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T 
WENTY-FIVE years ago, F-actin was discovered to be 
the major component of microfilaments in animal cells 
(36). Since then, actin has been found in virtually all 

eukaryotic cells. What functions do microfilaments perform? 
Studies in animal cells have provided us with a picture of 
F-actin as the backbone of many structurally and function- 
ally diverse assemblies coexisting within any given cell. Mi- 
crofilaments are important for cell shape determination, cell 
motility, and various contractile activities, as well as for par- 
ticipating in aspects of transmembrane signaling, endocyto- 
sis, and perhaps secretion. Since some actin-binding pro- 
teins are regulated by changes in free Ca :+, phospholipids, 
and by phosphorylation (75), and microfilament organiza- 
tions can be modulated by small G-proteins (69, 70), mi- 
crofilaments seem to be under exquisite control. Moreover, 
recent discoveries that some actin-binding proteins contain 
SI-I2 and SH3 domains (56) suggest that microfilaments are 
integrated into protein-protein signaling pathways. Given 
these diverse and sophisticated regulatory systems, the gap 
in our knowledge of the precise functions performed by mi- 
crofilaments is all the more distressing. 

The budding yeast Saccharomyces cerevisiae has recently 
become very popular for studying the function of microfila- 
ments. Why? Yeast cells are nonmotile and they have a rigid 
cell wall, do not change shape rapidly, and have no obvious 
surface structures. Therefore, some of the roles that mi- 
crofilaments play in vertebrate cells are not seen in yeast, 
yet microfilaments are vital because yeast contains a single 
essential actin gene (73). The regulation of F-actin distribu- 
tion during the cell cycle in yeast was the first indication that 
microfilaments might play a role in cellular morphogenesis 
(41); that is, in the targeting of secretory vesicles for the as- 
sembly of the daughter cell rather than providing an infra- 
structure for it. This immediately raised a number of ques- 
tions: how is the distribution of F-actin determined, what are 
the components that make up these microfilamentous struc- 
tures, and what are their functions? The relative ease of 
genetic approaches for the identification and analysis of 
functionally related components, together with the near reli- 
gious belief that what is true for S. cerevisiae is also fun- 
damentally true for Homo sapiens, has driven this popular- 
ity. This review seeks to convey the view that the relative 
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simplicity of yeast provides an advantage for studying the 
cell cycle-dependent regulation of microfilaments, as well as 
their roles in morphogenesis and membrane traffic. These 
results will complement and contribute to studies of mi- 
crofilaments in higher eucaryotes. 

Regulation of Microfilaments during the Cell Cycle 
In the vertebrate cell cycle, microfilaments reorganize as 
cells round up for mitosis and later they provide the contrac- 
tile force during cytokinesis. In yeast, we shall restrict our 
discussion to some of the events and changes in microfila- 
ment distribution (Fig. 1) necessary for the assembly of 
a bud. 

Bud site selection is regulated because haploids show axial 
budding, whereas diploids show bipolar budding (reviewed 
in references 25, 53). Several nonessential genes (including 
BUD1/RSRI, BUD2-5) provide the signal that directs cyto- 
skeletal polarization to the proper site, but they are not re- 
quired for bud site assembly or bud emergence (15). Bud site 
selection seems to involve a G-protein signal transduction 
pathway. Budl/Rsrlp is a ras-like GTPase; Bud5p is a GDP 
exchange factor; and Bud2p has GAP activity on Budlp (11, 
14, 66). Next, genes involved in bud site assembly and bud 
emergence are required for normal polarization of the cyto- 
skeleton to the prebud site. Mutations in these genes (includ- 
ing CDC24, CDC42, CDC43, and BEMI-3) result in failure 
of the cells to bud and they arrest as large unbudded cells 
with a randomized actin distribution (5). This assembly pro- 
cess also involves a GTPase cycle because Cdc42p is a ras- 
like GTPase and Cdc24p encodes a protein similar to GDP 
exchange factors. Moreover, Bem3p is related to mammalian 
rho-GAP and may be specific for Cdc42p (82). Cdc43p is 
a subunit of a protein geranylgeranyl transferase likely to be 
required for modification, membrane localization, and func- 
tion of Cdc42p (57). Thus, CDC42p seems to be a key regu- 
lator that controls bud site assembly and microfilament po- 
larization. There may be some interplay between bud site 
selection, assembly, and actin localization because over- 
expression of Cdc42p, Bud5p, or certain actin binding pro- 
teins, such as Abplp, can alter bud site selection. 

The ras-related genes RH01, Rtt03, and Rlt04 have also 
been implicated in governing cytoskeletal polarity. Condi- 
tional rhol mutants arrest as small-budded cells under re- 
strictive conditions. Rholp colocalizes with actin cortical 
patches during bud formation and growth; this distribution 
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Figure 1. Localization of actin 
by immunofluorescence mi- 
croscopy through the cell cy- 
cle in wild-type diploid yeast. 
In G1, the unbudded cell 
selects a specific prebud site, 
and then a ring of actin 
patches forms at this site. 
Secretion is directed toward 
the prebud site and bud emer- 
gence begins. Cortical actin 
patches associated with 
plasma membrane invagina- 
tions (61) redistribute to sites 
of new cell wall growth with 
bundles of actin filaments Cca- 
bles") extending from them 
into the mother cell. During S 
and G2, actin cables are 
aligned toward the bud where 
patches are localized (41); 
secretion remains directed to- 
ward the bud. Growth at the 
bud tip predominates in the 
early budded phase, whereas 
isotropic growth occurs later 
as the bud enlarges. During 
mitosis, actin patches redis- 
tribute to the surface of the 
mother and bud. Before 
cytokinesis, patches relocate 
to the mother-bud neck and 
secretion is targeted to this re- 
gion for formation of the 
chitinous septum, which will 
ultimately remain as a bud 
scar on the mother and daugh- 
ter cells. 

is lost in cdc42 mutants (83). Loss of both RH03 and RH04 
products generates cells with randomized actin and delocal- 
ized chitin. Since these defects are suppressed by overexpres- 
sion of the CDC42 and BEM1 genes (55), the combined 
results suggest that the RHO gene products act after the initi- 
ation of bud formation and determination of cell polarity 
specified by the Cdc42p pathway. 

Changes in microfilament distribution are correlated to 
Cdc28p kinase activation by distinct cyclins at specific times 
during the cycle (46). Altering Cdc28p activity affects mor- 
phogenesis and the distribution of microfilaments during the 
yeast cell cycle at three specific stages (47). Activation of 
Cdc28p by the G1 cyclins (CLN1, 2, or 3) in unbudded GI 
cells is required for polarization of the cortical actin cy- 
toskeleton to the specified prebud site. This occurs in the 
absence of de novo protein synthesis and may be mediated 
by direct protein phosphorylation. One candidate substrate 
is the newly identified MAP kinase homologue, Slt2/Mpklp, 
because defects in this protein enhance the phenotype of 
cdc28 mutants. Moreover, slt2 mutants display an altered ac- 
tin distribution and accumulate secretory vesicles and mem- 
branes, indicating that the kinase is important for establish- 
ing cell polarity (58). Activation of Cdc28p by the mitotic 
cyclins (CLB/, 2) in G2 cells is required for the depolariza- 
tion of the cortical actin cytoskeleton that results in the shift 
from apical to isotropic bud growth. Cdc28p inactivation by 

cyclin destruction in mitosis appears to be necessary for 
redistribution of cortical actin to the mother-bud neck region 
and assembly of the actin structures required for cytokinesis. 

There are parallels between thefindings in yeast and 
studies in higher cells. Since small G-proteins also modulate 
growth factor-induced microfilament rearrangements in ani- 
mal cells (69, 70), the regulation of cytoskeletal remodeling 
might be quite similar in yeast and animal cells. Also, 
Cdc28p-related kinases and cyclins control both the yeast 
and animal cell cycles, but how they regulate microfilament 
organizations is not yet clear; the emerging studies in yeast 
should be helpful. 

Actins, Myosins, and 
Microfilament-associated Proteins 

Saccharomyces has a single essential conventional actin 
gene, ACT/, that encodes a protein 88 % identical to rabbit 
ol-actin. Actlp is biochemically and functionally similar to 
conventional vertebrate actins (42, 62). An unconventional 
actin that is 47 % identical to a-act.in is encoded by another 
essential gene, ACT2 (72). Little is known about the function 
of Act2p. Since unconventional actins have been found as- 
sociated with microtubule-based functions in higher cells 
(19, 45), an analysis of Act2p function should be very in- 
teresting. 
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The distribution of actin points to a role for microfilaments 
in polarized secretion of cell wall components, and the 
phenotypes ofacd mutants support this. act1 mutants, many 
of which have conditional lethal phenotypes, have been made 
by random (74) or directed mutagenesis (16, 21, 22, 38, 81). 
Mutant phenotypes provide a direct test for functions of actin 
in yeast. Various actin mutations disrupt cell shape, cell 
polarity, secretion, endocytosis (43), spindle orientation 
(65), nuclear migration, cytokinesis, and mitochondrial dis- 
tribution (26). 

Yeast contains at least three myosins. The MY01 product 
is a conventional myosin II that is found at the bud neck, sug- 
gesting a role in cytokinesis (78). Cells lacking Myolp form 
chains or clusters of cells because they are defective in sep- 
turn formation. In addition, loss of the Myolp results in 
diffuse chitin deposition, enlarged cell size, a subtle bud site 
selection defect, accumulation of membranes, and a ten- 
dency to lyse, perhaps suggesting additional functions for 
this myosin (71). The essential putative two-headed non- 
filamentous myosin, encoded by MY02 (39), is related to the 
mouse dilute locus and brain myosin V. Members of this 
family differ from myosin II in that the head has a slightly 
different sequence, the neck region binds several calmodulin 
molecules followed by a short u-helical coiled-coil region, 
and the tail terminates in a large globular domain (28). The 
MY02 gene was uncovered in a screen for conditional mu- 
tants that produced large cells; possible functions of Myo2p 
are discussed below. A second, nonessential, dilute-like my- 
osin encoded by MY04 also exists in yeast (33). 

A screen for multicopy suppressors of the myo2 tempera- 
ture sensitivity identified SMY1, an unusual kinesin-like gene 
(48). SMY1 is not essential for yeast growth, but disruption 
of SMY1 in the myo2 conditional mutant is lethal. Smylp, like 
Myo2p (12), concentrates at sites of cell growth in wild-type 
cells (49). As microtubules are not known to be involved in 
directed growth in yeast, it is an intriguing finding that a pro- 
tein related to microtubule-based motors appears to perform 
a function related to Myo2p. 

A full repertoire of proteins, many related to those of ver- 
tebrate cells, that bind to and modulate actin filaments has 
been discovered in yeast. A full discussion of these proteins 
and the genes that encode them has recently appeared (79), 
and so only a brief overview will be given here. These pro- 
teins include actin-binding protein (ABPI: 23, 24), tro- 
pomyosin, (TPM/: 50-52), funbrin (SAC6: 3, 4, 6, 23), cofllin 
(COFI: 37, 60), capping protein (CAP1, CAP2: 8-10), and 
profilin (PFY/: 31, 32, 54, 77). Genetic approaches have also 
uncovered several genes (SAC1-7, RAHI-3, SLAI, SLA2, 
SLC1, SLC2, and ANC1-4: 18, 20, 27, 35, 40, 64, 76, 80) en- 
coding novel proteins potentially important for microfila- 
ment function. Some of these have domains that are related 
to proteins of higher cells, such as SLA/, which encodes a 
protein having three SH3 domains, and SLA2, which shows 
homology to the COOH terminus of talin. As in vertebrate 
cells, these proteins associate with specific microfilamentous 
structures. For example, tropomyosin is a component of the 
actin cables; Abpl, cofilin, and capping protein are found in 
cortical patches; and fimbrin associates with both cables and 
patches. 

Considerable effort has been devoted to studying the 
phenotypes of strains having mutations in these genes. In 
some cases, disruption of the gene shows no phenotype (e.g., 
ABP/), whereas other disruptions are either lethal (e.g., 

COF1) or show reduced growth rate, an altered actin cyto- 
skeleton, and aberrant cell morphologies (e.g., TPM/, SAC6, 
CAP1, CAP2, PFY1, ANC1, SLAI, SLA2, SLC1, SLC2), sug- 
gestive of abnormal cell growth. How many different 
processes are these microfilament-associated proteins in- 
volved in? Since most of the eytoskeletal proteins are en- 
coded by single nonessential genes, it is informative to ask 
if combinations of mutations in different genes are lethal, 
which could indicate that they participate in an essential pro- 
cess (7, 76). By this accounting, more than half a dozen dis- 
tinct essential functions are indicated; a major challenge is 
to determine precisely what these are. 

Membrane Tra~icking and Targeting 

Correct targeting of secretory vesicles that carry plasma 
membrane proteins, periplasmic enzymes, and materials 
needed to build the cell wall is required for the growth of 
buds in growing cells and the development of "shmoo" 
projections in mating cells. The large, round morphology of 
conditional-lethal act1 mutants suggests that inappropriate 
growth occurs in the mother cell rather than being targeted 
to the bud. Whereas most of the chitin in wild-type cells is 
concentrated at the bud neck and remains as a "bud scar" af- 
ter cell division (13, 34), the chitin in the act1-1 mutant is dis- 
tributed randomly on the cell surface when the cells are 
grown at a restrictive temperature (63), again suggesting a 
defect in targeting of secretory vesicles. As may be expected, 
actin cables are not detected in act1-1 mutants at the restric- 
tive temperature, and cortical patches are randomly dis- 
tributed throughout both mother and bud (63). The distribu- 
tion of cortical patches in both wild-type cells and act1 
mutants is consistent with the belief that it is the location of 
these structures that determines the sites of secretion and 
polarized growth (1, 47). As actin cables frequently appear 
to terminate on cortical patches, they may guide secretory 
vesicles to their site of fusion with the plasma membrane. 
Furthermore, actl mutants have a partial defect in the secre- 
tion of the periplasmic enzyme invertase, and they accumu- 
late abundant vesicles that resemble secretory vesicles accu- 
mulated by mutants having a block late (post-Golgi) in the 
secretory pathway (63). 

The conditional myo2-66 mutation confers a phenotype 
similar to that of act1 mutants and indicates a role for this 
myosin in secretion and polarized cell growth (39). At the 
restrictive temperature, large round cells with vesicles are 
formed. Interestingly, the myo2-66 mutant is lethal in combi- 
nation (synthetically lethal) with mutations in many of the 
SECgenes that function late in the secretory pathway, but not 
with those SEC genes that function at earlier steps, which 
implies an involvement in the late part of the pathway (30). 
Myo2p localizes mostly to regions of active surface growth, 
further implicating it in directed growth (12, 49). The mor- 
phological defects of the myo2-66 mutant (39) are very simi- 
lar to those in tpm/mutants (52). Both strains accumulate 
vesicles, but surprisingly, no significant accumulation of the 
secretory protein invertase is found. Epistasis results suggest 
that the vesicles in the tpm/mutant are derived from the nor- 
mal secretory pathway. It is likely that the accumulated vesi- 
cles in the tpm/and myo2-66 strains are the same because 
these two mutations show synthetic lethality (52). One way 
to reconcile the lack of accumulation of invertase with a de- 
fect in secretion is to suggest that two parallel pathways exist 
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between the Golgi apparatus and the plasma membrane. 
Both pathways would depend on the late SEC gene products, 
yet one, not carrying invertase, would be facilitated by 
Tpmlp and Myo2p. It may be that invertase-containing vesi- 
cles function in a bulk delivery pathway, whereas vesicles 
carrying components for cell wall synthesis have to be 
targeted more precisely. The latter vesicles may fuse in- 
efficiently at inappropriate locations on the cell surface and 
therefore accumulate. Since different components are re- 
quired at different stages of the cell cycle, it is possible that 
the composition of these vesicles varies as the actin cytoskel- 
eton reorganizes during the cell cycle. It is not yet known if 
defects in other cytoskeletal proteins result in the accumula- 
tion of vesicles, but mutations in many of these genes give 
rise to characteristically large round cells, suggestive of mis- 
targeting. Purification of the vesicles accumulated in cyto- 
skeletal mutants and an analysis of their cargo should help 
to elucidate their role in cellular morphogenesis. 

The concept that myosins directly transport vesicles (or or- 
ganelles) was originally suggested by cytoplasmic streaming 
in plant cells and, more recently, by the movement of vesicles 
from Acanthamoeba or from extruded giant axons along ac- 
tin cables (2, 44). Lately, much attention has focused on 
Myo2p-related proteins. The mouse dilute mutations affect 
a myosin in this class (59). Severe alleles result in neurologi- 
cal seizures and death, while milder alleles are characterized 
by light-coat color resulting from a defect in transport of 
melanin-containing vesicles. Chicken brain myosin V, a 
homologue of the mouse dilute protein, is also proposed to 
function in vesicle transport (17, 28). 

Recently, microfilaments have been implicated in the first 
step in receptor-mediated and fluid-phase endocytosis in 
yeast. Certain conditional act1 alleles are conditional for 
receptor-mediated or-factor uptake, and cells lacking fimbrin 
are completely defective (43). Additionally, a mutation iso- 
lated on the basis of a defect in endocytosis defines END4 
and turns out to be identical to SLA2 (Riezman, H., personal 
communication), a gene found independently as being essen- 
tial in the absence of Abpl (35). The requirement of micro- 
filaments for endocytosis from the apical aspect of polarized 
epithelial cells (29) and in yeast is striking. 

Perspectives 

During the last few years, a large number of genes encoding 
proteins important for microfilament organization and func- 
tion, many related to those in animal cells, have been 
identified in yeast. Analysis of the functions of these proteins 
is still in its infancy, but roles for microfilaments in vesicular 
trafficking and targeting, as well as in endocytosis are begin- 
ning to emerge. Moreover, the ability to introduce specific 
mutations into any desired gene allows one to explore the 
consequences of precise alterations in vivo and in vitro. The 
use of genetics will allow suspected relationships to be tested 
and unexpected ones to be revealed. Together with biochem- 
ical and cell biological approaches, this will surely lead to 
an understanding of the roles of microfilaments in yeast and 
suggest important avenues for furthering our knowledge 
about microfilament function in animal cells. 
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