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Cellular stressors contribute to the expansion of
hematopoietic clones of varying leukemic potential
Terrence N. Wong et al.#

Hematopoietic clones harboring specific mutations may expand over time. However, it

remains unclear how different cellular stressors influence this expansion. Here we char-

acterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and

hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying

mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted

populations show that these clones are typically multilineage and myeloid-biased. Following

autologous transplantation, most clones persist with stable chimerism. However, DNMT3A

mutant clones often expand, while PPM1Dmutant clones often decrease in size. To assess the

leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples.

Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite

several being commonly identified after cytotoxic therapy. These data suggest that different

hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific

mutations, whose leukemic potential depends partially on the mutations they harbor.
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Hematopoietic stem cells (HSCs) acquire somatic muta-
tions with age, resulting in a genetically heterogeneous
population with each HSC possessing its own set of

unique mutations1. Some of these mutations confer a fitness
advantage, allowing the HSCs harboring them to clonally expand.
Indeed, expanded hematopoietic clones with specific mutations
have been observed in healthy individuals without known
hematologic abnormalities2–4. This has been termed clonal
hematopoiesis of indeterminate potential5, and these clones have
typically been found to carry mutations in epigenetic modifiers
such as DNMT3A. Hematopoietic clonal expansion has also been
observed following certain cellular stressors including aplastic
anemia6 and cytotoxic therapy7,8. In these cases, the expanded
hematopoietic clones often carried mutations in a different set of
genes (i.e., PIGA, BCOR, and BCORL1 in the former and TP53
and PPM1D in the latter), suggesting that cellular stressors
influence hematopoietic clonal evolution. However, controlled
studies investigating the degree to which specific stressors influ-
ence clonal expansion and characterizing the nature of these
expanding hematopoietic clones are lacking.

To address these questions, we use a sensitive error-corrected
sequencing approach to characterize clonal hematopoiesis after
two distinct types of hematopoietic stress: cytotoxic therapy and
hematopoietic autologous transplantation. We find that the stress
from cytotoxic therapy promotes the expansion of clones with
mutations in DNA damage response genes such as TP53 and
PPM1D. Transplantation-related stress selects for a different set
of hematopoietic clones, including those harboring DNMT3A
mutations. Expanded clones are typically long-lived, multilineage,
and transplantable. Finally, the leukemogenic potential of these
clones is strongly dependent on the specific mutations they carry.

Results
Influence of cytotoxic therapy on clonal expansion. To assess
how cytotoxic therapy influences the expansion of specific
hematopoietic clones, we analyzed mobilized pre-transplant
pheresis samples from three age and gender-matched cohorts:
69 lymphoma patients, 50 myeloma patients, and 19 healthy
donors (Table 1, Supplementary Data 1 and Supplementary
Table 1). Of the 119 patients with a history of malignancy, 81 (68
lymphoma patients and 13 myeloma patients) had previously
received cytotoxic therapy (i.e., chemotherapy and/or radiation)
and were grouped together. We sequenced 46 genes associated
with clonal hematopoiesis or AML/MDS (Supplementary
Table 2) using an error-corrected next-generation sequencing
assay capable of detecting somatic mutations at a variant allele
frequency (VAF) of 0.1%. In total, 272 somatic nucleotide var-
iants (SNVs) and 55 insertions/deletions (indels) were detected

(Supplementary Data 2). The median VAF of these variants was
0.5% (range: 0.1–22.6%) and similar across genes (Supplementary
Fig. 1A). Over eighty-six percent had a VAF< 2%, the proposed
threshold to detect clonal hematopoiesis5. Despite this lower VAF
threshold, ninety percent of the identified SNVs were missense or
nonsense mutations, and over 94% of the indels resulted in a
frameshift (Supplementary Fig. 1B, 1C). This suggests that most
of the identified variants had protein modifying activity.

Similar to earlier observations7,8, 28.4% of patients exposed to
cytotoxic therapy had clonal hematopoiesis carrying a mutation
with a VAF ≥ 2%; however, 82.7% of these same patients had clonal
expansion with a VAF ≥ 0.1% (Fig. 1a). Both the incidence of clonal
hematopoiesis and the number of somatic variants were higher in
patients receiving cytotoxic therapy versus patients with malignancy
not receiving cytotoxic therapy or healthy donors (Fig. 1a, b,
Supplementary Table 3). This was not dependent on the patient’s
initial diagnosis, suggesting that the increase in identified variants
was primarily due to the treatment they received (Supplementary
Fig. 2). Consistent with prior reports, the number of variants
correlated with age2–4,7,8, regardless of antecedent cytotoxic therapy
(Fig. 1c). Indeed, variants detected after cytotoxic therapy were
predominantly transition mutations (Fig. 1d) and occurred in a
similar trinucleotide context as variants identified in the absence of
such exposure (Supplementary Fig. 1D), suggesting that they are
age-related, not induced by cytotoxic drugs. As in studies with
healthy individuals2–4, DNMT3A and TET2 variants were common
in all cohorts (Fig. 1e). In contrast, consistent with studies on
patients with a history of malignancy7,8, TP53 and PPM1D variants
were enriched after cytotoxic therapy (Supplementary Table 3) with
all PPM1D variants being exon 6 nonsense or frameshift mutations
(Supplementary Fig. 3).

Of the 46 genes interrogated, we identified six commonly
associated with the DNA damage response pathway: TP53,
PPM1D, ATM, BRCC3, SRCAP, and RAD219–12. Whereas 38/81
(46.9%) of patients exposed to cytotoxic therapy had one or more
variants in these genes, they were present in only 9/57 (15.8%;
P = 0.0001 by Fisher’s exact) of patients lacking such exposure
(Fig. 1f). In contrast, variants in the other 40 genes were not
significantly increased after cytotoxic therapy (Fig. 1g). Interest-
ingly, 23/81 (28.4%) of patients exposed to cytotoxic therapy had
a variant in a DNA damage response gene other than TP53 or
PPM1D. This was significantly higher than the 4/57 (7.0%; P =
0.002 by Fisher’s exact) of individuals without such exposure and
suggests that exposure to cytotoxic therapy may confer a fitness
advantage to hematopoietic clones harboring mutations in
multiple genes involved in DNA damage response, not just
clones with TP53 and PPM1D mutations.

In previous analyses of patients with hematologic and solid
malignancies and concurrent clonal hematopoiesis, multiple

Table 1 Clinical summary of patients with error-corrected sequencing

Lymphoma (n= 69) Myeloma (n= 50) Healthy donor (n= 19)

Age Median (range) (years) 57 (18–72) 63 (26–76) 60 (21–76)

Gender Male 60.9% 60.0% 63.2%
Female 39.1% 40.0% 36.8%

Known previous treatment Cytotoxic chemotherapy 98.6% 4.0% N.A.
Alkylator 95.7% 0.0% N.A.
Topoisomerase II inhibitor 95.7% 4.0% N.A.
Platinum 59.4% 0.0% N.A.
Radiation 20.3% 24.0% N.A.
Proteasome inhibitor 1.4% 84.0% N.A.
Lenalidamide/thalidomide 0.0% 84.0% N.A.

Time from start of cytotoxic therapy to transplant Median (range) (months) 11 (3–288) N.A. N.A.

N.A. not applicable
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variants were identified in 30.8 and 38% of patients,
respectively7,8. With the increased sensitivity of our error-
corrected sequencing approach, we identified multiple variants
in 73.1% (49/67) of patients with clonal hematopoiesis after
cytotoxic therapy (range: 2–12 variants), including 21 patients
(31.3%) with multiple variants in DNA damage response genes
(Fig. 1b, Supplementary Fig. 4). Of those individuals with
multiple variants, 59.2% (29/49) had multiple variants in the
same gene, with 13 patients (26.5%) having three or more
(maximum: seven variants). As previously demonstrated with
PPM1D alone8, patients with at least one mutation in a DNA
damage response gene after cytotoxic therapy had a higher

number of total variants than those with clonal hematopoiesis
due to other mutations (Fig. 1h).

Expanded clones are usually multi-lineage and myeloid-biased.
To investigate the nature of expanded mutant clones, we assessed
the hematopoietic populations carrying their mutations. In pre-
leukemic clones, the founding mutation is often in both myeloid
and T cell compartments, suggesting that they arise in progeni-
tors with multilineage potential13–15. We performed similar
analyses with lymphoma patients after cytotoxic therapy. Myeloid
and lymphoid populations were sorted from pheresis samples
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Fig. 1 Influence of cytotoxic therapy on clonal expansion. a Percentage of individuals with clonal hematopoiesis ≥ 0.1% or ≥ 2.0% in three cohorts: those
exposed to cytotoxic therapy (n= 81), those with malignancy but not exposed to cytotoxic therapy (n= 38), and healthy donors (n= 19). The average ages
for the three groups were 55.0, 60.1, and 55.8 years, respectively. b Number of detected variants per patient. c Number of identified variants plotted
against individual age for all pheresis samples. d Percentage of variants detected in pheresis samples that were transition mutations. e Percentage of
individuals with at least one expanded clone harboring a variant in the specified gene. f Total number of variants identified in DNA damage response genes
(i.e., TP53, PPM1D, ATM, BRCC3, SRCAP, or RAD21) grouped by whether or not the individual had previously been exposed to cytotoxic therapy. g Same as in
f except for all other variants (i.e., in “non-DNA damage response genes”). h Total number of variants detected in patients with clonal hematopoiesis
following cytotoxic therapy grouped by whether or not at least one variant was in a DNA damage response gene. NS not significant. *P< 0.05; **P< 0.01;
***P< 0.001. For a, d, e, significance was determined with a Fisher’s exact test. For b, significance was determined with a negative binomial regression
analysis using Bonferroni-adjusted pairwise comparisons. For f–h, significance was determined with a negative-binomial regression analysis. Data is
represented as the mean± the standard error of the mean
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with DNMT3A, PPM1D, or TP53 mutations, and droplet digital
PCR (ddPCR) was performed to quantify VAFs (Supplementary
Fig. 5 and 6). Of note, B cells were often undetectable, reflecting
recent rituximab exposure. As previously reported16, DNMT3A
mutations were detected in both myeloid and lymphoid cells,
suggesting they arose in HSCs (Fig. 2a). With one exception
(UPN-746), PPM1D and TP53 mutations were also detected in
both myeloid and lymphoid cells, suggesting that they likewise
arose in HSCs (Fig. 2b, c). Interestingly, the percentage of cells
carrying the TP53 or PPM1D variant was higher (median: 14.2-
fold; range: 2.3 to 88.3-fold; P = 0.03 by Wilcoxon match-paired
signed rank test) in myeloid versus T cells. This suggests that the
TP53 and PPM1D variants carried by hematopoietic clones
expanding after cytotoxic therapy are initially and rapidly pro-
pagated through the myeloid lineages. Either the progenitors
harboring these variants were myeloid-biased or didn’t have time
to fully populate the lymphoid lineages, particularly T cells, which
are slower to turn over. More than half of our samples were
collected within 1 year of cytotoxic therapy initiation, including
UPN-746 (Fig. 2, Supplementary Data 1).

Influence of transplantation on clonal expansion. We then
asked how transplantation influences the expansion of these
HSCs. Transplantation causes replicative stress17,18 and alters the
bone marrow microenvironment19–21, potentially influencing the
competitive fitness of HSCs. Forty lymphoma patients (with 120
detected pheresis variants among 31 individuals) had peripheral

blood samples collected 6–12 months after autologous trans-
plantation. Most of these variants did not change significantly in
VAF upon transplantation with their post-transplant VAFs
strongly correlated to their VAFs before transplantation (R2 =
0.64 by linear regression); however, variants not initially identi-
fied in the pheresis samples often became detectable post-
transplant (Fig. 3a, b, Supplementary Data 3). In total, 148 var-
iants were called in 35 patients following autologous transplan-
tation with the average number of variants per patient increasing
slightly from 3.0± 3.1 to 3.7± 3.2 (P< 0.05 by Wilcoxon match-
paired signed rank test).

The two genes with the most variants identified either before or
after transplant were DNMT3A and PPM1D. Of 51 DNMT3A
variants, 17 (33.3%) significantly increased ≥ 2-fold in VAF after
transplantation, while 3 (5.9%) decreased (Fig. 3c, e). Interest-
ingly, the VAFs of all three R882 codon DNMT3A variants
increased. This suggests that certain DNMT3A variants confer a
modest repopulating advantage with transplantation. In contrast,
of 23 PPM1D variants, only 2 (8.7%) significantly increased in
VAF with transplantation, while 7 (30.4%) decreased (Fig. 3d, e).
Collectively, these data indicate that hematopoietic clones
expanding after cytotoxic therapy are often long-lived, persisting
following transplant. At the same time, previously unidentified
clones may expand under the stress of transplantation. The
behavior of hematopoietic clones following transplantation
depends, in part, on what mutations they harbor;
transplantation-induced selection pressure doesn’t necessarily
favor the same clones as cytotoxic therapy.
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Fig. 2 Expanded clones are usually multi-lineage and myeloid-biased. VAFs of the specified DNMT3A (a), TP53 (b) or PPM1D (c) mutations in bulk cells
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Leukemogenic potential of expanded clones. Clonal hemato-
poietic expansion has been linked to the development of hemato-
logic malignancies both with and without previous cytotoxic
therapy exposure2,3,8,22,23. However, it remains unclear which
clones are at highest risk of leukemic transformation. At a median
follow-up of ~2.2 years, no patient in our lymphoma cohort had
developed
t-AML/t-MDS, so directly assessing the leukemogenic potential of
expanded clones following cytotoxic therapy was not possible.
Instead, we indirectly assessed this potential by determining how
frequently these genes are mutated in t-AML/t-MDS. We per-
formed exome sequencing on 19 cases and targeted sequencing on
92 cases with a panel of 274 genes, including the DNA damage-
associated genes assessed in our error-corrected HaloPlex assay
(Supplementary Table 4). Combined with our previously published
t-AML/t-MDS whole genome and exome sequencing24, we ana-
lyzed 134 cases in total (Table 2, Supplementary Data 4).

As in previous reports24,25, these patients had poor overall
survival (Supplementary Fig. 7). They frequently harbored

mutations in epigenetic modifiers, spliceosome genes, and
myeloid transcription factors and were enriched in TP53
mutations (Fig. 4a, Supplementary Data 5). The null hypothesis
that all gene mutations confer a similar risk of progression from
clonal hematopoiesis to t-AML/t-MDS predicts that the
frequency of gene mutations in therapy-related clonal hemato-
poiesis will be similar to that in t-AML/t-MDS. However, this
pattern was not observed as illustrated by DNA damage response
genes (Fig. 4b). TP53 mutations were frequently observed in both
therapy-related clonal hematopoiesis and in t-AML/t-MDS. In
contrast, mutations in PPM1D and SRCAP, which were present at
approximately the same frequency as TP53 mutations in therapy-
related clonal hematopoiesis, were uncommon in t-AML/t-MDS.
Similar trends were observed upon restricting t-AML/t-MDS
patients to those with a previous history of lymphoma (Fig. 4c).
This suggests that the leukemogenic potential of expanded clones
carrying different mutations varies significantly. Specifically, the
leukemogenic potential of expanded TP53 mutant hematopoietic
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clones appears to be higher than clones with mutations in other
DNA damage response genes, particularly PPM1D and SRCAP.

Discussion
In this study, we show that hematopoietic clones harboring
mutations in DNA damage response genes expand in response to
cytotoxic stress. The expansion of TP53 and PPM1D mutant
clones has previously been observed after cytotoxic therapy in
patients with either solid or hematologic malignancies7,8. Our
data suggest that mutations in DNA damage response genes other
than TP53 and PPM1D may also provide a fitness advantage to
HSCs with cytotoxic therapy. In the earlier studies, mutations in
some of these genes (e.g., ATM, BRCC3, etc.) were identified in a
small percentage of patients7,8. Utilizing the sensitivity of error-
corrected sequencing, we show that clonal hematopoiesis invol-
ving such mutations is more frequent after cytotoxic therapy than
previously observed. We also ascertain for the first time that
mutations in SRCAP are frequently seen in patients following
cytotoxic therapy. SRCAP is an ATP-dependent chromatin
remodeler, which catalyzes the incorporation of variant H2A.Z

histones into the nucleosome26,27. Interestingly, this protein has
been shown to play a role in the repair of double-strand breaks
resulting from genotoxic stress9. The 29 SRCAP variants identi-
fied in pheresis and/or post-transplant peripheral blood samples
were scattered throughout the gene with 12 (41.4%) truncating
nonsense or frameshift mutations and 16 (55.2%) missense
mutations, suggesting they may be primarily loss-of-function. Of
note, since we did not survey all DNA damage response genes, we
may be underestimating the frequency of clonal hematopoiesis
involving mutations in such genes following cytotoxic therapy.
Indeed, Coombs et al. also identified mutations in the TP53
regulator CHEK2 in patients with solid malignancies7.

In most patients with clonal hematopoiesis following cytotoxic
therapy, we identified multiple variants. This has been observed
to a lesser degree in other studies of clonal hematopoiesis after
cytotoxic therapy7,8 and in healthy individuals2–4. Determining
whether these variants represent independent clones would
require single-cell sequencing. However, the number of variants
identified in individual patients (with many located in the same
gene) and the wide distribution of their VAFs (Supplemental
Data 2) suggest that at least some arise from independent clones.
Consistent with this conclusion, Gibson et al. described patients
with multiple variants after cytotoxic therapy who later developed
t-AML/t-MDS without all the variants present in the malignant
clone8. In patients with prior exposure to cytotoxic therapy, the
presence of a mutation in a DNA damage response gene above
the limit of detection was associated with a higher total number of
identified variants. This observation raises the possibility that the
expansion of hematopoietic clones harboring mutations in TP53,
PPM1D, and other DNA damage response genes may serve as a
biomarker of prior genotoxic stress. Several studies have shown
that clonal hematopoiesis in patients following cytotoxic therapy
is associated with a modestly increased risk of developing a
therapy-related myeloid neoplasm8,22,23. Whether the presence
and/or number of expanded clones with mutations in DNA
damage response genes better defines the risk for therapy-related
myeloid neoplasms will require further study.

In studies involving individuals with no known hematologic
malignancy or with aplastic anemia, expanded hematopoietic
clones have often been found to persist for years, often at stable
VAFs, suggesting that they originated in an HSC or long-term
progenitor3,6,16. Indeed, we show that mutant clones that have
expanded following cytotoxic therapy typically exhibit multi-
lineage potential, expanding initially through the myeloid linea-
ges. These clones also were typically long-lived, persisting
following autologous transplantation. In total, these data suggest
that hematopoietic clones expanding under the stress of cytotoxic
therapy typically arise from HSCs.

Our data suggests that different cellular stressors favor distinct
hematopoietic clones harboring specific mutations and is con-
sistent with murine models of how mutant HSCs respond to
cellular stress. HSCs with loss of the DNA damage response gene
Trp53 gain a fitness advantage with genotoxic stress potentially
through p53-mediated cell competition24,28. However,
transplantation-induced stress does not provide them with a
significant competitive advantage24,28–30. In contrast, Dnmt3a
deficient HSCs gain a repopulating advantage over their wild-type
counterparts with serial transplantation31. In humans, expanded
DNMT3A mutant clones have been identified in aged indivi-
duals2–4. They have also been observed actively expanding in the
setting of aplastic anemia, where they portend a poor prognosis6.
The cellular stressors influencing DNMT3A mutant clonal
expansion in these two cases and how they relate to
transplantation-induced stress remain unknown.

Our findings are also consistent with observations of patients
undergoing hematopoietic transplantation. In patients receiving

Table 2 Clinical summary of t-AML/t-MDS patients

T-AML/t-MDS
sequencing
cohort

Overall
(n= 134)

Exome
(n= 20)

Targeted
(n= 92)

Age Median
(range) (years)

62.0
(18–85)

61.5
(24–80)

63.0
(18–85)

Gender Male 44.0% 40.0% 46.7%
Female 56.0% 60.0% 53.3%

Prior disease Non-Hodgkin
lymphoma

29.9% 50.0% 29.3%

Breast 27.6% 20.0% 25.0%
Gastrointestinal 6.0% 5.0% 7.6%
Hodgkin disease 5.2% 5.0% 6.5%
Prostate 5.2% 0.0% 6.5%
Testicular 4.5% 0.0% 5.4%
Other 21.6% 20.0% 19.6%

Known
previous
treatment

Alkylator 57.5% 65.0% 58.7%
Topoisomerase
II inhibitor

50.7% 45.0% 48.9%

Platinum 20.9% 20.0% 21.7%
Radiation 65.7% 65.0% 65.2%
Unknown 8.2% 15.0% 5.4%

Latency Median
(range) (years)

6.1
(0.7–31)

6.8
(2.5–15.9)

6.2
(0.7–31)

Diagnosis AML 50.0% 40.0% 40.2%
MDS 50.0% 60.0% 59.8%

Cytogenetics Deletion 5 29.9% 55.0% 30.4%
Deletion 7 33.6% 70.0% 32.6%
Complex 41.0% 70.0% 39.1%
MLL abnormality 10.4% 5.0% 8.7%
Other/unknown 38.8% 0.0% 41.3%

% blasts in
the bone
marrow

Median (range)
(%)

14 (0–95) 8 (1–80) 9 (0–91)

Most
intensive
treatment
regimen

Allogeneic
transplant

37.3% 30.0% 41.3%

Myeloablative 21.6% 30.0% 15.2%
Non-
myeloablative

30.6% 30.0% 34.8%

Other/unknown 10.4% 10.0% 8.7%
Remission Yes 49.3% 30.0% 53.3%

No 48.5% 70.0% 45.7%
Unknown 2.2% 0.0% 1.1%

Overall
survival

Median
(range) (days)

385
(6–3427)

187.5
(32–3427)

424
(6–2432)
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an autologous transplant, the risk of t-AML/t-MDS is related
more to the extent of pre-transplant cytoreductive therapy than
transplantation itself32–34, potentially because transplantation-
induced selection pressure does not provide a further fitness
advantage to the mutant hematopoietic clones expanding with
cytotoxic therapy. In the case of allogeneic transplantation,
donor-derived DNMT3A mutant hematopoietic clones have been
identified both in recipients with unexplained cytopenias after
transplant and in recipients developing donor cell leukemia35–38.
The role of screening potential allogeneic donors, particularly
those of advanced age, for clonal hematopoiesis will be an area of
future research interest, particularly given the transplantability of
certain mutant clones.

Finally, our sequencing of t-AML/t-MDS suggests that the
leukemogenic potential of expanded hematopoietic clones is
strongly dependent on the specific mutations they harbor with
TP53 mutant clones having a higher propensity towards leukemic
evolution than clones with mutations in other DNA damage
response genes, including PPM1D. In contrast to our findings,
Lindsley et al. identified a high frequency (15%) of PPM1D
mutations in t-MDS39. A potential explanation for this dis-
crepancy is the possibility that long-lived expanded non-leukemic
clones may co-exist with leukemic clones (Supplementary Fig. 8).
Supporting this is the observation that non-leukemic clones
harboring mutations in TP53, DNMT3A, PPM1D, SRCAP and
ZNF318 may rapidly expand with treatment of the AML/MDS
clone40–42. In the Lindsley et al. study, the median VAF of the
largest PPM1D clone was only 5.5% compared to 14.5% for TP53,
with over half the patients analyzed after receiving treatment for
their MDS39. Thus, some PPM1D mutations may be unrelated to
the founding MDS clone and instead represent co-existing non-
leukemic clonal hematopoiesis. Despite being distinct from the
leukemic clone, non-leukemic expanded clones may still inform
on its evolution (e.g., suggest a previous exposure to genotoxic
stress) and provide prognostic information.

In summary, our data show that cellular stressors result in the
expansion of hematopoietic clones carrying specific mutations.
Genotoxic stress from cytotoxic therapy promotes the expansion
of clones with mutations in DNA damage response genes, such as
TP53 and PPM1D. Transplantation-related stress may select for

clones with DNMT3A mutations, particularly in codon 882. In
the future, longitudinal studies of patients before and after spe-
cific stressors (e.g., cytotoxic therapy, mobilization± cytotoxic
stimulation, transplantation, etc.) will more precisely define their
influence on clonal expansion and distinguish the impact of these
stressors from that of other factors (e.g., pre-existing malig-
nancies). Expanded clones are often long-lived and transplan-
table, but their leukemogenic potential varies, in part, due to the
mutations they harbor. Most expanded clones, even those har-
boring TP53 mutations, do not evolve into leukemia. The con-
tribution of other cellular stressors, such as inflammation, to the
development of clonal hematopoiesis and the role that cell-
extrinsic stressors and/or cell-intrinsic genetic (or epigenetic)
alterations play in the progression from clonal hematopoiesis to
leukemia remain open and important questions.

Methods
Patient characteristics. Lymphoma patients undergoing autologous stem cell
transplantation with available pheresis samples were consented under IRB protocol
#201108251. Lymphoma patients were analyzed based on sample availability.
Myeloma patients undergoing an autologous stem cell transplant and allogeneic
stem cell transplant donors with available pheresis samples were consented under
IRB protocol #201102270. Myeloma patients and healthy donors were chosen to
allow for age and gender-matching with the lymphoma cohort. No data were
excluded from the analysis. T-AML/t-MDS patients were selected from a larger
cohort of adult AML and MDS patients enrolled in a single institution tissue
banking protocol that was approved by the Washington University Human Studies
Committee (IRB protocol #201011766). Written informed consent for sequencing,
including whole-genome sequencing, was obtained from all study participants.
Patients were treated in accordance with National Comprehensive Cancer Network
guidelines (http://www.nccn.org) with an emphasis on enrollment in therapeutic
clinical trials whenever possible.

Patients were considered to have a previous history of cytotoxic therapy
exposure if they previously received an alkylator, topoisomerase II inhibitor, or
platinum-based chemotherapy or radiation therapy. Cytotoxic agents given as part
of the pheresis mobilization regimen were not considered as a prior exposure to
cytotoxic therapy given the short time period between this exposure and pheresis
collection. Overall, 81 patients with analyzed pheresis samples had prior exposure
to cytotoxic therapy, and 57 individuals lacked such exposure. To detect a change
in the incidence of clonal hematopoiesis ≥ 0.1% VAF from 50% without cytotoxic
therapy to 75% after cytotoxic therapy exposure with 80% power at
0.05 significance, we had calculated a desired sample size of 58 individuals per
cohort. Clinical data for all patients in this study are included in Tables 1 and 2,
Supplementary Table 1, and Supplementary Datas 1 and 4.
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Fig. 4 Leukemogenic potential of expanded clones. a Percentage of t-AML/t-MDS cases (n= 134) harboring a mutation in the indicated gene. b Percentage
of patients who after cytotoxic therapy (n=81) had an expanded clone harboring a variant in the indicated DNA damage response gene compared to the
percentage of t-AML/t-MDS patients (n= 134) with a mutation in the same gene. c Same as b except that the comparison is between lymphoma patients
at the time of autologous transplant (n= 69) and t-AML/t-MDS patients with a primary diagnosis of lymphoma (n= 48). For b, c significance was
determined with an exact logistic regression through use of a joint test. *P< 0.05; **P< 0.01; ***P< 0.001
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Error-corrected HaloPlex sequencing. Error-corrected sequencing was per-
formed using the HaloPlex HS Target Enrichment System (Agilent Technologies)
as previously described43 with modifications as noted below. Briefly, as per Version
C1 of the manufacturer’s protocol, up to 500 ng of genomic DNA was digested with
a custom restriction enzyme cocktail in eight separate reactions and subsequently
hybridized to a customized HaloPlex HS probe library × 2 hours. This library was
designed using the Agilent SureDesign platform to target 46 genes (Supplementary
Table 2). The probes had dual indices: a unique molecular barcode to allow for
error-corrected sequencing and a sample index to allow for sample multiplexing.
Hybridized genomic DNA fragments were subsequently ligated to the library
probes, captured with streptavidin, and amplified with PCR (× 24 cycles), creating
read families, each with its own unique molecular barcode index. Library quality
was assessed with the Agilent 2100 Bioanalyzer. Library concentration was assessed
with qPCR according to the manufacturer’s protocol (Kapa Biosystems). Libraries
were normalized, pooled, and sequenced on the HiSeq 4000 with 15 samples
sequenced per lane. On average, each sample had 40.7 million± 13.0 million
mapped reads.

Molecularly barcoded reads were aligned with BWA MEM v0.7.9a, using
parameters “-t 12, -M”. SNVs were detected using BarCrawler, a custom GATK
walker (https://github.com/abelhj/gatk/blob/master/public/external- example/src/
main/java/org/abelhj/WalkerTR1203.java), using parameters “-mmq 20 -mbq 20-
minCtBC 3 -dcov 500000 -discardN 1 -minOffset 5 -maxNM 3”. Filters were
applied to remove artifacts appearing at homopolymer runs of length greater than
4 and alignment artifacts appearing in greater than 5% of a panel of normal
samples. Next, background noise calculation was performed on a position-by-
position basis for each identified variant as follows. For each variant, read counts
were gathered from all other samples, excluding those sites with a VAF above 25%,
which were assumed to be germline single nucleotide polymorphisms. The R
statistical package was used to obtain a p-value via Fisher’s exact test, comparing
the reference and variant reads at a site to the number of reference and variant
reads at that site in all other samples. Multiple testing correction was then applied
with the p adjust function (default parameters). Those variants with an adjusted p-
value of less than 0.1 were retained. The same process was then repeated with
subsequent background calculations excluding all variants retained in previous
rounds until no new variants were identified. SNVs were retained if they were
coding or splice site mutations, had 500 or more total reads, had 4 or more
supporting reads, had a VAF greater than or equal to 0.1%, and were not present in
the Exome Aggregation Consortium database at a frequency greater than 0.1%.
Finally, three variants (CREBBP L2067, SETBP1 L284, and ZNF318 A1466S), which
were present at varying frequencies in most samples tested, were excluded as
artifacts.

Insertions and deletions were detected by using BarCrawler Consensus (https://
github.com/abelhj/gatk/blob/master/public/external-example/src/main/java/org/
abelhj/WalkerTRConsensus.java) to assemble each read family into a consensus
sequence (params: -dcov 500000). Then VarScan v2.3.6 (params --min-coverage
3 --min-reads 3 --min-var-freq 0.001) was run on the resulting bam file to identify
putative indels. As with SNVs, variant calls were restricted to coding regions of the
genome. A per-site background error rate calculation was based on the total counts
of any indel appearing at each position within each batch, thus accounting for
artifacts like slippage at homopolymer runs. A Fisher’s exact test was used to
compare each variant call to the background rate; then p-values were corrected for
multiple testing using the Bonferroni method. Indels with adjusted p< 0.01 were
retained. This process was applied iteratively, as with the SNVs above. To account
for highly variable sites, variants were also excluded if their VAF did not exceed five
times the median absolute deviation of all VAFs at that location. Review of known
problematic positions like ASXL1 G545 show that despite high levels of
background “noise”, obvious sequencing artifacts were removed. Both SNVs and
indels were identified without a priori knowledge of whether the sample of interest
was a pheresis or post-transplant peripheral blood sample or whether the pheresis
sample was banked after a previous exposure to cytotoxic therapy.

Statistical analyses. In determining the relationship between hematopoietic clonal
expansion and an individual’s clinical features (Supplementary Table 3), the out-
comes of interest included the identification of clonal hematopoiesis with a VAF
≥ 0.1%, the total number of variants identified, and the presence of a variant in the
genes DNMT3A, PPM1D, TP53, SRCAP, TET2, ZNF318, or ATM. The covariates
included age and a history of radiation therapy, chemotherapy, or cytoreductive
therapy (i.e., either radiation therapy or chemotherapy). The relationships between
the binary outcomes and the covariates were analyzed with exact logistic regression.
This was done in preference to ordinary logistic regression due to the small sample
sizes available for some combinations of outcomes and covariates. The relationship
between each outcome and each covariate, both alone and in combination with age,
was examined. The relationships between the number of mutations and the cov-
ariates, both alone and in combination with age, were analyzed with a negative-
binomial regression analysis. This technique is not dependent on equal variances
between groups and is appropriate when the outcome is a count variable.

The question of whether mutations in the DNA damage response genes TP53,
PPM1D, SRCAP, BRCC3, and ATM had a similar distribution after cytotoxic
therapy versus at t-AML/t-MDS was examined with an exact logistic regression
through use of a joint test of the hypothesis that their parameters are equal to zero.

The analyses were done with the logistics procedure of SAS/Stat software, Version
9.3 for Windows.

Cell sorting. Cryopreserved cells were thawed as previously described44. 1.5 × 107

cells were stained by standard protocols with the following antibodies: anti-CD3
e450 (eBioscience; clone OKT3; catalog# 48-0037-42; 55:1 dilution), anti-CD14
APC (eBioscience; clone 61D3; catalog# 17-0149-42; 20:1 dilution), anti-CD15
FITC (Fisher; clone HI98; catalog# BDB555401; 4.6:1 dilution), anti-CD16 PE
(Fisher; clone 3G8; catalog# BDB555407; 11:1 dilution), and anti-CD19 APC
(Fisher, clone HIB19; catalog# BDB555415; 14:1 dilution). They were sorted using a
modified Beckman Coulter MoFlo. Genomic DNA was isolated with the QIAmp
DNA Mini Kit (Qiagen, Venlo, The Netherlands).

Droplet digital PCR. All primers and probes for ddPCR were designed by Bio-Rad
per MIQE guidelines. ddPCR was performed as previously described45. Specifically,
PCR was performed with 900 nM forward and reverse primers, 250 nM mutant
and wild-type probes, and < 2 ng/μl genomic DNA with restriction enzyme
digestion per Bio-Rad recommendations. PCR was performed with annealing/
extension temperatures of 53.5–56.0 °C for 40 cycles. For droplet generation and
analysis, we used the Bio-Rad QX200TM Droplet DigitalTM PCR System. Calcu-
lation of the mutant allele fraction was performed as previously described24.
Specifically, we only identified mutant alleles when present in droplets also lacking
the reference allele. We then used Poisson statistics to determine the number of
droplets containing a single allele (either reference or mutant) and the number of
droplets containing a single mutant allele. The VAF was determined as the per-
centage of the single allele droplets containing the mutant allele. Using “mutant
only” droplets to determine the mutant allele fraction significantly reduces artifact
caused by DNA degradation that has resulted in the chemical alteration of one of
the two DNA strands (i.e., guanosine oxidation, cytosine deamination, etc.).

Targeted library preparation. Automated dual-indexed libraries were constructed
with 250 ng of genomic DNA utilizing the KAPA HTP library prep kit (KAPA
Biosystems) on the SciClone NGS platform (Perkin Elmer) for 96 tumor/normal
pairs. The samples were fragmented on the Covaris LE220 (Covaris) targeting 250
bp inserts. Forty-eight of the libraries were pooled pre-capture generating
a 5 µg library pool. Each library pool was hybridized with a custom set of xGen
Lockdown Probes (IDT) targeting a set of recurrently mutated genes (RMG) found
in AML. An additional ten genes commonly identified by our error-corrected assay
as mutated after cytotoxic therapy were added at an equal molar ratio to the RMG
probes, thus representing all regions with a similar quantity (Supplementary
Table 4). The libraries were hybridized for 4 hours at 47 °C followed by stringent
washing. Enriched ssDNA library fragments were amplified with KAPA HiFi
HotStart polymerase and 200 nM primers prior to sequencing. The concentration
of each captured library pool was determined through qPCR according to the
manufacturer’s protocol (KAPA Biosystems) to produce cluster counts appropriate
for the Illumina HiSeq4000 platform. The capture pools were normalized and
pooled prior to data generation. One lane of 2 × 150 bp sequence data generated ~1
Gb of data per sample. Approximately 300× mean depth of coverage was achieved,
and 99.9% of targets were covered to a minimum of 20×.

Exome library preparation. Automated dual-indexed libraries were constructed
with 250 ng of genomic DNA utilizing the KAPA HTP library prep kit (KAPA
Biosystems) on the SciClone NGS platform (Perkin Elmer) for 19 tumor/normal
pairs. The samples were fragmented on the Covaris LE220 (Covaris) targeting 250
bp inserts. Ten libraries were pooled pre-capture generating a 5 µg library pool.
Each library pool was hybridized with the SeqCap EZ Human Exome Kit v3.0
(Roche Nimblegen) that targets over 200,000 genes spanning ~64Mb of the human
genome. In addition to the exome space, a custom set of xGen Lockdown Probes
(IDT) was spiked into the hybridization reaction targeting a set of RMG found in
AML. The additional probes were added at an equal molar equivalent to the probe
concentration of the exome probes, thus representing the RMG regions in a similar
quantity as the exome regions. The libraries were hybridized for 72 hours at 47 °C
followed by stringent washing. Enriched ssDNA library fragments were amplified
with KAPA HiFi HotStart polymerase and 200 nM primers prior to sequencing.
The concentration of each captured library pool was accurately determined
through qPCR according to the manufacturer’s protocol (KAPA Biosystems) to
produce cluster counts appropriate for the Illumina HiSeq2000 platform. Two lanes
of 2 × 100 bp sequence data generated ~7 Gb of data per sample. Approximately
55× mean depth of coverage was achieved, and 83% of targets were covered to a
minimum of 20×.

Somatic variant analysis. Sequence data was aligned to reference sequence build
GRCh37-lite-build37 using bwa mem46 version 0.7.10 (params: -t 8::) and then
merged and deduplicated using picard version 1.113 (https://broadinstitute.github.
io/picard/). SNVs were detected using the union of four callers: 1) samtools47

version r982 (params: mpileup -BuDs) intersected with Somatic Sniper48 version
1.0.4 (params: -F vcf –G -L -q 1 -Q 15) and processed through false-positive filter
v1 (params: --bam-readcount- version 0.4 --bam-readcount-min-base-quality
15 --min-mapping-quality 40 --min-somatic-score 40), 2) VarScan49 version 2.3.6
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filtered by varscan-high-confidence filter version v1 and processed through false-
positive filter v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-
base-quality 15), 3) Strelka50 version 1.0.11 (params: isSkipDepthFilters = 1), and 4)
mutect51 v1.1.4 (params: number-of-chunks = 50). Indels were detected using the
union of 4 callers: 1) GATK52 somatic-indel version 5336 2) pindel53 version 0.5
filtered with pindel somatic calls and VAF filters (params: --variant-freq-cutoff =
0.08), and pindel read support, 3) VarScan49 version 2.3.6 filtered by varscan-high-
confidence-indel version v1 and 4) Strelka50 version 1.0.11 (params: isSkip-
DepthFilters = 1). SNVs and indels were further filtered by removing artifacts
found in a panel of 905 normal exomes, removing sites that exceeded 0.1% fre-
quency in the 1000 genomes or NHLBI exome sequencing projects, and then using
a Bayesian classifier (https://github.com/genome/genome/blob/master/lib/perl/
Genome/Model/Tools/Validation/IdentifyOutliers.pm), retaining variants classi-
fied as somatic with a binomial log-likelihood of at least 10. Variants present at low
VAF in the 46 genes interrogated by our HaloPlex error-corrected sequencing assay
were manually reviewed if they had a binomial log-likelihood of at least three and
retained if they passed validation.

Data availability. Exome sequencing data of t-AML/t-MDS has been submitted to
dbGAP (accession number phs000159.v9). All other relevant data are included in
the article or supplementary files, or available from the authors upon request. Code
used for both error-corrected and non-error-corrected variant identification are
described in their applicable methodology sections with download sites listed where
applicable.
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