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Abstract: As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R)
has unique tissue expression patterns, pharmacological properties, and physiological functions. Dif-
ferent from the other four MCR subtypes, MC5R is widely distributed in both the central nervous
system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and
preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in
immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predom-
inant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy
metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal
muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus.
Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization,
and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological prop-
erties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out
knowledge gaps that need to be explored in the future.

Keywords: melanocortin-5 receptor; pharmacology; melanocortin-2 receptor accessory protein;
energy metabolism; signaling pathway

1. Introduction

Melanocortin receptors (MCRs), members of Family A (rhodopsin-like) G protein-
coupled receptors (GPCRs), consist of five members (MC1R to MC5R) with diverse bio-
logical functions [1,2]. MC1R is involved in pigmentation and inflammation [3–7]. MC2R,
exclusively found in the adrenal gland and activated by adrenocorticotropic hormone
(ACTH), regulates steroid production and cell proliferation [8–11]. Centrally expressed
MC3R and MC4R have essential non-redundant functions in energy homeostasis [12–18].
Cloning of the five MCRs from 1992 to 1995 started a new research phase due to the specific
pharmacological properties of these five MCRs and their therapeutic potential in treating
diverse diseases [2,5,19,20].

The melanocortin system plays important roles in regulating energy homeostasis.
Neural MC3R and MC4R, highly expressed in the hypothalamus, can sense and integrate
external stimuli (humoral and nutrient cues), including leptin, insulin, ghrelin, serotonin,
orexin, and glucose, regulating energy homeostasis in different ways [21–25]. MC3R
regulates feed efficiency [26–28], feeding rhythm [29–31], and energy expenditure [32],
whereas MC4R regulates both food intake and energy expenditure [13,25]. Selectively
reactivating MC4R expression in specific neurons showed that the MC4R expressed in the
paraventricular nucleus of the hypothalamus and amygdala is involved in the regulation
of food intake, whereas MC4R expressed in other neurons is involved in controlling energy
expenditure [33]. For general reviews on MC3R and MC4R, the reader is referred to several
review articles [13,14,34–36].

Int. J. Mol. Sci. 2022, 23, 8727. https://doi.org/10.3390/ijms23158727 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158727
https://doi.org/10.3390/ijms23158727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4737-749X
https://doi.org/10.3390/ijms23158727
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158727?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 8727 2 of 19

MC5R, widely expressed in central and peripheral tissues, has multiple physiological
functions (Figure 1). In the brain, MC5R is involved in the stress response [37], cognitive
function [38], and fetal brain development [39]. MC5R in the perifornical lateral hypotha-
lamus might mediate physical activity in lean rats [40]. In peripheral tissues, MC5R is
involved in exocrine and endocrine gland secretion [41,42], defense behavior [43,44], ther-
moregulation [41], inflammation [45,46], and immune response [47–50]. MC5R regulates
energy metabolism in the liver, adipose tissue, and skeletal muscle of various species, such
as humans [51–54], mice [51,55–60], chickens [61], and sea bass [62]. MC5R primarily regu-
lates energy metabolism via adipocyte lipolysis and re-esterification, fatty acid oxidation,
and glucose uptake [51–54].

In contrast to MC3R and MC4R, studies on MC5R are very limited [41–45,47–50,63–66].
Moreover, the role of MC5R in energy metabolism has been rarely investigated. Herein,
we summarize the molecular characteristics and pharmacology of MC5R, including the
signaling pathways, as well as physiological functions, especially in energy metabolism, by
comparing it with MC3R and MC4R.
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Figure 1. Multiple functions of MC5R in various tissues.

2. Molecular Characteristics of MC5R

As the most recent member of MCRs to be cloned, MC5R was identified from rodent
and human genomic DNA in 1994 and 1995 [67,68]. The intronless MC5R is located on
chromosome 18p11.21, encoding 325 amino acids in humans [69]. MC5R consists of seven
putative hydrophobic transmembrane domains (TMDs) linked by alternating extracellular
and intracellular loops (ECLs and ICLs, respectively), with an extracellular N-terminus
and intracellular C-terminus (Figure 2). The amino acid sequences of MC5Rs in vertebrates
are highly conserved at TMDs, while N-terminal extracellular domains display the lowest
identity (Figure 3).

There is disagreement on the evolutionary relationship and the origin of MC5R. Ge-
nomic analysis shows that MC5R is consistently adjacent to MC2R in the opposite direction
on the same chromosome (Figure 4). The conserved synteny between MC2R and MC5R
in many species indicates that they might have evolved from a common ancestor by local
duplication. This event could date back to the ancestral gnathostome since elasmobranchs
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have both mc2r and mc5r [70,71]. However, another view posits that MC5R originated
from a local duplication of MC4R, and then the MC5R locus was transferred next to the
MC2R locus [72]. This discrepancy may be attributed to the different evolutionary methods
used [73].
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mc5ra and mc5rb, resulting from gene duplication during evolution [74,75]. However, 
MC5R is absent or inactivated in some placental lineages owing to their completely lost 
or degenerative sebaceous glands, such as Cetacea, West Indian manatee, African ele-
phant, and white rhinoceros [76]. The differential loss of MC5R in whales and manatees 
was suggested to be the result of convergent evolution in the marine environment [77].  

Figure 2. Naturally occurring human MC5R mutations recorded in gnomAD database v2.1.1 (https:
//gnomad.broadinstitute.org/ (accessed on 13 April 2022)). The circles with gray background are
missense and nonsense mutations/polymorphisms. Frameshift mutations are not shown here. The
polymorphism (F209L) is labeled with a circle filled with red dashed lines. The most conserved
residues in transmembrane domains (TMDs) are denoted in red font. DRY and DPxxY motifs
are labeled in dashed line circles. MC5R secondary structures with extracellular loops (ECLs),
transmembrane domains (TMDs), and intracellular (ICLs) loops are denoted in blue font.

To date, MC5R genes have been cloned from multiple species of vertebrates, including
fish, amphibians, birds, and mammals. There are two mc5r subtypes in zebrafish, mc5ra and
mc5rb, resulting from gene duplication during evolution [74,75]. However, MC5R is absent
or inactivated in some placental lineages owing to their completely lost or degenerative
sebaceous glands, such as Cetacea, West Indian manatee, African elephant, and white
rhinoceros [76]. The differential loss of MC5R in whales and manatees was suggested to be
the result of convergent evolution in the marine environment [77].

In contrast to neural MC3R and MC4R, MC5R is widely expressed in central and
peripheral tissues, such as the brain, exocrine glands, skin, adipose tissue, skeletal muscle,
kidney, liver, and other tissues (Table 1 and Figure 5). In different species, MC5R shows
divergent expression patterns. For example, Mc5r mRNA is low in the central nervous
system but abundant in a variety of peripheral tissues in mice and rats [42,78]. Detailed
profiling of Mc5r in mice showed that it is highly expressed in the whole eye, skeletal
muscle, urinary bladder, and skin and moderately expressed in the vena cava, adipose tissue
(including both brown and white adipose tissues), and the central nervous system [79].
However, mc5r cloned in fishes showed high levels of mc5r transcripts in the brain and
pituitary in some fishes [37,80–84]. The wide distribution of MC5R in multiple tissues
might contribute to its diverse functions.

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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There are two reports of human MC5R mRNA expression (Figure 5A and Table 1) [51,85].
An earlier study reported MC5R mRNA expression in the brain, pancreas, lung, heart,
testes, and adipose tissue [51], whereas MC5R mRNA in the Human Protein Atlas database
shows abundant expression in the epididymis, esophagus, and thymus, as well as low
expression in the brain, retina, skin, and others [85]. Further studies using multiple sensitive
techniques, such as NanoString nCounter Technology [86], are needed to further clarify the
tissue distribution of human MC5R.
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Figure 3. Sequence alignment of multiple MC5Rs. The transmembrane (TM) regions are represented
by blue shadow and are numbered 1–7. The 100% identical residues are indicated in red. MC5Rs:
Homo sapiens (human, NP_005904.1), Mus musculus (mouse, NP_038624.3), Bubalus bubalis (water buf-
falo, XP_025129279.1), Cyanistes caeruleus (blue tit, XP_023777141.1), Chelonia mydas (green sea turtle,
XP_007063924.1), Xenopus tropicalis (tropical clawed frog, NP_001096392.1), Danio rerio (zebrafish,
NP_775386.1), and Larimichthys crocea (large yellow croaker, XP_010746135.1).
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Table 1. The distribution of MC5R in different species.

Species MC5R Expression in Different Tissues Techniques

Human [51] Present in brain, pancreas, lung, heart, testes, and fat tissues RT-PCR

Mouse [41,78]
Abundant in the Harderian, lacrimal, and preputial glands;

moderate in muscle and skin; low levels in adipose, spinal cord, and brain;
absent in spleen, kidney, liver, heart, lung, and gonad

In situ hybridization

Rat [42]
Abundant in lacrimal, preputial, and Harderian glands; low levels in

adrenal glands, pancreas, esophagus, and thymus; absent in thyroid gland,
seminal vesicle, spleen, liver, and skeletal muscle

Western blot,
In situ hybridization

Chicken [87] Present in brain, kidney, liver, adrenals, ovary, testis, uropygial gland, and
adipose tissue; absent in heart, spleen, and skeletal muscle RT-PCR

Zebrafish [74] Present in ovary, brain, gastrointestinal tract, and eye (mc5ra); present in
ovary, brain, gastrointestinal tract, eye, and heart (mc5rb) RT-PCR

Barfin flounder [88]
Present in pituitary, brain, eyeball, gill, atrium, ventricle, liver, head kidney,
kidney, spleen, stomach, intestine, white muscle, inclinator muscle, testis,

ovary, and skin
RT–PCR

Sea bass [62] Present in retina, brain, liver, spleen, gill, testis, and dorsal skin; low levels
in the pituitary, posterior kidney, fat tissue, intestine, red muscle, and ovary RT–PCR

Goldfish [80] Present in the kidney, spleen, skin, retina, and brain;
low levels in the intestine, fat, muscle, gill, pituitary, and ovary

RT–PCR,
Southern blot

Common carp [81] Present in brain, skin, kidney, and pituitary;
absent in thymus, spleen, head kidney, gut, gill, liver, heart, and muscle RT–PCR

Blunt snout bream [37] Present in brain, eyes, skin, testis, ovary, and gill; low levels in the muscle,
intestine, kidney, head kidney, spleen, and liver RT–PCR

Horn shark [71] Present in brain, pituitary, skin, and liver RT–PCR

Stingray [89] Present in hypothalamus and inter-renal tissues RT–PCR

Elephant shark [10] Present in hypothalamus, pituitary, brain, and kidney RT–PCR



Int. J. Mol. Sci. 2022, 23, 8727 6 of 19Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 5. Human MC5R (A), MRAP1 (B), and MRAP2 (C) mRNA expression in various tissues, 
based on https://www.proteinatlas.org/ (accessed on 14 July 2022) [85]. nTPM indicates normalized 
protein-coding transcripts per million. Color coding is based on tissue groups with functional fea-
tures in common. 

3. Pharmacology of MC5R 
MC5R Ligands 

The natural ligands for MCRs are melanocortins as agonists and two endogenous 
antagonists, namely, agouti (or agouti-signaling protein, ASIP) and agouti-related protein 
(AgRP). Melanocortins, including ACTH and α-, β-, and γ-melanocyte-stimulating hor-
mones (α-, β-, and γ-MSHs), are formed by post-translational processing of the precursor, 
proopiomelanocortin (POMC) [1,2,5,90]. These products are mainly expressed in the hy-
pothalamus and pituitary as well as in the skin [91–93]. α- and β-MSHs are part of ACTH; 
therefore, they share the same core sequence, the pharmacophore, His-Phe-Arg-Trp, 
which is necessary for receptor binding and activation [94,95]. Endogenous melanocortins 
are able to nonspecifically activate MC5R in many species, from fish to mammals 
[37,62,67,74,84,96–98]. Generally, MC5R displays the highest affinity to α-MSH but the 
lowest to γ-MSH in mice [67], humans [84,96], and fishes, such as stingray [97], zebrafish 
[74], blunt snout bream [37], and ricefield eel [84]. 

To obtain more potent ligands, several labs have developed synthetic agonists for 
MC5R. Some synthetic ligands display higher potency for MC5R than endogenous ago-
nists, such as [Nle4-D-Phe7]-α-MSH (a synthetic superpotent analog of α-MSH), melano-
tan II (MTII), SHU9119 (MTII and SHU9119 are potent cyclic derivatives of α-MSH), and 
HS014 (reviewed in [99]). However, these synthetic ligands can also effectively activate 

Figure 5. Human MC5R (A), MRAP1 (B), and MRAP2 (C) mRNA expression in various tissues,
based on https://www.proteinatlas.org/ (accessed on 14 July 2022) [85]. nTPM indicates normalized
protein-coding transcripts per million. Color coding is based on tissue groups with functional features
in common.

3. Pharmacology of MC5R
MC5R Ligands

The natural ligands for MCRs are melanocortins as agonists and two endogenous
antagonists, namely, agouti (or agouti-signaling protein, ASIP) and agouti-related pro-
tein (AgRP). Melanocortins, including ACTH and α-, β-, and γ-melanocyte-stimulating
hormones (α-, β-, and γ-MSHs), are formed by post-translational processing of the pre-
cursor, proopiomelanocortin (POMC) [1,2,5,90]. These products are mainly expressed
in the hypothalamus and pituitary as well as in the skin [91–93]. α- and β-MSHs are
part of ACTH; therefore, they share the same core sequence, the pharmacophore, His-
Phe-Arg-Trp, which is necessary for receptor binding and activation [94,95]. Endogenous
melanocortins are able to nonspecifically activate MC5R in many species, from fish to
mammals [37,62,67,74,84,96–98]. Generally, MC5R displays the highest affinity to α-MSH
but the lowest to γ-MSH in mice [67], humans [84,96], and fishes, such as stingray [97],
zebrafish [74], blunt snout bream [37], and ricefield eel [84].

To obtain more potent ligands, several labs have developed synthetic agonists for
MC5R. Some synthetic ligands display higher potency for MC5R than endogenous agonists,
such as [Nle4-D-Phe7]-α-MSH (a synthetic superpotent analog of α-MSH), melanotan
II (MTII), SHU9119 (MTII and SHU9119 are potent cyclic derivatives of α-MSH), and
HS014 (reviewed in [99]). However, these synthetic ligands can also effectively activate

https://www.proteinatlas.org/
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(or antagonize, as in the case of SHU9119) the other MCR subtypes, suggesting that they
do not exhibit good selectivity for MC5R. Subsequently, agonists highly specific to MC5R
were developed, including PG-901, PG-911, OBP-MTII (Oic6, D-4,4′-Bip7, Pip8-MTII), and
others [99–101].

ASIP and AgRP are endogenous antagonists in the melanocortin system [102–106].
The modification of pharmacophores (Arg-Phe-Phe-Asn-Ala-Phe) on exposed β-hairpin
loops of AgRP or ASIP can improve the antagonist potency or cause a functional change
from an antagonist to an inverse agonist for MC5R. For example, c[Pro-Arg-Phe-Phe-Asn-
Val-Phe-DPro] and c[Pro-Arg-Tyr-Phe-Asn-Ala-Phe-DPro] were found to more efficiently
antagonize MC5R [107]. The design of highly potent and selective ligands is essential for
developing molecular probes to identify new functions of MC5R.

As a typical GPCR, MC5R binding to agonists activates the Gα subunit by the exchange
of GDP for GTP and the dissociation of the Gα subunit from the Gβγ dimer and from the
receptor. Activated MC5R can be coupled to the cAMP pathway via Gαs and the Ca2+

pathway via Gαq [108]. cAMP triggers downstream events such as lipolysis and inflamma-
tion [109]. Moreover, MC5R can activate some pathways independent of cAMP and Ca2+.
For example, MC5R triggers the PI3K-ERK1/2 pathway, which can further mediate down-
stream pathways in fatty acid re-esterification [110], cellular proliferation/differentiation,
and immune responses [111].

4. The Effect of MRAPs on MC5R Pharmacology

Melanocortin-2 receptor (MC2R) accessory protein (MRAP) was initially discovered
as an essential partner for MC2R by assisting in MC2R trafficking from the endoplasmic
reticulum to the cell surface [112–114]. MRAP2, a subsequently discovered homolog of
MRAP, exhibits similar functions to MRAP in adrenal differentiation and proliferation [115].
Both MRAPs show wide tissue distribution in the central nervous system, especially in
the hypothalamus, and peripheral tissues, including the pituitary, adrenal glands, testis,
adipose tissue, ovary, and digestive tract [112,116–118] (Figure 5B,C).

Subsequent studies showed that MRAPs can also regulate MC5R trafficking and
pharmacology in many species (Table 2). MRAPs disrupt MC5R dimerization in hu-
mans and zebrafish [75,119] and regulate MC5R trafficking to the plasma membrane.
For example, MRAPs inhibit MC5R trafficking to the plasma membrane in humans and
zebrafish [75,116,119], whereas they increase MC5R trafficking in gar [120]. However,
MRAPs may modulate MC5R pharmacology independent of receptor trafficking in some
species, such as mouse, elephant shark, whale shark, and ricefield eel [10,75,84,121] (Table 2).

Co-expression of MC5R and MRAP in the same cells or tissues is the rationale for
their interaction. The Human Protein Atlas database showed that human MC5R mRNA
and MRAP1/MRAP2 are expressed in the same tissues, including the brain, esophagus,
testis, epididymis, skin, and thymus [85] (Figure 5). Similarly, mouse Mc5r and Mrap2
mRNA are expressed in the brain, skin, muscle, and adipose [78,118]. Future research
should systematically investigate the interaction of MC5R and MRAPs in the same cells in
these tissues.

Table 2. The effect of MRAPs on MC5R in various species.

Species MRAPs
Effect of MRAPs on MC5R-Related Parameters

Cell TypesMC5R Traffic
to PM MC5R Pharmacology

Human [116,119] MRAP1, MRAP2 Inhibition * Inhibit its efficacy for NDP-MSH * CHO
HEK293T

Zebrafish [75]

MRAP2a Inhibition Inhibits the efficacy of both MC5Ra and
MC5Rb with α-MSH and SHU9119 CHO

HEK293T
MRAP2b NS Inhibits MC5Ra but increases MC5Rb

efficacy with α-MSH and SHU9119
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Table 2. Cont.

Species MRAPs
Effect of MRAPs on MC5R-Related Parameters

Cell TypesMC5R Traffic
to PM MC5R Pharmacology

Mouse [75]
MRAP2 NS Inhibits efficacy with α-MSH

and SHU9119
CHO

HEK293T

MRAP1 — — —

Elephant shark [10]
MRAP1 NS Increases sensitivity to ACTH but

not Des-Acetyl-α-MSH CHO
MRAP2 NS NS

Chicken [122]
MRAP1 — Increases sensitivity to ACTH

CHO
MRAP2 — No effect on responding to ACTH

Gar [120]
MRAP1 Increase Increases efficacy with NDP-MSH

CHO
MRAP2 NS Increases efficacy with ACTH

Whale shark [121] MRAP1,
MRAP2 NS * Increase sensitivity to ACTH but

not des-acetyl-α-MSH * CHO

Ricefield eel [84]

MRAP2X1 NS

Increases maximal binding and inhibits
efficacy with α-MSH and ACTH *;

no influence on binding affinity to ACTH
or α-MSH HEK293T

MRAP2X2 NS Decreases binding affinity to ACTH
but not a-MSH

Rainbow trout [83]
MRAP2 NS Increases sensitivity to ACTH CHO

MRAP — — —

PM, plasma membrane; * indicates both MRAP subtypes have the same influence; NS indicates the MRAP subtype
has no significant effect on the parameter; — indicates data not available.

5. Functions of MC5R in Energy Metabolism

Knockout mouse models have elucidated the functions of MCRs. Mc4r−/− mice
exhibit severe phenotypes in energy homeostasis, including hyperphagia, mature-onset
obesity, increased linear growth, hyperinsulinemia, and hyperglycemia [123]. Unlike the
hyperphagia and severe obesity phenotype in Mc4r−/− mice, homozygous Mc3r knockout
mice exhibit a mild phenotype, characterized by moderate obesity and no hyperphagia but
elevated fat mass and reduced lean mass [26,27] (Table 3).

No obvious deficiency in appearance, behavior, growth, or reproduction was observed
in Mc5r knockout mice. Other parameters associated with metabolic homeostasis in Mc5r-
deficient mice are indistinguishable from those of their wild-type littermates, including
muscle mass, adipose mass, and blood glucose and insulin levels. However, Mc5r knock-
out mice are deficient in the secretion of multiple exocrine glands, including Harderian
porphyrin production and lacrimal protein secretion [41]. In Mc5r knockout mice, total
acetone-extractable lipids from hair are decreased by 15–20%, which leads to defective
water repulsion and thermoregulation. Another study on glucose metabolism found that
α-MSH-activated MC5R increases thermogenesis, glucose uptake, and whole-body glucose
clearance in skeletal muscles in wild-type mice, whereas these actions are inhibited in Mc5r
knockout mice [124].
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Table 3. Functions of MC5R, MC4R, and MC3R in regulation of energy homeostasis.

MC3R MC4R MC5R

Energy-regulating
tissues Hypothalamus [22] Hypothalamus, adipose, and

skeletal tissue [13,26,27]
Liver, adipose, and skeletal
tissue [53,54,62,110,124]

Feeding behavior Feed efficiency, feeding rhythm,
and energy expenditure [26–30]

Food intake and
energy expenditure [13,25,125] No report

Phenotype in
knockout mouse

Moderate obesity, no
hyperphagia, increased fat mass,
and decreased lean
mass [123,126]

severe obesity,
hyperphagia, and
hyperinsulinemia [13,27,123,127]

No visible phenotype,
deficiency in exocrine gland
secretion, and decreased
glucose tolerance [41,124]

Lipid homeostasis
Triglyceride accumulation,
lipolysis, and fatty acid
oxidation [14,128,129]

Triglyceride synthesis, lipid
mobilization, and fat
accumulation [129–131]

Lipolysis, fatty acid oxidation,
and fatty acid re-esterification
[53,54,62,110]

Glucose homeostasis Glucose uptake [14,132,133]
Glucose reabsorption,
hyperglycemia, and hepatic
glucose production [13,16,134]

Glucose uptake [124]

6. MC5R Regulates Lipolysis and Re-Esterification

Obesity is characterized by the expansion of adipose tissue caused by triacylglycerol
(TAG) accumulation in adipocytes [135]. The adipocytes in white adipose tissue are a
site of fat storage, mediated by TAG synthesis (lipogenesis) and degradation (lipolysis).
Lipolysis is a biochemical process involving the breakdown of triglycerides and the release
of non-esterified fatty acids and glycerol [135–139]. Lipolysis is catalyzed by three major
enzymes: hormone-sensitive lipase, adipose triglyceride lipase, and monoacylglycerol
lipase [135,137].

Despite the lack of the dramatic metabolic phenotype of Mc5r−/− mice, Mc5r has been
shown to be expressed in mouse adipocytes and differentiated 3T3-L1 mouse adipocyte
cells [140]. In 3T3-L1 cells, α-MSH-stimulated MC5R activates hormone-sensitive lipase and
perilipin-1, inducing lipolysis by activating the cAMP/PKA signaling pathway, whereas
MC5R prevents triglyceride synthesis by inhibiting the function of acetyl-CoA carboxylase
(ACC), an important enzyme in the lipogenic process [110,141] (Figure 6). In addition,
MC5R inhibits re-esterification by blocking the recycling of non-esterified fatty acids into
triglycerides via ERK1/2 signaling in mouse 3T3-L1 adipocytes [110]. Moreover, it was
found that the lipolytic function of MC5R is dependent on noradrenalin released from
postsynaptic nerve fibers innervating the adipose tissue in humans [54]. In addition,
MC5R in 3T3-L1 adipocytes can inhibit leptin secretion, supporting the possibility that
MC5R indirectly regulates food intake and energy expenditure by leptin–melanocortin
pathways [142]. The in vivo physiological relevance of these observations remains to be
established since the endogenous level of α-MSH in adipose tissue might not be sufficient
to fully activate MC5R [143]. The expression of MCRs in human adipocytes is also lower or
absent in humans, different from rodents [143]. The function of MC5R in lipolysis has also
been identified in chicken and sea bass [61,62,144].

MC5R mutations in Quebec families and Finns exhibit significant linkage or association
with the obesity phenotype [51,53]. However, detailed studies on the mutations identified
are insufficient to prove a causal relationship between the mutation and human obesity. As
shown in Figure 2, numerous additional MC5R mutations have been identified by recent ex-
tensive genomic studies. Whether these MC5R mutations lead to defective mutant receptors
and the exact molecular defects remain to be studied. The correlation of a molecular defect
with a phenotype will be necessary to convincingly demonstrate the clinical implications of
these mutations in human diseases. We have performed extensive functional studies on
naturally occurring mutations in the related MC3R and MC4R [25,145–158]. Importantly,
these studies identified potential strategies to correct these mutations, especially pharma-
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cological chaperones for correcting misfolded mutant receptors [13,151,159–161]. Similar
studies need to be conducted with naturally occurring mutations in MC5R.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 6. Schematic diagram of MC5R signaling pathways in lipid and glucose metabolism. 

7. MC5R Regulates Fatty Acid Oxidation 
In humans, skeletal muscle, accounting for more than 70% of total glucose disposal 

in the body, is an important tissue in determining whole-body energy expenditure [162]. 
Long-chain fatty acids, mainly derived from adipocyte lipolysis, are transported into skel-
etal muscle, where it is partly oxidized to provide energy. Fatty acid oxidation (FAO) in 
skeletal muscle occurs in the mitochondria, which is promoted by the actions of carnitine 
palmitoyltransferase-1 (CPT-1). CPT-1 activity is negatively mediated by malonyl-CoA, 
which is synthesized from cytosolic acetyl-CoA through a reaction catalyzed by ACC 
[56,163,164]. In exercising skeletal muscle, activation of 5′-AMP-activated protein kinase 
(AMPK) facilitates glucose transport and FAO through the inhibition of ACC, which leads 
to a decrease in malonyl-CoA content and an increase in CPT-1 activity [56,164]. 

Among all MCRs, MC5R is the predominant subtype expressed in skeletal muscle, 
suggesting potential important functions of this receptor in skeletal muscle [41,56,78,87]. 
α-MSH-activated MC5R enhances FAO in mouse muscle cells and C2C12 myoblast cells. 
Activated MC5R triggers the cAMP-PKA-AMPK pathway, followed by ACC phosphory-
lation, which suppresses ACC activity but increases CPT-1 activity, leading to improved 
FAO [56] (Figure 6). In addition, C/EBPβ binds to the promoter region of MC5R and acts 
as a negative transcription regulator. α-MSH can reduce the interaction of C/EBPβ with 
MC5R to enhance FAO in white and brown adipocytes [59]. 

8. MC5R Regulates Glucose Homeostasis 
Glucose uptake is a process in which glucose in the blood is transferred into the cell 

via multiple glucose transporters (GLUTs). In skeletal muscle, three GLUTs are involved 
in glucose uptake: GLUT4, GLUT1, and GLUT3 (expressed in fetal and neonatal muscle 
only). GLUT1 is constitutively expressed on the plasma membrane, whereas GLUT4 is 
transported to the cell surface by intracellular vesicles in response to stimuli [165]. AMPK 
can regulate glucose uptake via phosphorylation of two downstream targets, AS160 and 
TBC1 domain family member 1 (TBC1D1) [166]. Phosphorylated AS160 and TBC1D1 were 
demonstrated to promote GLUT4 translocation in skeletal muscle, adipose tissue, and 

Figure 6. Schematic diagram of MC5R signaling pathways in lipid and glucose metabolism.

7. MC5R Regulates Fatty Acid Oxidation

In humans, skeletal muscle, accounting for more than 70% of total glucose disposal
in the body, is an important tissue in determining whole-body energy expenditure [162].
Long-chain fatty acids, mainly derived from adipocyte lipolysis, are transported into skele-
tal muscle, where it is partly oxidized to provide energy. Fatty acid oxidation (FAO) in
skeletal muscle occurs in the mitochondria, which is promoted by the actions of carni-
tine palmitoyltransferase-1 (CPT-1). CPT-1 activity is negatively mediated by malonyl-
CoA, which is synthesized from cytosolic acetyl-CoA through a reaction catalyzed by
ACC [56,163,164]. In exercising skeletal muscle, activation of 5′-AMP-activated protein
kinase (AMPK) facilitates glucose transport and FAO through the inhibition of ACC, which
leads to a decrease in malonyl-CoA content and an increase in CPT-1 activity [56,164].

Among all MCRs, MC5R is the predominant subtype expressed in skeletal muscle,
suggesting potential important functions of this receptor in skeletal muscle [41,56,78,87].
α-MSH-activated MC5R enhances FAO in mouse muscle cells and C2C12 myoblast cells.
Activated MC5R triggers the cAMP-PKA-AMPK pathway, followed by ACC phosphory-
lation, which suppresses ACC activity but increases CPT-1 activity, leading to improved
FAO [56] (Figure 6). In addition, C/EBPβ binds to the promoter region of MC5R and acts
as a negative transcription regulator. α-MSH can reduce the interaction of C/EBPβ with
MC5R to enhance FAO in white and brown adipocytes [59].

8. MC5R Regulates Glucose Homeostasis

Glucose uptake is a process in which glucose in the blood is transferred into the cell
via multiple glucose transporters (GLUTs). In skeletal muscle, three GLUTs are involved
in glucose uptake: GLUT4, GLUT1, and GLUT3 (expressed in fetal and neonatal muscle
only). GLUT1 is constitutively expressed on the plasma membrane, whereas GLUT4 is
transported to the cell surface by intracellular vesicles in response to stimuli [165]. AMPK
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can regulate glucose uptake via phosphorylation of two downstream targets, AS160 and
TBC1 domain family member 1 (TBC1D1) [166]. Phosphorylated AS160 and TBC1D1 were
demonstrated to promote GLUT4 translocation in skeletal muscle, adipose tissue, and other
peripheral tissues [167,168]. Skeletal muscle accounts for 15–20% of total glucose disposal
in the basal state, and it takes up approximately 80% of glucose after a meal [165,169].

Single nucleotide polymorphisms in MC5R are associated with type 2 diabetes and
obesity in Finns, suggesting that MC5R might be involved in glucose disposal in hu-
mans [53]. Further study found that α-MSH stimulates glucose uptake and induces the
phosphorylation of TBC1D1, which is not regulated by upstream PKA and AMPK in mouse
soleus muscles. Moreover, α-MSH-mediated glucose uptake is not exerted by GLUT4 [60]
(Figure 6).

Pituitary and extra-pituitary cells, including keratinocytes, monocytes, astrocytes, and
gastrointestinal cells, can produce peripheral α-MSH [124,170,171]. The pituitary gland,
which expresses POMC, is composed of an anterior lobe, an intermediate lobe, and a neural
lobe. The anterior lobe in humans and the intermediate lobe in most mammals are the
dominant origins of circulating α-MSH [172], accounting for approximately 70% of blood
α-MSH in higher mammals [124,170,171]. Pituitary POMC cells can sense plasma glucose
fluctuations, which, in turn, stimulates the secretion of circulating α-MSH in humans, mice,
and monkeys [124].

Experiments with sheep and Mc5r knockout mice found that physiological levels of
circulating α-MSH increase thermogenesis, glucose tolerance, and muscle glucose uptake
in skeletal muscle via increased glycolysis and anaerobic respiration to produce ATP
and lactic acid [124]. Moreover, these actions of α-MSH are dependent on the MC5R-
cAMP-PKA signal transduction pathway in the soleus and gastrocnemius muscles of lean
animals, whereas the effect of α-MSH on glucose uptake is abolished in Mc5r knockout
mice [124]. Further study found that α-MSH stimulates glucose uptake and induces the
phosphorylation of TBC1D1, which is not regulated by upstream PKA and AMPK in mouse
soleus muscles. Moreover, α-MSH-mediated glucose uptake is not exerted by GLUT4
(Figure 6). Since high levels of both MC4R and MC5R are detected in mouse soleus muscle,
the role of MC4R in glucose uptake is not clear [60].

9. Future Perspectives

Compared with the other four MCRs, studies on the structure–function relationships
of MC5R are very limited. Crystal structures have been recently described for MC1R and
MC4R. Elucidation of the crystal structure of MC5R will facilitate the in silico design of
novel ligands for MC5R, especially small molecules. The development of subtype-selective
ligands is of special interest in that these ligands can be used to study the physiology of
MC5R in species other than rodents.

Since MC5R is widely expressed, it is likely to have multiple functions in different
tissues. Preliminary clinical studies indicated that MC5R is associated with obesity, and
recent genetic studies have identified many novel mutations in MC5R. However, the
functional and clinical relevance of these mutations remain to be investigated.

In vitro studies showed that MRAPs can regulate the pharmacology of MC5R in
HEK293 or CHO cells, indicating the potential of MRAPs to regulate the function of MC5R.
Co-expression of MC5R and MRAP1/MRAP2 in different tissues, especially in the same
cells of these tissues, and the functional regulation of MC5R by MRAPs in a physiological
environment need to be studied.

The different physiological functions of MC5R have been mostly reported by a single
lab. Confirmation by independent labs and further extension of physiological studies,
including the use of tissue-specific knockout and receptor subtype-selective ligands, are
needed. Importantly, the pharmacological properties of the tools to be used also need to be
independently confirmed, rather than just relying on previous publications. Tissue-specific
knockout of Mc5r will likely yield clues to the functions of MC5R in different tissues. Since
energy homeostasis can be affected by multiple environmental stimuli, such as glucose
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intake, high-fat diet, fasting, and feeding rhythm, it would be beneficial to investigate the
phenotype of Mc5r knockout mice upon these challenges.
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