross-link density increased, and therefore fibre length
decreased. While it is not obvious exactly why network response varies so drastically
with changing network type, we note that there is a greater variation in segment
lengths in growth networks, as compared to other geometries, along with a slightly
longer mean segment length. As we move towards generating biopolymer networks
with tunable cross-linking, the competing effects of mesh size, and cross-link and fibre
densities upon network mechanics will be characterised. In the case of 3D networks,
we expect that the ratio of fibre to cross-link density will be greater than in the 2D
case, suggesting that growth networks would be a more prudent choice, while Voronoi
geometries might better represent planar networks.
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We simulated fibremicrobuckling through the use of an asymmetric force-extension
law, and freely rotating cross-links. Recent work suggests that it is this anisotropy that
allows for mechanosensing in extracellular matrices (Notbohm et al. 2015). Prior
work has suggested that bending deformations are important for characterising the
response of fibre networks in certain regimes (Head et al. 2003a). However, even
when bending dominates stretching energy, the resulting forces often still act in the
axial direction, suggesting that fibre buckling behaviour is most important, rather
than transverse deflections (Heussinger and Frey 2007). As such, we expect that the
asymmetric force-extension law used captures the essential behaviour of the slender
matrix fibres that they are far stiffer under extension than compression. However, it
is important to note that while the asymmetric force-extension law might be the most
important factor for cell–cell communication, the lack of a fibre bending modulus
does imply that the networks lack a classical linear regime. As such, there exists a
geometry-specific separation distance between two cells such that the displacement
enforced by themodel cells leads only to fibre rotation, without any segment strain, and
therefore energy cost. In these situations of greater cell separation, or lesser cell-derived
displacement, it would be more appropriate to model the constituent biopolymers as
beams, or to introduce rigid cross-links enforcing bond angles. While these issues
have not been explicitly addressed within this work, the differences identified under
a range of mechanical tests suggest that network geometry is likely to play a key role
in the mechanics of biological networks.
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