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Abstract: Cancer treatment and pharmaceutical development require targeted treatment and less toxic
therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine
emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics
based on large molecules. However, the ability of our body to recognize foreign objects together
with carrier transport heterogeneity derived from the combination of particle physical and chemical
properties, payload and surface modification, make the designing of effective carriers very difficult.
In this scenario, physiologically based pharmacokinetic modeling can help to design the particles
and eventually predict their ability to reach the target and treat the tumor. This effort is performed by
scientists with specific expertise and skills and familiarity with artificial intelligence tools such as
advanced software that are not usually in the “cords” of traditional medical or material researchers.
The goal of this review was to highlight the advantages that computational modeling could provide
to nanomedicine and bring together scientists with different background by portraying in the most
simple way the work of computational developers through the description of the tools that they use
to predict nanoparticle transport and tumor targeting in our body.

Keywords: nanoparticles; physiologically based pharmacokinetic modeling; simulation software; BioUML

1. Introduction

Cancer disease still represents the leading cause of death worldwide [1], and its treat-
ment, still largely based on cytostatic approaches [2], can be very difficult, especially in the
presence of metastases [3]. Targeted therapies based on nanodelivery systems polarized the
attention of cancer researchers after the enhanced permeability and retention effect (EPR)
was discovered in 1986 [4]. The first goal of nanomedicine was to develop targeted systems
to accumulate the therapeutic payload only in the cancer lesion [5], sparing off-site organs
to develop safer therapeutic regimens, and administer less active principle with improved
therapeutic performances [6,7]. Two major delivery approaches have been developed
imparting nanocarriers with passive and active targeting properties. Passive targeting is
achieved by conferring to nanoparticles (NPs) the properties of long-term circulation and
the ability to accumulate in the cancer lesion through EPR [8]. Active targeting strategies
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rely on the affinity between the surface of the particles, usually decorated with small
molecules that recognize specific antigens or receptors over-expressed on the surface of
cancer cells. In this case, the carriers still rely on passive extravasation to interact with
cancer cells [8], but their strong interaction with the cell membrane can promote their
internalization [9]. In addition, some surface modifications can promote the passage of NPs
through the endothelial wall or the development of strategies based on the Trojan horse
approaches, when particles are transported to the tumor by infiltration of immune cells [6].
In a very simplified way, we can describe the nanomedicine pipeline as comprising carrier
synthesis, drug encapsulation and release, NP targeting, cellular internalization, and drug
delivery, as well as the impact of NP on cells and tissues [10]. However, the complexity
of this process is significantly higher. There is no limitation on the kind of therapeutic
payload that can be encapsulated, including (but not limited to) small molecules [11,12],
new generations of biologics (nucleic acids [13] and peptides [14]), as well as molecules for
the improvement of modern radiotherapy [15] and diagnostics [16]. All these payloads are
characterized by their own physical and chemical properties and need to be investigated
separately. In addition, the carrier per se can also be a treatment, providing a means for the
development of theranostics [17] and a trigger for thermal ablation [18] and photodynamic
therapy [19]. There are also no limitations in terms of the materials researched to create the
carriers. To this end, biological molecules such as lipids, nucleic acids, proteins, and sugars
have been extensively studied, in addition to natural (e.g., chitin) and synthetic (e.g., poly-
lactic acid) polymers and inorganic materials (iron, gold, silver, platinum, and silica) [20,21].
To add to this variety, it is worth mentioning the generation of hybrid delivery platforms
with improved delivery and biocompatibility properties [22,23], surface modifications, as
well as physical (size, shape, surface charge) and chemical properties (degradation rate)
specific for every carrier. Each individual combination and variation in these elements can
have a major impact on particle distribution and tumor targeting. As a result, in terms of
pharmacokinetics benefit, it can be very difficult to develop a successful universal carrier
and each nanoformulation requires intensive, expensive, and time consuming in vitro and
in vivo experimental validation. A way to speed up this process is to use modern modeling
and artificial intelligence approaches to obtain at least approximate indications on the fate
of carriers and their payload, as well as their effectiveness and potential toxicity. Here,
modern physiologically based pharmacokinetic (PBPK) models can provide the tools to
describe and predict the systemic localization, target exposure, efficacy, and toxicity of
various nanotherapeutic agents [24–26]. In consideration of these important benefits, their
development and use is constantly expanding [26], providing important in silico tools to
bridge drug properties and in vivo PK behaviors during drug development [27]. In recent
years, artificial intelligence and machine learning approaches have been increasingly ap-
plied to PBPK modeling for nanomaterials [28–31]. However, further progress in this area
seems to be rather difficult, as it requires specialists to have knowledge from fundamentally
distant fields of knowledge: materials science, biology, and informatics. We believe that a
detailed description of the methods and tools that the modeler uses to simulate NP localiza-
tion can help the reader better understand the published results, the benefits of the selected
modeling approaches, and the importance of the results for nanomedicine. These tools are
software with different characteristics and levels of complexity, whose developers focused
on creating a convenient user interface to facilitate the use of these programs by specialists
who do not have deep knowledge in this area. In this review, we strove to describe in the
most accessible language the activities of the developer in creating PBPK models of NPs.
Moreover, we described the computational tools (software) harnessed to build and analyze
the PBPK models, highlighting the necessity and time to change the model representation
paradigm in this area for greater transparency and reliable reproducibility of the simulation
results based on the state-of-the-art system biology standards such as Systems Biology
Markup Language (SBML) [32] and Systems Biology Graphical Notation (SBGN) [33]. In
this effort, we provided information on their application to predict and characterize tumor
targeting and cancer treatment with NPs. The final goal of this review was to solve the
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lost in translation problem between experimental biomedical research and computational
modeling to favor interaction between multidisciplinary scientists. Compared to other
reviews in the field [24–27,34,35], we tried to achieve this goal by presenting the work of a
computational scientist through the description of the tools that she/he used to generate
PBPK models. We believe that this kind of information could be helpful to a not experienced
audience in the field to obtain some background about this kind of research and build new
ideas and collaborations. In addition, this article contains the most comprehensive list of
currently available PBPK models for nanoparticles (documented in Supplementary Table
S1), which might be useful for developers of new models.

2. Importance of Mathematical Modeling in Nanomedicine

One of the most important results derived from nanomedicine research has been a
better understanding of the behavior of various materials processed at the nanoscale in the
biological environment and the generation of nanocarriers with different physical, payload
retention, and surface properties. Carriers have been designed with different functions to
improve the pharmacokinetic properties of various drugs [36,37] while protecting the ther-
apeutic burden from the biological environment. While the primary goal of nanomedicine
development has always been clinical translation, many works highlighted the difficulties
and obstacles in the translation of nanocarrier-based therapeutic regimens [38]. Most of
these difficulties are because our bodies are very effective in recognizing and isolating
foreign bodies [39,40]. Nanomedicine impact to clinics was significantly mitigated by
the complexity of our bodies and their ability to regulate therapeutic transport between
different compartments, commonly known as biological barriers [41]. Considering that
most therapies have been designed for intravenous administration, the path from the point
of injection to the cancerous lesion can be hampered by many biological barriers, sometimes
limiting tumor targeting to less than 1% [42]. These biological barriers are of physical,
cellular, and molecular nature, and they very often appear simultaneously during the NP
voyage to the target (Figure 1) [43]. Their action strictly depends on the physical properties
of NPs (shape, size, and surface charge), which in the end, can also be determined by the
payload. In addition, the surface properties of the particles result in the acquisition of a
specific biologic identity because of the absorption of biological molecules [44], eventually
determining their final disposition [45]. In this context, computational modeling represents
an important tool for determining the interactions of NPs with biological structures and
proposing the main characteristics to grant the possibility of simultaneous and sequential
passage through biological barriers [41].
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Figure 1. Schematic of the major biological barriers encountered during intravenous treatment in-
cluding (a) interactions with blood components; (b) mononuclear phagocytic system organ clearance;
(c) tumor barriers (i.e., tumor extracellular matrix); (d) biochemical barriers; (e,f) cellular barriers
including cell membrane, interaction with cellular receptor, intracellular sorting and sequestration in
the endosomal compartment. Figure adapted from Simpson et al. [43].
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Current strategies for tumor treatment include targeting malignant and metastatic com-
ponents of the tumor microenvironment [12], as well as targeting over-activated metabolic
signaling pathways characteristic of cancerous tissue [46]. Mathematical modeling supports
the connection of entities of different scales (from blood vessels to surface interaction with
biological molecules), which leads to an improved interpretation of specific tumor character-
istics [47]. The modeling of such systems actually requires the use of multiscale approaches
that can store information transferred between different scales [48]. The development
of nanotherapeutics is closely related to computer simulations and many mathematical
models have been developed to study various aspects of targeted drug delivery [10,49]. The
development of computational models can provide predictive information about carrier cir-
culation, interaction with tumor vasculature, tumor accumulation, payload release, efficacy,
and safety. In this scenario, they can indicate a very complex system, as well as what factors
in the carrier design should be considered to optimize targeted delivery. For instance, a
recently published PBPK model [50] was built using data from more than three hundred
nanoplatforms as a basis for modeling the delivery of these nanodrugs to the tumor. The
final goal of the study was to identify essential factors influencing tumor delivery kinetics
using a mechanism-based modeling method as the PBPK approach. Analysis of a model
calibrated against this vast amount of experimental data demonstrated that distribution
and permeability coefficients at the tumor site, as well as factors associated with them, such
as the size and geometry of the nanodrugs, are the key determinants of efficiency of NP
delivery to tumors. This finding paves the way for the targeted design of nanodrugs with
higher tumor delivery efficiency, while the modeling framework can also be extrapolated
to other species (mice were in the original study) to determine the individual optimal dose
with minimal side effects.

3. Principles of PBPK Modeling of Nanoparticles

Drug encapsulation into nanocarriers makes it possible to control the pharmacokinetic
properties of therapeutics agents, including their release and circulation half-life, while
limiting their interactions with healthy tissues [51]. The PBPK modeling approach has
existed for many years and has been used to describe time-dependent concentration profiles
of substances in various organs of a living system and interspecies scale-up [52]. This
approach divides the body into anatomical compartments, interconnected by body fluid
systems. The number and nature of the compartments, as well as the complexity of PBPK
models, are determined depending on the scientific task and physiological characteristics
of the modeled organism. For example, Gilkey et al. considered a five-compartment
PBPK model including liver, spleen, kidneys, plasma, and “other” in accordance with the
biodistribution of fluorescently labeled NPs in mice used for the controlled delivery of
dexamethasone in the therapy of acute lymphoblastic leukemia (Figure 2A) [53]. While to
investigate the in silico effects of NP properties, tumor-related variables, and individual
physiological differences on systemic bioavailability, mononuclear phagocytic system
sequestration, tumor delivery, and excretion of NPs in rats, Dogra et al. developed a
tumor-compartment-bearing PBPK model consisting of 12 compartments of interest: brain,
heart, lungs, plasma, liver, spleen, gastrointestinal tract, kidneys, muscle, ‘others’, lymph
nodes, and a facultative tumor (Figure 2B) [54]. Models designed for primates (including
humans) tend to have even more compartments [55–58]. Thus, Perazzolo et al. investigated
a whole-body PBPK model for the anti-HIV drug-loaded NPs in nonhuman primates
(Figure 2C) [56]. The model describes the uptake of the injected dose from the subcutaneous
site to the adjacent lymphoid depot, passage through the lymph nodes and throughout
the lymphatic network, and its subsequent passage into the blood circulation. For this, the
model includes 23 compartments: subcutaneous injection site, two adjacent-to-injection
lymphoid tissue compartments, thoracic duct, compartments of regional lymph node
(cervical node, hilar node, axillary node, mesenteric node, inguinal node), vein, artery, head
and neck, lungs, upper body, kidneys, small and large intestines consisting of tissue and
mucosa, spleen, liver, lower body and tail, as well as the rest of the body.
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Figure 2. Different in complexity structures of physiologically based pharmacokinetic (PBPK) models
of nanoparticle (NP) delivery. (A) The model [53] describing the biodistribution of fluorescently
labeled NPs in mice used for the controlled delivery of dexamethasone in acute lymphoblastic
leukemia therapy. A possible explanation of the “other” compartment (included in the model to
fit the simulation results with the experimental data) is the lymphatic system or the adsorption of
NPs to the endothelial walls of blood vessels. (B) The model of Dogra et al. [54] of whole-body
NP pharmacokinetics and their tumor delivery in rats. GIT denotes gastrointestinal tract. (C) The
model [56] evaluating the systemic and lymphatic pharmacokinetics of 3 HIV drugs, lopinavir,
ritonavir, and tenofovir, coformulated in drug-combination NPs (DcNPs). DcNPs administered as a
series of subcutaneous (SC) subinjections in the upper back of nonhuman primates are taken up by
adjacent lymphoid tissues and then released into the lymphatic system. In regional lymph nodes
(LNs), a part of the DcNPs is taken up by mononuclear cells (MCs), while the rest enters the thoracic
duct and moves to the bloodstream. Lymphatic recirculation occurs through the organs containing
the mononuclear phagocytic system (kidney, spleen, liver). The green dotted lines denote exchange
of DcNPs between LN MCs and peripheral blood MCs migrated into the proximity of individual LNs.
(D) Graphical notation used to visualize the models in the BioUML software, (v. 2022.1, Biosoft.ru,
Ltd., Novosibirsk, Russia).

Typically, each compartment in PBPK models can be described in two ways (Figure 3).
The first is referred to as permeability-limited model (also known as the diffusion-limited
or membrane-limited model), in which tissue cell membranes are considered as the main
barriers to drug (nanotherapeutic) penetration. The other one is referred to as perfusion-
limited model (also known as the flow-limited model) and considers blood perfusion
as the only limiting step for drug (nanotherapeutic) penetration through the tissue cell
membrane [24,25,59,60]. It is generally accepted that the permeability-limited model is
more appropriate for modeling NPs [24,60,61].
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Figure 3. Perfusion-limited and permeability-limited models. The perfusion-limited model assumes
that nanoparticles’ (NPs) transportation into tissues is very fast and equilibrium between blood
and tissue could be reached instantly. Under such a situation, the transportation of NPs into one
tissue depends on its blood supply. In a permeability-limited model, it is assumed that there
could be a membrane at the capillary or cellular membrane, or both. Transportation of NPs across
cellular membranes is characterized by such mechanisms as endocytic uptake (i.e., phagocytosis,
macropinocytosis, and receptor-mediated endocytosis) and exocytic release. Phagocytic cells include
reticuloendothelial system cells: monocytes circulating in the blood, Kupffer cells in the liver, reticular
cells in the lymph nodes, bone marrow, and spleen, and fixed macrophages of various connective
tissues [24,60]. Examples of the perfusion-limited models for NPs can be found in [55,57,60,61]. The
permeability-limited models are available in [50,60,61].

It should be noted that the PBPK modeling techniques for NPs and small molecules
could be quite different. Traditional route-to-route extrapolation for small molecules is
typically performed by using administration of route-specific parameters and keeping other
chemical-specific parameters the same [62]. However, unlike small molecules, upon contact
with different body fluids following different routes of administration, NPs will be covered
by different proteins and other biomolecules, producing different biomolecular coronas and
resulting in different patterns of biodistribution. Thus, a recent study by Chou et al. [62]
clearly demonstrated that the traditional approach for small molecules is not applicable to
NPs, and multiroute PBPK models for NPs should be developed using route-specific data.

The application of mathematical models to nanomedicine is based on breaking down
their transport in different discrete and simpler phases which are eventually modeled
separately. The sum of these contributions will eventually provide an overall picture of the
phenomenon with fundamental hints of prediction that will allow better optimization of
cancer treatment and, in this case, NP synthesis [63]. The model developer literally dissects
the voyage of the particles in different phases depending on the function of the organ in
which they circulate, the barrier function of various elements (i.e., tumor vasculature vs.
healthy vasculature), and the characteristics of the carrier (shape, size, surface charge, tar-
geting properties, release rate, etc.). All these phenomena and characteristics are described
by mathematical functions that summarize the physical and chemical variabilities that char-
acterize the biological barriers and represent the various parameters under consideration
and the core of the modeling. The model is then run with appropriate software, which, by
combining different parameters and solving respective equations, provides an estimation
of particle location in various organs, including the tumor. The simulated dynamics can
eventually be compared with experimental data to optimize the reliability of the calibrated
model. When close collaboration between wet-lab biologist and computational scientist is
not possible, the latter can extract experimental data from the published literature using
“auxiliary” software that allows for the digitization (image-to-number conversion) of im-
ages and graphs from the scientific literature and then publish the model under copyright
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permission (see Section 5). All these transitions are eventually followed up with statistical
analysis to evaluate the significance of the data and validate the model. After validation,
the model can be used to predict other situations, nanocarriers, and being applied to other
tumor diseases. However, an extrapolation of the modeling results from one species to
another should be conducted very carefully due to parameter uncertainty. For instance,
a collective fitting process of parameter values to data can provide multiple parameter
sets that give similar model dynamics reproducing experimental observations. In this
case, identifiability of fit parameters is the crucial step of the model analysis for reliable
application of PBPK models and a more confident translation of their parameters into new
experimental settings [64].

It is worth noting that reproducibility and replicability crisis in research areas has also
affected systems biology research such as PBPK modeling in cancer nanomedicine [65].
One attempt to overcome the issue was to develop some of the necessary standards and
approaches for building models and represent them by expert researchers in the relevant
community. In this context, SBML (Systems Biology Markup Language, an XML-based
format) [32] as the most widespread language for defining computational biochemical
models and SBGN (Systems Biology Graphic Notation) [33] as a standard for graphical
representation of molecular networks have been proposed as gold standards for the repre-
sentation of biological networks and related models [66]. In addition, these efforts focused
on the development of tool-independent ways of presenting models to help avoid potential
human errors in translation. Note that these initiatives are not widely ingrained in tools for
PBPK modeling. However, some of them described below support these critical standards.

4. Main PBPK Modeling Software

Below, we provide an overview of the software that are used for PBPK modeling of
biodistribution and targeted delivery of NPs. They differ in the language in which they are
created and usually specialize in the analysis of specific PBPK situations. They are widely
applied and have been used in NP research to predict the potential toxic effect of NPs
upon voluntary or accidental administration (i.e., through NP inhalation in polluted envi-
ronment), determine the PK properties of a payload, facilitate multiscale and interspecies
translation, investigate cell biology phenomena, optimize payload encapsulation, and
naturally estimate tumor targeting (Figure 4). A comprehensive list of currently available
PBPK models for NPs is provided in Supplementary Table S1. A complete list of freely
available and commercial software packages used by researchers to develop and analyze
these models is given in Supplementary Table S2. We divided these software platforms into
simulation software for PBPK modeling (described in this section) and the supporting anal-
ysis software compiled in Section 5. Comparative characteristics of simulation platforms
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Table 1. Comparison of software packages for PBPK modeling of nanoparticles.

Criteria MATLAB/
SimBiology

Berkeley
Madonna

The R
Language acslX BioUML Simcyp

Simulator GastroPlus PK-
Sim/MoBi

Specialized PBPK software – – – – – + + +
General purpose software + + + + + – – +
Free – – + + + – – +
Open source – – + – + – – +
Currently supported + + + – + + + +
Stand-alone edition + + + + + + + +
Web-edition – – – – + + + –
Windows + + + + + + + +
Linux + – + – + – – –
MacOS + + + – + – + 1 –
Parallel computing + – + + + + + +
Requires programming skills + + + + – – – –
User-friendly interface + + – + + + + +
Interactive web-based interface
of a model 2 + – + – + + + –

Visual modeling of the PBPK
structure + – – – + – + +

Database of models + – – – – + + +
Model structural changes + + + + + – – +
Monte Carlo simulation + + + + – + + +
Parameter estimation + + + + + + + +
Sensitivity analysis + + + + + + + +
SBML support + – + + + – – +
Preferred for NPs 3 + + + + + – – +
Preferred for small molecules 3 – – – – – + + +

1 GastroPlus can run on Mac operating systems with Windows virtualization. 2 Ability to launch the model through
the web (possibly without a web-edition of the software). 3 In accordance with the published PBPK models.

MATLAB [67] is regularly used in many scientific fields, including systems biol-
ogy [68]. In the case of PBPK models and related PBPK analyses, intermediate to ad-
vanced programming skills are required, which present a considerable disadvantage for
its widespread use in the field [69]. MATLAB provides a range of mathematical and
numerical methods for solving PBPK model equations, parameter estimation, and sen-
sitivity analysis [53–56,61,70–76]. In particular, several MATLAB toolkits can be used
for modeling, simulating, and analyzing PBPK systems, namely SimBiology [57,77–80],
PottersWheel [81,82], and IntiQuan IQM Tools [70]. MATLAB was used to simulate the
biodistribution of NPs of different sizes in the range from 46 to 162 nm after intravenous
injection into the plasma compartment of rats [54] (Figure 2B). The authors showed that the
model reproduces the in vivo data from a study of the pharmacokinetics of mesoporous
silica NPs [83] and then performed local and global sensitivity analyses to rank the impor-
tance of various parameters related to the problem of NP delivery to the tumor. Tumor
vascularization (fraction and porosity), tumor blood viscosity, NP size and degradation rate
have been shown as the main parameters to consider when calculating NP extravasation
in the tumor volume, considering passive targeting as the major targeting mechanism. A
similar approach was used to evaluate the biodistribution of dexamethasone in a model of
acute lymphoblastic leukemia [53] (Figure 2A). The model was based on experimental data
obtained after intravenous injection of polymeric NPs. A fluorescent dye was used instead
of the drug. The authors noted the difficulties in creating a predictive model, in particular,
in the first hours after injections, the model overestimated the blood concentration of the
dye. This phenomenon could be explained by particle aggregation and margination [84]
in the endothelial wall, and to correct the model, they introduced an additional “other”
compartment (i.e., lymphatic system). For longer time points, the model was consistent
with the experimental data, demonstrating a rapid accumulation of the particles in the
liver and spleen 6 h after their injections. This phenomenon was especially appreciated in
consideration that liver and spleen are sites for leukemia blast accumulation and prolifera-
tion. MATLAB has also been used to develop a predictive model for tumor targeting of
dendrimers functionalized with an insulin-like growth factor 1 peptide analog (NPs for
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molecular imaging that can bind to mRNA inside cancerous cells) [76]. When fitting the
model to the experimental data, the authors found that only 10–20% of the administered
NPs were available for transport from the blood to the interstitial tissues and suggested that
previous mouse imaging trials used more NPs than necessary. Klapproth et al. [85] used
this software to create a model comparing particle biodistribution after intravenous and
intratumoral injection. The work focused on superparamagnetic iron oxide NPs for thermal
ablation against a potential treatment of brain cancer [86], which is currently being treated
with both intravenous and local administration of pharmaceuticals. The model confirmed
the experimental data on the dynamic NP redistribution in the organism within 72 h,
reaching equilibrium 100 h after local injection. Intravenous injection has demonstrated
rapid particle retention in all organs (particularly in the liver and spleen) and subsequent
slow release.

Berkeley Madonna [87] is relatively easy for beginners and is sufficient to develop
basic PBPK models for routine PBPK analyses (e.g., parameter estimation, route-to-route ex-
trapolation, and Monte Carlo analysis) [69,88]. However, it is not intended for visualization
of biochemical systems, requiring specialists in the field of biomedicine and mathematical
modeling [89]. Examples of PBPK models of NPs coded in Berkeley Madonna are proposed
in [50,62,82,90–98]. The model by Cheng et al. was used to analyze 376 experimental data
sets on the kinetics of NPs in mice with tumors [50]. The authors confirmed that nanomate-
rials with a hydrodynamic diameter of less than 10 nm can be delivered to tumors with
greater efficiency compared to larger particles. In addition, nanomaterials with a hydrody-
namic diameter of over 200 nm have a relatively higher efficiency of delivery to the tumor
than particles with a size of about 10−200 nm. The study also showed that rod-shaped NPs
show better tumor accumulation than variants with other geometry, including spherical,
plate-like, or flake-like shapes. Based on several studies, the authors noted that elongated
nanostructures, compared to nanospheres, exhibit greater tumor accumulation and a longer
half-life in blood circulation, perhaps because of adherence to endothelial cells lining the
blood vessel walls, thus, enhancing the site-specific delivery. Furthermore, they concluded
that the administration of nanomaterials with a positive (>10 mV) and almost-neutral (−10
to 10 mV) surface charge provides a similar tumor accumulation, which is higher than for
negatively charged NPs. These results were partially confirmed by Zhang et al. [97], who
used the Berkeley Madonna software to characterize the biodistribution of spherical and
rod-shaped gold nanoprobes and tumor accumulation in a model of lung cancer. They
found that while nontargeted rod-shaped NPs showed higher tumor accumulation during
the first hours after intravenous injection, similar results were obtained at longer time points
between nontargeted rod-shaped and spherical delivery platforms. A clear advantage in
tumor accumulation was provided by surface functionalization of the particles with RGD
to target αvβ3 integrin-positive cancer cells and tumor angiogenic vessels. In the case of
active targeting, the authors found a higher distribution coefficient and a much higher
maximum tumor uptake rate constant for rod-shaped particles (compared to spherical
particles), which eventually resulted in a more effective inhibition of tumor growth by
NP-mediated chemoradiotherapy.

The R language [99] is a powerful high-level programming platform that is used in
various fields of study for statistical computing and graphics [100]. The advantages of the
R language are that it is freely distributed and can perform all PBPK analyses. However,
it requires medium- to high-level programming skills (same as MATLAB) [69]. The R
language may be the optimal choice for projects related to Markov chain Monte Carlo
analysis or statistical analysis. For example, Cheng et al. used it for normality testing,
one-way ANOVA, and simple and multivariate linear regression to analyze data on the
efficiency of NP delivery to tumors [50], whereas Chou et al. applied it to optimize the
parameters of a multiroute PBPK model constructed for different sizes (1.4–200 nm) of
gold NPs in adult rats at different routes of administration (i.e., intravenous, oral gavage,
intratracheal instillation, and endotracheal inhalation) [62]. In addition, the R Shiny package
can be used to create an interactive web interface for PBPK models [62].
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acslX. Many PBPK models for environmental chemicals, drugs, and nanomaterials have
been developed using acslX [101], which has been deprecated since November 2015. Lin
et al. [69] provided guidance on converting PBPK model code from acslX to alternative model-
ing tools (Berkeley Madonna, MATLAB, and R) and discussed the advantages and disadvan-
tages of each software package in implementing PBPK models in toxicology. Application of
acslX to PBPK modeling of NP delivery can be found in many articles [60,90–92,102–105].

BioUML [106] is an integrated web-based platform for systems biology and data
analysis [107], which has been successfully tested for modeling biological systems [108,109].
It allows to translate PBPK models from text formats (e.g., Berkeley Madonna) into SBML
and SBGN standards, making these models accessible to a wide range of scientists and
providing a quick-start guide to work with them [89]. To represent PBPK models in BioUML,
a modular approach is used, according to which the system under study is considered as a
set of interconnected subsystems (see the example in the Section 6 below). It is also worth
noting that BioUML allows one to conduct an identifiability analysis of fitted parameter
values mentioned above as a critical procedure for all PBPK models.

Simcyp Simulator [110] is a software platform for population PBPK modeling and
simulation. It links in vitro data to in vivo absorption, distribution, metabolism, excretion
(ADME), and pharmacokinetic/pharmacodynamic outcomes to explore clinical scenarios
and support drug development decisions, including regulatory submissions and drug
labels [111–114]. This platform contains a library of predefined models and a database
of physiological parameters, making it popular with PBPK users [115,116]. However,
due to the complex ADME processes of NPs, it may not provide enough flexibility and
capability to support complex NP models [26]. Therefore, the use of Simcyp for the study
of nanoformulations is rare [117].

GastroPlus [118] is a mechanistically based simulation software package that simu-
lates intravenous, oral, oral cavity, ocular, inhalation, dermal, subcutaneous, and intramus-
cular absorption, biopharmaceutics, pharmacokinetics, and pharmacodynamics in humans
and animals [114,119]. It is widely used for PBPK modeling [116], but, like Simcyp, it is
inferior to general purpose programming platforms (Matlab-Simulink, Berkeley Madonna,
etc.) in the development of complex PBPK models of NPs [26]. However, GastroPlus has
been applied for simulation and in silico prediction of pharmacokinetics and absorption of
NPs [120–123].

PK-Sim [124] is a comprehensive software tool for whole-body PBPK modeling. It enables
access to all relevant anatomical and physiological parameters for humans and the most
common preclinical animal models that are contained in the integrated database [114,125,126].
PK-Sim offers different customized model structures but allows only minor modifications to
them. However, it is fully compatible with the stand-alone general purpose graphical modeling
tool MoBi [124], which makes the development of PBPK models (also for NPs) possible [125].
Thus, Aborig et al. used the software to parameterize a PBPK model of the biodistribution of
gold NPs obtained by green synthesis in mice [70], while Kullenberg et al. applied it to develop
a PBPK model describing the disposition of pegylated liposomal doxorubicin [127]. In addition,
the platform includes interfaces to R and MATLAB that are useful to analyze and interpret
PK-Sim and MoBi models. Advanced model analysis may, for example, involve statistical
analysis of the results obtained or the calculation of local or global sensitivity measures to
assess model robustness and quality [125].

5. Auxiliary PBPK Modeling Software

In this section, we give a brief description of software that is not widely used for PBPK
modeling, but can provide additional tools for mathematical analysis:

Julia [128] is a flexible dynamic programming language appropriate for scientific
and numerical computing. It has been shown that in the context of PBPK models, a
DifferentialEquations.jl package outperforms MATLAB in solving a stiff system of ordinary
differential equations [72].
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NONMEM [129] solves pharmaceutical statistical problems in which within-subject and
between-subjects variability is taken into account when fitting a PK/PD model to data. Bauer
recently created two tutorials to apply this tool to simple and complex scenarios [130,131].
NONMEM allows to build population physiologically based PK models [74].

GNU MCSim [132] is specifically designed to conduct Monte Carlo stochastic simu-
lations that can be used for population variability analysis when the distribution of each
parameter of the PBPK model is known [69,133]. In particular, the software was applied to
estimate parameters in several PBPK models of NPs [58,105,134].

Phoenix WinNonlin [135] is one of the most common applications used in the industry
for the analysis of PK/PD data. The platform is suitable for modeling, simulations, and
analysis of PBPK models of NPs as well [71,136].

GraphPad Prism [137] is a commercial scientific software for 2D plotting and statistical
analysis [138] which can be applied to evaluate the overall quality of fit between simulated
and experimental data [102,103] or to compare delivery efficiency of different types of
NPs [50].

Crystal Ball [139] is the spreadsheet-based application for predictive modeling, forecast-
ing, simulation, and optimization which is suitable for statistical analysis (e.g., Monte Carlo
simulations [74,98] or regression analysis [95]) to parametrize and validate PBPK models.

TableCurve 2D [140] is an automated curve fitting software for engineers and re-
searchers that includes a wide range of linear and nonlinear models [141]. It can be used to
fit the experimental data on the biodistribution of NP in PBPK simulations [98].

ADAPT [142] is a computational modeling platform developed for PK/PD applica-
tions. Mager et al. used it to estimate the unknown parameters of the PBPK model for
composite nanodevices [82].

NanoSolveIT [143] is a new informatics system for in silico nanosafety assessment [144]
that, in particular, can be applied for PBPK modeling of nanomaterial biodistribution [145].

SPSS [146] is a platform for advanced statistical analysis. Zazo et al. used it in the
development of a PBPK model of a drug delivery system based on gold NPs for stavudine
biodistribution [136].

Microsoft Excel [147] is not a specialized tool for creating PBPK models; however, it
can successfully code and analyze them [148,149]. Statistical analysis and calculations with
this software can also be used in modeling NP kinetics [105,127].

Statistics Calculator [150] was developed by StatPac, Inc. Despite the modest design,
the program works correctly and can be used by researchers for statistical analysis of
experimental data when creating PBPK models [151].

Minitab [152] is a statistics package for identifying trends in data, finding and predict-
ing patterns, uncovering hidden relationships between variables, and visualizing data. An
example of a nanoparticle study in which the software was used for two- and three-way
ANOVA of the antitumor effect and cellular uptake ratio of free and liposomal doxorubicin
in human cancer cell lines (HepG2, Huh7, SNU449, and MCF7) is given in [127].

COMSOL Multiphysics [153] is a software package that provides fully coupled mul-
tiphysics and single-physics modeling capabilities. This tool is very useful for numerically
solving complex physical equations. Thus, Chen et al. applied it to solve the advection-
diffusion equations simulating the concentration of superparamagnetic iron oxide NPs
coated by gold and conjugated with polyethylene glycol in the cerebral blood and brain
tissue in mice [79].

OriginPro [154] is a data analysis and graphing software that includes tools for peak
fitting, surface fitting, statistics, and signal processing [155]. It can be utilized for parameter
estimation of PBPK models [80].

WebPlotDigitizer [156] is an open source and cross-platform (web and desktop) semi-
automated tool for extraction of the numerical data from engineering images of data
visualizations. It works with a wide variety of charts (x-y, histograms, polar, ternary, maps,
etc.) and can be used to digitize experimental data on the biodistribution of NPs published
as graphs [50,60,72,102].
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PlotDigitizer [157] is an open source Java program that converts information from 2D
plots or graphs to standard x-y values (tabular format). For instance, the program can be
used to digitize experimental data from the literature, after which PBPK models can be
calibrated using the obtained quantitative values [70].

UN-SCAN-IT [158] is a software that automatically converts graph images to their
underlying (x, y) data [159]. It works with most image formats (JPG, TIFF, GIF, BMP, PNG,
etc.) and can integrate peak areas, smooth data, take derivatives, rescale graphs, and export
(x, y) data for use in other programs. Lee et al. used the software to obtain the PK data for
quantum dots from the published figures [160].

6. Modular Representation of PBPK Models in BioUML

There are a number of software packages for visual modular modeling of PBPK
(Table 1) already described in other studies [26,69,114,115]. Therefore, here, we only focus
on BioUML [107], a general purpose software for systems biology that we have been
developing since 2002. We recently successfully applied this platform to visual PBPK
modeling and we provide a brief description of this example below [89].

Representation of a biological system as a graphical diagram greatly simplifies the con-
struction of a mathematical model, especially in the case of PBPK models divided into compart-
ments (organs and tissues in the body) connected by the circulatory system. To determine such
a structure, it is convenient to use the modular mathematical approach [161–163] by converting
each compartment into a separate module. Therefore, software that supports modular visual
modeling, such as BioUML [107], has a distinct advantage over text-based software packages.

A module in BioUML is a part of a complex mathematical model with inputs and
outputs to communicate with other modules (Figure 5). The inputs receive variables
calculated outside of the module. The outputs pass variables defined inside the module
but used outside of it. Each module has its own mathematical base (differential equations,
discrete or stochastic systems, etc.) for describing internal processes with varying degrees of
detail. In addition, modules can form a hierarchical structure with several levels of nesting.
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Figure 5. An example of the modular representation of a model that includes two differential
equations for x and y. Module 1 calculates the value of y and passes it to Module 2 for initialization
of the variable a.

In the case of PBPK models, different organ compartments are generally designed
using the same differential-algebraic equations, but with different values of constants.
Therefore, it is logical not only to consider each organ as an individual module, but also to
isolate the common equations into a separate submodule that receives specific constants.
An example of such a model design is given in [89]. The authors considered an existing
PBPK model of nanoparticle delivery to solid tumors in mice [50] and performed the
consistent transformation of this model to a hierarchical modular computational form in
BioUML (Figure 6). The model consists of 10 compartments, including arterial and venous
plasma, as well as organs: lungs, spleen, liver, kidneys, brain, muscles, tumor, and the rest
of the body (Figure 6A). Each compartment corresponds to a separate module. Each organ
module (excluding the liver) comprises a submodule of common equations for nanoparticle
biodistribution (“Common structure” in Figure 6B) and initializes the necessary constant
values. The module “Common structure” contains a system of differential-algebraic equa-



Int. J. Mol. Sci. 2022, 23, 12560 13 of 22

tions visualized as a chain of reactions of nanoparticle transport between capillary blood,
tissue interstitium, and endocytic/phagocytic (or tumor) cells of an organ (Figure 6C).
The lungs, spleen, kidneys, muscles, tumor, and the rest of the body include the common
equations with nonzero values for all parameters. The brain compartment did not contain
an endocytic/phagocytic cell subcompartment in the original model, so the parameters
related to it have zero values in “Common structure”. Among the simulated organs, only
the liver cannot be expressed through a common system of equations. The difference is that
the liver contains Kupffer cells capable of phagocytizing nanoparticles directly from the
capillary blood [50]. Therefore, the modules of the liver, venous plasma, and arterial plasma
are defined by individual systems of equations. The described modular representation of
the PBPK model simplifies its interpretation, editing, and possible development, reducing
the risk of technical errors.
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Figure 6. An example of a PBPK model of nanoparticle delivery to solid tumors in mice constructed
by Cheng et al. [50] and implemented in BioUML (adapted from [89]). (A) Modular representation
of the computational model that includes 10 compartments: arterial and venous plasma, lungs,
spleen, liver, kidneys, brain, muscle, tumor, and remaining tissues. (B) Representation of the lung
compartment as a module with common equations of nanoparticle biodistribution in organs that
receives specific input values of kinetic parameters. (C) Definition of the module of the common
compartmental structure, including membrane-limited transcapillary transport, endocytic uptake,
and exocytic release of NPs. (D) Graphical notation used in BioUML to represent the model in SBML
format and SBGN notation.
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7. Limitation of the Review

In the current article, we presented an overview of software that can be directly ap-
plied to the development of PBPK models for tumor-targeted delivery and biodistribution
of NPs. We omitted the description of software platforms that can be used for the general
study of NPs, including their toxicity, biocompatibility, biodegradability, or therapeutic
and diagnostic properties (e.g., magnetic properties), and other software is worth men-
tioning for these purposes. For example, processing and visualization of laser scanning
microscopy images of cell monolayers exposed to aerosolized NPs can be performed using
IMARIS [164], a 3D multichannel image processing software for confocal microscopic
images [151]. Particle diameters from transmission electron microscopy images can be
analyzed using ImageJ software [97,151,165]. To study the biodistribution of radiolabeled
NPs, positron emission tomography (PET) and/or computed tomography is used with
an arsenal of software for image reconstruction and processing, such as Tera-Tomo 3D
PET, Nucline, and VivoQuant [85]. In addition, a number of other software platforms
can be used for quantitative analysis of microscopic images, including CellTracker [166],
spatialTIME and iTIME [167], DeepImageJ [168], MCMICRO [169], Viv [170], and others. A
more detailed description, comparison, and analysis of these platforms may be the subject
of future works.

We considered computational models describing nanoparticle delivery only at the organ level
and did not take into account the cellular and molecular levels. However, mathematical models
in cancer nanomedicine cover many temporal and spatial orders [41,171]. The modeling of such
biological systems requires the use of multiscale approaches that can store information transferred
between different scales [48]. Simulation of NP biodistribution is a multistep process that must
consider various aspects varying from the production of delivery systems [172,173] to the physical
and biochemical processes associated with drug delivery and cellular uptake [174]. Thus, a range
of mathematical models considers liposomes as typical delivery systems [175–179]. In this case, the
rate of drug release is generally defined as a temperature-dependent function or constant [176–179].
However, other ways to model the release profile of drugs from nanoliposomes can also be considered.
For example, Haghiralsadat et al. investigated the functions of pH and temperature based on the
Korsmeyer-Peppas’ model [180,181]:

release = k(T, pH)·tn(T,pH)

Here, k depends on the structural characteristics of the liposome and the drug, and n
is the parameter relative to the drug release mechanism (Fickian diffusion or non-Fickian
diffusion) and carrier geometry. At the same time, other models can be investigated to
predict the release of a drug from biologically targeted nanocarriers [182–186].

8. Conclusions

The solution for many nanomedicine issues might lie in the field of nanoinformatics,
which uses computational methods to analyze and process information about the structure
and physicochemical characteristics of nanocarriers and nanomaterials [187]. Nanoinfor-
matics has emerged as a new field of research accelerating the understanding of the use,
selection, development, and discovery of nanomaterials, as well as NP interactions with
biological systems [10,188]. Studying the biodistribution and interaction of engineered
NPs with cancer cells, as well as evaluating the effectiveness of treatment using these
NPs, covers a wide range of experimental approaches. Modern technologies provide the
following experimental techniques: a combination of 2D and 3D optical tomography for
in vivo imaging, methods of fluorescent and traditional histology, spectroscopy, flow cy-
tometry, and electron microscopy, methods for obtaining transcriptomic and proteomic
data to assess the expression of receptors for various compounds (sugars, lipids, albu-
min, etc.) [89]. All these techniques provide multiscale and heterogeneous qualitative and
quantitative data [189–192], the integration of which can be based on the PBPK modeling
approach [24–26,41,52,59]. The application of PBPK models in cancer nanomedicine is
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still at an early stage to date [41,193]. However, in recent years, a number of models have
already been created to study the delivery properties of various types of NPs in tumor-
bearing mice [50,76,93,97]. The advantages of such nanomedicine-oriented PBPK models
are that they allow studying the distribution of nanodrugs at the site of their action in
the body, provide tools for a better understanding of tumor microenvironment complex-
ity, phenotypic diversity, and genetic heterogeneity. In addition, they may prove useful
in nanomedicine development to achieve optimal profiles of nanodrug concentrations
required in tumor-targeted cells. Finally, they can be used directly for specific cancer
patient groups (e.g., the pediatric population) to help guide the development of specific
drugs and dosing regimen protocols [193]. To assist in the development of these tools,
the scientific community should agree on a minimal amount of data regarding particle
characterization, loading and release, and most notably, time and dose used to evaluate
the carrier biodistribution that could help the model developers in finding the appropriate
data for development of their tools. In this way, we could eventually also accelerate the
understanding of the methods used to optimize tumor targeting as well as the biology in
terms of mass transport [194] of various tumors.
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