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Abstract: Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the
genomic perspective on cancer has come to almost completely dominate the field. However, this
genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable,
driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat.
New evidence suggests that cancer is not as heritable or purely genetic as once thought and that
it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and
the metabolome all play roles in cancer’s development and manifestation. The data presented here
show that >90% of cancers are initiated by environmental exposures (the exposome) which lead
to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through
the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are
nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome).
As shown in this review, all three “omes” play roles in initiating cancer. Likewise, all three “omes”
interact closely, often providing feedback to each other to sustain or enhance tumor development.
Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their
roles in explaining the hallmarks of cancer are much better understood. Importantly, this more
holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to
understand, and potentially, far more treatable.
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1. Introduction

Cancer is a disease of many disguises. It can grow quickly or emerge slowly, it can be
benign or malignant, it can strike at any age, and it can appear in almost any cell, tissue, or
organ. To date, more than 200 different types of cancers have been named or identified [1]
and the list keeps growing. The many faces of cancer have made it a difficult disease to
describe and an even more difficult disease to understand. As a result, many theories
have emerged to explain the origins of cancer and, even today, new theories continue to be
advanced to explain how this “emperor of all maladies” [2] manifests itself. Interestingly,
many of these theories on cancer and carcinogenesis have emerged in tandem with new
advances in medical technology or new discoveries in biology or physiology.

Prior to the advent of modern medicine, cancer was viewed as a disease that arose
from bad biofluid “humors”, or an unbalanced level of black bile in the body [3]. This
was a concept that largely grew from the teachings of Hippocrates and persisted through
the Middle Ages and early Renaissance. By the 1700s, as new understandings about the
human circulatory system arose, the lymph theory of cancer emerged. The lymph theory
posited that cancer was composed of fermenting lymph, varying in density, acidity, and
alkalinity and that tumors grew from lymph constantly thrown out by the blood [3]. With
the advent of epidemiology and new insights into contagions and how disease spreads,
many physicians in the 18th century believed that cancer was either familial or contagious
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as it seemed to be passed among family members [3,4]. However, that idea soon faded
and by the 1800s, with the widespread use of microscopes and the discovery of cells, the
blastema theory of cancer emerged. This theory, which still persists today, suggested
that cancer grew from certain progenitor cells (blastema) in the body [3,4]. With the
introduction of anesthetics in the early 1800s, the rise of surgery in the mid 1800s, and a
better understanding of physiology in the late 1800s, other theories emerged suggesting
that cancer arose from chronic irritation or trauma to certain tissues or organs. By the early
1900s, as the effects of the industrial revolution were leading to higher rates of cancer, the
first evidence that cancer could arise from chemical toxins (coal tar) was presented [3,4].
With the discovery of viruses in the early 20th century, it was shown shortly thereafter,
that certain viruses (the Rous sarcoma virus) could also induce cancer [5]. As knowledge
and interest in metabolism, nutrition, and biochemistry grew in the 1920s, Otto Warburg
showed that cancer was primarily due to dysregulated metabolism leading to aerobic
glycolysis [6]. With continuing advances in genetics along with the identification of cancers
occurring in twins in the late 1940s [7], the view that cancer was a genetic disease began to
take hold. As molecular biology gained ascendency in the 1970s, the discovery of oncogenes
and tumor suppressor genes, in 1970, led to the development of a more refined somatic
mutation theory (SMT) of carcinogenesis [8]. At about the same time, the discovery of
stem cells in 1960s led to the emergence of the stem theory of cancer [9], which proposes
that tumors contain a small number of stem cells that reproduce themselves to sustain
the growth and spread of cancer. With the emergence of metabolomics in the early 2000s
and the discovery of oncometabolites [10], the role of cellular metabolism and endogenous
metabolites in carcinogenesis (i.e., the “black bile” and “fermenting lymph”) once again
ascended into credibility. In some respects, it appears that our theories on cancer have
nearly come full circle.

Almost all these ideas on the origins of cancer, including some of the oldest, have
some merit. Additionally, almost all of these theories can be clustered into three conceptual
groups. Some, such as the humor/bile, lymph, Warburg, and oncometabolite theories
suggest that cancer is largely a metabolic disease or a disorder of the internal environment
(i.e., arising from an altered metabolome). These metabolome-based theories highlight
dysregulated metabolism and replicative immortality that are common hallmarks of all
cancers [11]. Others, such as the trauma, irritation, contagion, or chemical toxin theories
argue that cancer is really a disease primarily resulting from adverse effects of the external
environment (i.e., arising from adverse effects of the exposome). These exposome-related
theories emphasize the role of chemicals or microbes leading to tumor promoting inflam-
mation, genomic instability, and sustained proliferative signaling in cancer [11]. Other
theories, such as the blastema, familial, stem, and SMT theories of carcinogenesis suggest
that cancer is a disease that is largely genetic in origin (i.e., arising from mutations in the
genome). These genome-based theories highlight the role of genes and genetic instability
leading to metastasis, immune avoidance, evading growth suppression, and sustained
growth signaling in cancer [11].

The diversity of theories, their limited ability to explain all the hallmarks of cancer,
and their disconnectedness have led to the emergence of various “camps” within the cancer
research community. Unfortunately, none of these camps seems particularly interested in
working with any of the other camps or in using their unique knowledge or insights to more
fully understand cancer. As might be expected, the vast majority of cancer researchers fall
into the genome camp, with more than 83,000 papers a year (PubMed query: (cancer) AND
((genetics) OR (genomics) OR (genome) OR (gene)) being published on cancer genetics or
cancer genomics. A smaller number of cancer researchers fall into the exposome camp with
about 19,000 papers a year being published on the effects of exposures (viral, bacterial, and
mutagens) on cancer and carcinogenesis (PubMed query: (cancer) AND (pollutant) OR
(mutagen) OR (carcinogen) OR (exposome) OR (viral) OR (bacterial)). The fewest number
of cancer researchers fall into the metabolome camp, with just over 2000 papers a year
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being published on cancer metabolism or cancer metabolomics (PubMed query: (cancer)
AND ((metabolomics) OR (metabolome)).

As evidenced from the number of published scientific papers, the genomic perspective
on cancer has come to almost completely dominate the field. However, it is becoming
increasingly clear that this genome-only view is incomplete [12,13]. In particular, it only
explains the origins of a small fraction of known cancers, and it does not fully rationalize
all of the hallmarks of cancer [11,13]. The genome-only perspective also tends to portray
cancer as a disease that is inevitable (i.e., highly heritable), difficult to understand, and
hard to treat [14]. New evidence shows that cancer is not only a genetic disorder, but also
an environmental disorder, one that is often initiated by the external environment (the
exposome), and then, sustained by the internal chemical environment (the metabolome
and the epigenome). This multi-omics view, which integrates the effects of the genome,
the exposome, and the metabolome together, appears to explain most of the hallmarks of
cancer as well as cancer’s many disparate origins. More appealingly, it also portrays cancer
as a disease that is much more preventable, easier to understand, and potentially far more
treatable [13,14].

The purpose of this short review is to briefly discuss the three different perspectives
of cancer: (1) cancer as a genetic disease (a disorder of the genome); (2) cancer as an
environmental disease (a disorder of the exposome); and (3) cancer as a metabolic disease
(a disorder of the metabolome) and to provide useful, quantitative data to support all three
perspectives. In addition, new data are presented, showing that cancer is far less heritable
or “genetic” than previously thought and how environmental, dietary, or metabolic effects
contribute far more to cancer incidence and prevalence than previously realized. This
review also shows how the exposome, the metabolome, and the genome interact closely,
through several feedback loops, to not only initiate cancer but to also sustain cancer. The
ultimate goal of this review is to encourage cancer researchers to adopt a more holistic,
multi-omics view on cancer. It is hoped that this will lead to an improved appreciation of
the disease as well as a better understanding of how to prevent and treat it.

2. Cancer as a Genetic Disease (the Genome View)

For more than three centuries it has been known that cancers run in families [3].
However, it was not until the late 1940s and early 1950s that a clear genetic or hereditary link
for cancer was made through the analysis of twin registries and large family cohorts [7,15].
Familial cancer syndromes (or hereditary cancers) are germline cancers arising from a
specific oncogenic mutation being passed from one generation to another [16]. More than
50 hereditary forms of cancer are known, including Lynch syndrome, familial adenomatous
polyposis, hereditary breast and ovarian cancer, and Fanconi’s anemia. The existence of
familial cancer syndromes or germline cancers provides the strongest evidence of the role
of genetics and genetic mutations in cancer. Furthermore, many of the mutated genes
identified in hereditary cancers or familial cancer syndromes are the same as those found
in sporadic cancers. These include mutations in tumor suppressor genes such as TP53,
BRCA1, and BRCA2, as well as DNA mismatch repair genes such as MLH1 and MSH2,
and metabolic hub genes such as SDH (succinate dehydrogenase). The shared genetics of
germline cancers and sporadic cancers have also helped to shed light on the key roles that
specific types of somatic mutations play in sporadic cancers [16].

2.1. The Genetics of Familial Cancer

The existence of heritable cancers has led to two broader, largely unanswered questions
in cancer genetics: (1) How heritable is cancer? and (2) How common is heritable cancer?
Many sources have indicated that 5–10% of cancers are heritable [2,16]. This statement is
often used by some authors to suggest that the heritability of cancer is also 5–10%. However,
this estimate invariably appears without citations. It seems that this 5–10% estimate first
appeared as a crude guess based on very limited breast cancer data from 1990 [17]. It
has since been restated or reused in dozens of papers and websites. In other words, the
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5–10% estimate for cancer heritability has become dogma through simple repetition. Such
an estimate is likely not correct. It is also not very current nor is it applicable to other
cancers. Clearly, more precise, and much more up-to-date estimates of the true heritability
of cancer and the true prevalence of heritable cancer are needed, particularly if one is trying
to understand cancer from a genetic or genomic perspective.

One way of updating this 5–10% estimate is to look more closely at the large cohort
studies that have been undertaken over the past 30 years to determine both the heritability
of cancer and the prevalence of heritable cancer. These include a number of large-scale
twin cancer studies [18,19] and large-scale familial cancer studies [20]. The twin studies
provided statistical estimates of the narrow-sense heritability of different cancers, while the
familial studies provided estimates of the prevalence of heritable cancers [18,19] through
analyzing family trees and assessing family-wise concordance in certain cancers [20]. These
epidemiological/observational studies had a number of limitations (discussed later), but
they did provide useful (upper limit) estimates of cancer heritability and heritable cancer
prevalence. Alternate molecular measures of cancer heritability and heritable cancer
prevalence are also available. For instance, with the advent of next generation sequencing
(NGS), many large-scale surveys of known and suspected germline mutations in cancer
patients have now been conducted. These surveys have provided even more exacting
estimates of the true prevalence of heritable cancers [21–39]. Additionally, dozens of
large-scale genome-wide association studies (GWAS) for many cancers have also been
pursued. These GWA studies provided somewhat more precise, molecularly derived
estimates of cancer heritability than twin studies [40–51]. By consolidating these studies
and supplementing some of the missing twin heritability data from other studies [52–
54], a summary these results has been prepared as shown in Table 1. Simply stated,
Table 1 compares the prevalence of heritable cancers (in percentage terms) to the estimated
heritability of cancers for the 12 most commonly diagnosed cancers in the USA (and most of
the developed world). These 12 types of cancer account for ~78% of all known cancer cases
in the US [55], and therefore, the numbers generated from this analysis can be reasonably
extrapolated to all cancer types.

Table 1. The genetic contributions to cancer. Prevalence of heritable cancers as compared with the
estimated heritability of cancers.

Cancer Type
Number of

Cases/Year in
USA (2021)

Germline
Prevalence

(%)

Familial
Prevalence (%)

GWAS
Heritability (%)

Twin
Heritability (%)

Breast 281,550 [55] 5.7–11.1 [21–23]
Ave. = 8.4 13.6 [20] 9.7 [40] 31 [18]

Prostate 248,530 [55] 2.9–17.2 [24–26]
Ave. = 10.1 20.2 [20] 11.0 [41] 57 [18]

Lung 235,760 [55] 0.3–1.4 [27–29]
Ave. = 0.9 8.7 [20] 0.7 [42] 18 [18]

Colorectal 149,500 [55] 3.5–7.5 [30,31]
Ave. = 5.5 12.8 [20] 1.2 [43] 15 [18]

Melanoma 106,110 [55] 1.9–3.1 [32,33]
Ave. = 2.5 4.9 [20] 0.9 [44] 58 [18]

Bladder 83,730 [55] 8.9 [34] 5.4 [20] 0.9 [45] 30 [18]
Non-Hodgkin

Lymphoma 81,560 [55] 7.7 [35] 2.9 [20] 0.7 [46] 25 [19]

Kidney (RCC) 76,080 [55] 7.9 [36] 3.6 [20] 0.6 [47] 38 [18]
Endometrial

Uterine 66,570 [55] 4.6 [37] 4.1 [20] 0.6 [48] 27 [18]

Pancreatic 60,430 [55] 3.9 [38] 3.7 [20] 0.6 [49] 36 [52]
Thyroid 44,280 [55] NA 3.5 [20] 1.5 [50] 53 [53]

Liver/bile Duct 42,230 [55] 5.9 [39] 2.6 [20] 1.7 [51] 30 [54]
Range 0.3–17.2 2.6–20.2 0.6–11.0 15.0–57.0

Case-weighted average 6.2 10.2 4.3 34.2
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Several new and notable features are evident from Table 1. First, the prevalence
of heritable cancers derived from NGS analysis of high penetrance germline mutations
(Table 1, Column 3, Germline Prevalence) varies much more than the traditional “5–10%”
that is often quoted [16,17], indeed, it ranges from a low of 0.3% in lung cancer to a high
of 17.2% in prostate cancer. This serves to emphasize the fact that different cancers can
have very different genetic contribution; some cancers, such as lung cancer, have almost
none, and other cancers, such as prostate and breast cancer, have significant heritable
contributions. The fact that some cancers have a range of prevalence values is simply a
reflection of the genetic variability that exists in different ethnic populations. It also reflects
differences in experimental design (populations size, mutational coverage, and chosen
penetrance threshold). To simplify comparisons and calculations, an average prevalence
value can be determined for those cancers where multiple germline prevalence values
have been published. Using these average values, it is possible to determine that the
case-weighted average prevalence of heritable cancers is 6.2%. In other words, the answer
to Question #2 (How common is heritable cancer?) is: ~6%. Overall, this number indicates
that germline/inherited cancers are relatively rare.

An alternative estimate of the prevalence of heritable cancer (or familial cancer) can
be obtained from family cohort studies (Table 1, Column 4, Familial Prevalence). These
studies, which measure the frequency of cancers among family members, provide an
upper limit estimate to the prevalence or percentage of heritable cancers. Because they
are observational or epidemiological in nature, family cohort studies do not provide the
detailed molecular data found in germline NGS studies. Likewise, familial studies can
be affected by shared environmental effects or other factors which artificially increase the
estimated familial concordance rates for some cancers and lower them for others [20]. For
instance, the authors of this study noted that the unusually high values for lung cancer
(8.7%) were likely due to second-hand smoke exposure among family members and the
high values for colorectal cancer (12.8%) were due to shared (cancer-inducing) diets [20].
Likewise, limited case numbers likely depressed the true prevalence values for kidney and
liver cancer. Despite these caveats, and bearing in mind that these estimates correspond to
the upper limit for heritable cancer, the observed range (2.6–20.2%) and the case-weighted
average (10.2%) are reasonably close to those values seen in the NGS-derived germline
prevalence column in Table 1. Taken together, these data suggest that, on average, 6–10% of
cancers run in families.

The answer to Question #1 (How heritable is cancer?) is not quite as clear. The
lower limit answer to this question is obviously 6.2% (the prevalence of heritable cancers
we calculated above), but this lower limit estimate assumes that no other genes or no
other SNPs contribute to the likelihood of developing cancer. However, it is known that
many non-oncogenic genes exist that increase one’s risk for diabetes, obesity, alcoholism,
Crohn’s disease, and other inflammatory or auto-immune diseases. These conditions are
all also known to greatly increase the risk of developing cancer [56–58]. Interestingly, the
prevalence of other family-wise diseases or co-morbidities also play a role in the prevalence
statistics reported for family-wise measures of cancer. This is why they are regarded as
upper limit estimates for heritable cancers. Therefore, it might be argued that the familial
prevalence statistics in Table 1 or population attributable fractions for cancer could provide
a reasonable estimate of cancer heritability [20,59]. Using this logic, it is possible to obtain a
rough estimate of ~10% for the heritability of cancer.

A more robust estimate of cancer heritability can be obtained from GWAS studies
on specific cancers. Hundreds of GWA studies have been performed on many different
cancer types in an attempt to explore the issue of cancer heritability. Fortunately, many of
these GWAS datasets have been made public [60]. It is also worth noting that cancer GWA
studies have focused on higher-abundance SNP and copy number variants and ignored the
rarer oncogenic germline mutations (such as BRCA1/2 or TP53). Therefore, the heritability
estimates that GWA studies have provided are complementary to the heritability estimates
provided by enumerating the prevalence of heritable cancers. In other words, by adding the
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GWAS heritability values to those measured for heritable cancer prevalence for each cancer
type, it should be possible to obtain a more accurate estimate of the overall heritability of
a given cancer. Using GWAS heritability data calculated and made available through the
GWAS ROCS database [61], the heritability estimates for all 12 high-abundance cancers
were tabulated, as shown in Table 1 (Column 5, GWAS Heritability). Note that, where
multiple studies appeared in the GWAS ROCS database, only those with the largest subject
numbers and/or highest number of significant SNPs were tabulated. As seen in Table 1,
GWAS heritability estimates for many cancers (except breast and prostate) are quite low
and range between 0.6 and 11.0%. Furthermore, the case-weighted average heritability for
all 12 cancers is just 4.3%. Interestingly, for each of the 12 cancers, the sum of the germline
prevalence and GWAS heritability values often come quite close to the family prevalence
values (with the expected exceptions of lung cancer and colorectal cancer). Furthermore,
the average GWAS heritability (4.3%) and the average germline prevalence (6.2%) give a
summed heritability estimate of 10.5% for all cancers. This is almost exactly the same as
the 10.2% heritability estimate derived for the family prevalence data. In other words, two
separate lines of reasoning suggest that the average heritability of cancer is ~10%.

It should be noted that these two heritability estimates are quite different than the
cancer heritability estimates derived via twin studies. Indeed, as seen in Table 1, (Column 6,
Twin Heritability), most twin estimates are 3–40× larger than those derived from the GWAS
or family prevalence estimates. In particular, the case-weighted average heritability for
cancer via twin studies is more than 34%, while it is just 4.3% for GWAS studies, and just
10.2% for family studies. These findings give rise to the question “What is going on?”.

The short answer is that twin heritability estimates, especially for cancer, are flawed.
A key assumption made in all twin studies is that monozygotic and dizygotic twins share a
common environment [62]. This allows twin researchers to tease out the genetic influence
while controlling for environmental effects. However, because cancer is a condition that
typically develops in old age, long after twins have left their shared childhood homes
and started independent lives, the assumption of a shared environment is fundamentally
incorrect. Assuming a contribution for a shared environment that is too large will tend
to greatly inflate any estimate of heritability [62]. More recently, sophisticated modeling
methods using comprehensive genomic data have shown that twin heritability estimates
for many conditions are consistently 2–3× higher than those determined via molecular
methods [63,64]. Likewise, because twins are rare occurrences and twins with shared
rare conditions are even rarer, the influence of small data samples tends to inflate twin
heritability estimates or leads to enormously large standard errors or unreasonably wide
confidence intervals. This phenomenon has been highlighted by the remarkably discordant
measurements and widely publicized reports on the heritability of autism [65,66]. Finally,
most of the twin heritability estimates shown in Table 1 do not align with the known
causes of certain cancers. For instance, more than 95% of lung cancers can be explained
through known, excess exposures to tobacco smoke, pollutants, radon, asbestos, or lung
infections [56,67]. This is obviously inconsistent with lung cancer having a heritability
of 18% [18]. Likewise, more than 90% of melanomas are known to be caused by excess
UV radiation exposure [68]. This fact is obviously inconsistent with melanoma having
a heritability of 53% [18]. Nevertheless, the heritability estimates derived from Table 1
via the germline prevalence + GWAS heritability data (1.6% for lung cancer and 3.4% for
melanoma) seem to be much more in line with the known epidemiology of these cancers.

Unfortunately, as flawed as twin estimates of cancer heritability are, they are widely
viewed as absolute truths within the cancer genomics community [18,62–66]. Indeed, the
phenomenon of repeating a falsehood sufficiently often to make it appear true, seems
to be at work once again. The belief in twin studies is so great that considerable work
continues to be directed within the statistical genomics community to develop ever more
sophisticated models to ensure GWAS data or NGS data on heritability fits with observed
twin data on heritability [63,64], rather than the other way around. It will be important for
the cancer genomics community to move beyond this infatuation with twin studies and
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to embrace a much more reasonable and reasoned view about the heritability of cancer.
Indeed, as shown here (and elsewhere) the weight of evidence suggests that the heritability
of cancer is ~10% and that this heritability ranges from a low of 1.6% for lung cancer to
a high of 21.1% for prostate cancer. These lower heritability estimates are much more
aligned with the abundant evidence that cancer is more an environmental disease and less
an inherited disease [56].

2.2. The Genetics of Sporadic Cancer

While most of our focus has been on estimating cancer heritability and the prevalence
of inherited cancer, this exercise served to highlight the fact that >90% of cancers are
sporadic, that is, they have no germline origins. However, this does not mean that genetics
does not play a role in the development of sporadic cancers. Indeed, most sporadic cancer
cells do have mutations. These mutations are not inborn or inherited, but rather they
are acquired. Of course, a key question that genetics does not answer is “How are these
somatic cancer-causing mutations acquired?”. According to the somatic mutation theory
(SMT) [8], these acquired mutations arise from external factors (mutagens) or environmental
exposures leading to genetic instability. These initiators of cancer, which are arguably more
important than the genetic lesions themselves, are discussed later in this review.

When tumors (sporadic or inherited) are sequenced, it is not unusual to see large
numbers of mutations. Typically, any given tumor genome will exhibit 100–150 protein
altering mutations, of which 10–12 are so-called “driver” mutations, and the remaining
are called “passenger” mutations [69,70]. The driver mutations promote or drive carcino-
genesis, while the passenger mutations are simply incidental, arising from the genomic
instability that is inherent with many tumors. Different cancers will tend to exhibit different
numbers of cancer driver genes with some, such as certain types of kidney cancer, having
as few as two and others, such as endometrial cancer, having as many as 55 [70]. Nearly
300 cancer driver genes have been identified to date [70], all of which can be tied to the
587 known cancer-associated genes in humans documented in the COSMIC database [71].
Importantly, the ability to identify specific driver genes in tumors has opened the door to
precision oncology, whereby, targeted therapies may be used to interfere with key driver
mutations in specific tumor types [70].

Most cancer-associated or cancer driver genes fall into two broad categories: (1) tumor
suppressor genes and (2) oncogenes or proto-oncogenes [1]. Tumor suppressor genes act to
suppress cell proliferation and tumor development. In other words, they are anti-oncogenes.
If a tumor suppressor gene is mutated, damaged, or altered epigenetically, it can lead to cell
proliferation and oncogenesis [1]. Tumor suppressors fall into six main categories: (a) cell
cycle control genes or cell division inhibitors, (b) hormone or growth factor receptors,
(c) checkpoint control genes, (d) apoptosis inducers, (e) cell adhesion genes, and (f) DNA
repair genes. In contrast to tumor suppressor genes (which act as carcinogenic brakes),
oncogenes act as carcinogenic accelerators. More specifically, oncogenes are mutated
genes that contribute to the development of a cancer [1]. Unmutated oncogenes are called
proto-oncogenes. Oncogenes fall into five categories: (a) growth factors, (b) growth factor
receptors, (c) signal transducers, (d) transcription factors, and (e) programmed cell death
regulators. As shown in the COSMIC database [71] and as highlighted by the functional
categories given above, tumor suppressors and oncogenes appear to play roles in just
six of the ten hallmarks of cancer [11]. These include: (1) inducing genome instability,
(2) sustaining proliferative signaling, (3) evading growth suppressors, (4) resisting cell
death, (5) maintaining replicative immortality, and (6) activating invasion and metastasis.
Notably, oncogenes and tumor suppressors appear to play little or no role in at least four
other cancer hallmarks including angiogenesis, metabolic dysfunction, evading immune
destruction, and tumor-promoting inflammation [1,11]. This suggests that other, non-
genetic factors must also play roles in initiating and sustaining tumor growth [12,13].
Furthermore, since it is widely believed that cells typically need two or more driver
mutations in cancer-associated genes to become carcinogenic [72] and because these genes
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typically have one function each, this implies that nascent tumors may only exhibit two
of the ten known cancer hallmarks. This is also somewhat problematic as small tumors
typically exhibit most, if not all, of the ten hallmarks of cancer [11]. In addition, some tumor
types exhibit very large numbers (>40) of driver mutations, which begs the question “How
can so many independent driver mutations be acquired in a single tissue?”. Again, this
suggests that other, non-genetic factors must play roles in both initiating and sustaining
tumor growth [12,13]. These non-genetic contributions to tumorigenesis are discussed in
more detail below.

3. Cancer as an Environmental Disease (the Exposome View)

Regardless of whether one is looking at sporadic cancer or germline/familial cancer, it
is important to remember that almost no one is born with cancer. Cancer is an acquired
disease [2,56]. It typically takes years or decades to develop or manifest. Indeed, most
cases of familial cancer are only detected in a person’s third or fourth decade, while most
cases of sporadic cancer appear after a person’s sixth decade [2,16,20]. Even among those
individuals with germline mutations (giving them a strong innate propensity towards
cancer), other insults, injuries, infections or mutations within specific tissues must occur to
initiate cancer. For those who develop sporadic cancer, the same initiating or mutagenic
events in somatic cells must occur, but “lightning must strike twice” in the same tissue or
organ to initiate cancer [72]. The fact that cancer is an acquired disease, initiated through
decades of chronic exposures, is often forgotten by those who view cancer purely through
a genetic lens. However, thanks to the work of cancer epidemiologists and agencies such as
the International Agency for Research on Cancer (IARC), the role of the environment and
importance of the exposome in cancer initiation and development can no longer be ignored.

The concept of the exposome was first introduced by Dr. Chris Wild, a past director
of IARC, in 2005 [73]. While the definition of the exposome has gone through several
iterations, it is now formally defined as the measure of all the exposures (including lifestyle
factors) of an individual in a lifetime and how those exposures relate to health. These
exposures include environmental factors such as chemical contaminants (exogenous small
molecules), radiation, food, tobacco smoke, pollutants as well as lifestyle factors such as
physical activity, stress, occupation, education, quality of housing, and climate. Dr. Wild
was certainly not the first person to note the effect of occupational or environmental expo-
sures on cancer incidence and prevalence. Chimney sweep cancer (a form of scrotal skin
cancer) was first noted in 1775 among London’s chimney sweepers who were chronically
exposed to soot [3,4]. More than a century passed before other environmental causes of can-
cer were detected or described. Radiation-induced cancer was first noted in 1902 [74], while
the first report of specific chemicals (coal tar) inducing cancer was shown in 1915 [3,4]. The
link between tobacco smoke and cancer was made in 1923 [3], while the connection between
viruses and cancer was shown in 1926 [5]. Interestingly, it was not until 1940 that the rela-
tionship between diet, nutrition/lifestyle, and cancer was first elucidated [75]. All of these
relationships underline the importance of the environment in both initiating cancer and in
reprogramming the DNA within cells to sustain cancer growth. It was because of these
many discoveries concerning known and suspected carcinogens, exogenous chemicals, and
cancer-causing lifestyles that IARC started publishing expert-reviewed monographs on
carcinogenic agents in 1970. These monographs, along with other IARC databases such as
Exposome Explorer [76,77], highlight the close link between the exposome and cancer.

Currently, IARC categorizes carcinogenic agents or carcinogenic exposures into four
categories: (1) Group 1 (definitely carcinogenic), (2) Group 2A (probably carcinogenic),
(3) Group 2B (possibly carcinogenic) and (4) Group 3 (not classifiable or not carcinogenic).
Among the Group 1 agents, IARC has identified 11 pathogens (virsues, bacteria, and
parasitic worms), 54 chemicals, 15 radiation sources (including radioactive chemicals), and
48 mixture exposures or exposure circumstances (consisting of foods, drugs, household, or
occupational exposures). Among the group 2A agents, IARC lists 67 chemicals, 3 pathogens,
and 14 mixture exposures or exposure circumstances. While many of the IARC-identified
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agents are known mutagens (causing DNA mutations or chromosomal damage), many
carcinogenic agents are not. These include a number of chronic inflammatory agents.

For instance, with the exception of human papilloma virus, most of the known cancer-
associated pathogens identified by IARC are not genetically integrative. Rather, they appear
to cause cancer through chronic inflammation, immunosuppression, or irritation [78–80].
Of course, chronic inflammation can induce cell proliferation and can generate free radicals
as well as N-nitroso compounds that are potentially mutagenic. However, inflammation
can also induce other metabolic, immunosuppressive, and epigenetic changes that are
also key to cancer progression. Other food or lifestyle carcinogens identified by IARC
such as red meat, wood dust, hot beverages, night shift work, oral contraceptives, and
post-menopausal estrogen therapy appear to cause cancer through inflammation, irritation,
disrupted circadian rhythm, or chemical activation of cell growth pathways [81–83].

While the list of known carcinogens and mutagens identified by IARC is quite large,
it is important to note that the IARC list does not include many other dietary, lifestyle,
or chronic disease contributions to cancer. For instance, diabetes, obesity, chronic inflam-
matory diseases, lack of physical activity, mineral and vitamin deficiencies, and poor diet
are not mentioned in the IARC list, yet they are all known to greatly increase the risk
of cancer [56]. For these kinds of exposures, it is believed that oxidative stress, reactive
oxygen species, irritation, inflammation, and immunosuppression seem to be the main
drivers of carcinogenesis [56,84]. Oxidative stress and inflammation can lead to somatic
mutations which likely arose from dysregulated DNA repair [84]. However, oxidative
stress and inflammation also appear to cause metabolic and mitochondrial dysfunction,
which triggers additional cancer-like activity and cancer-like hallmarks within susceptible
cells [13].

Given the plethora of known mutagens and carcinogens along with the growing list
of dietary, lifestyle, and chronic diseases associated with increased cancer risk, it is perhaps
appropriate to ask “What portion of cancers are caused (either directly or indirectly) by
the environment?”. Some estimates suggest it is as high as 90–95% [56], others suggest it
is closer to 42–43% [85], with a large portion left to “unknown causes”. Certainly, from
our earlier estimates of the heritable proportion of cancer (6–10%), one could argue that an
estimate of 90–94% for the environmental contribution to cancer would seem reasonable.

However, this cancer-wide estimate does not provide a number for the individual
contributions of these exposures. For instance, “What proportion of cancer is due to
smoking?”, “What proportion is due to infectious agents?”, and “What proportion is
due to chemical exposures?”. Unfortunately, the specific contribution of these individual
environmental agents to cancer are rather difficult to find. One very approximate estimate,
from 2008, suggested that diet and alcohol contributed to 35–40% of observed cancer cases,
tobacco contributed 25–30%, infections contributed 15–20%, obesity contributed 10–20%,
and other environmental exposures contributed 10–15%. However, these estimates relied
on rather dated statistics and simplified models. They also significantly overestimated
the influence of diet and infections on cancer incidence (especially in the USA), while
ignoring other major contributions to cancer incidence (such as radon exposure, asbestos,
diabetes, outdoor pollution, etc.). A more recent estimate of cancer suggests that smoking
contributed to 19% of cancer cases, obesity contributed to 8%, diet and alcohol contributed
10%, infections contributed 3.4%, and other causes contributed 7% [85]. However, this
estimate suggests nearly 60% of cancers have either an unknown or a purely genetic cause.
Furthermore, this 2018 estimate also neglects other well-known environmental causes of
cancer (such as radon exposure, asbestos, diabetes, outdoor pollution, etc.).

Using more recent literature, more complete estimates, and focusing on known causes
of cancer mortality, which tend to be more accurately reported, it is possible to come up
with a more precise estimate of the individual environmental (and genetic) contributions to
cancer and, more specifically, cancer mortality [85–106]. These results are shown in Table 2.
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Table 2. Risk factors and causes of cancer deaths in the United States.

Cause Percentage of Cancer Deaths
in the US (%) References

Age (>65) 72.0 [86]
Smoking 28.8–31.7 [87–89]
Obesity 7.0 [90]

Germline mutations/heritable cancers 3.3–5.9 This paper
Infectious agents 5.9 [91]

Alcohol 3.5–4.0 [90,92]
Radon exposure 3.5 [93]

Outdoor air pollution (PM 2.5) 3.1 [94,95]
Adverse effects of cancer treatment 2.8 [96]

Low fruit/vegetable diet 2.7 [85]
Diabetes 2.5 [97]

Physical inactivity 2.2 [85]
UV exposure 1.5 [85,98]

Red meat consumption 0.5–1.4 [99]
Diesel fumes 1.3 [100]

Second-hand smoke 1.2 [101]
Low fiber intake 0.9 [85]

Processed meat intake 0.7–0.8 [85,99]
Asbestos exposure 0.7 [102,103]

Low calcium and iodine intake 0.5 [85,104]
Miscellaneous occupational chemical exposures 0.5 [105]

Ionizing radiation (CT scans, radiotherapy) 0.3 [106]
Total (excluding age) 73.4–80.4

In Table 2, there are several points to note regarding the risk factors and causes of
cancer deaths. First, the percentage of heritable/germline cancer deaths was calculated
using the fraction of heritable cancer cases listed in Table 1 scaled with the cancer mortality
data in [86]. This produced a number that is smaller than the total percentage of heritable
cancer cases (3–6% instead of 6–10%). Second, it is important to note that the diagnosis of
cancer actually leads to a surprisingly large number of iatrogenic, adverse drug responses,
or medical error deaths [96]. This was estimated from the overall proportion of reported
iatrogenic deaths in the USA [96]. This iatrogenic component represents an undercounted
and unappreciated effect of the “exposome” on cancer mortality. Third, while the data in
Table 2 were compiled using U.S. data, the distribution with regard to the causes of cancer
deaths is likely very similar for most countries in the developed world (Canada, Australia,
Japan, most of Europe). In the developing world, the fraction of cancer deaths due to
infectious organisms is much higher (12–16% vs. 4–5%) [91] while the faction of cancer
deaths due to meat consumption, diabetes, and obesity is typically much lower (4–5% vs.
12–15%). However, these differences still lead to similar total fractions of explainable cancer
deaths (i.e., 75–80%). They also show that tobacco smoke continues to be the leading cause
of cancer deaths both in the developed and developing world.

There are at least two takeaway messages that should be obtained from Table 2.
The first is that 75–80% of all cancer deaths in the USA can be explained through either
exposome effects (~70–75%) or heritable effects (~5%). In other words, the proportion
of cancer deaths, and by inference, the proportion of explainable cancer causes, is much
higher than previously reported [85]. The second takeaway message is that cancer is
fundamentally a disease of aging [107]. As seen in the top line of Table 1, more than
70% of cancer deaths occur in people >65. This fact underlines the point that cancer
is a disease that is acquired through decades of incidental, often innocuous exposures.
Simply breathing (which produces reactive oxygen species and oxidative stress), eating
or drinking (which has similar stressful effects on the body), or managing day-to-day
stress wears down the body. At a cellular level, these erosive effects lead to mutations,
chronic inflammation, reduced immune response (allowing cancer cells to escape detection),
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mitochondrial dysfunction, and ultimately cancer [107]. This would strongly suggest that
a significant portion of the missing 20% (in Table 2), in terms of explainable causes of
cancer, is probably associated with the simple effects of aging. Indeed, if anyone lives
long enough, they are almost certain to develop at least one form of cancer [2,107]. In
addition to the effects of aging, it is also likely that the effects of the listed exposures or
lifestyle choices on cancer incidence and cancer mortality, especially diet and physical
activity, are underestimated [56,85]. As more is learned about their real effects on cancer
incidence and mortality, it is expected that their population attributable fraction will rise
by perhaps another 5–10%. Other contributions to cancer incidence and mortality, such as
drug use/abuse [108], chronic disease [109], increased height [110], and gut microbiome
effects [111] were not included in Table 2, as their effects on cancer cases or mortality have
not been fully enumerated. However, as more data are acquired about these effects, it is
reasonable to assume that, when combined together, they will contribute another 5–10% to
the explainable portion of cancer cases and cancer mortality.

As shown in Table 2 and highlighted throughout this section, from the perspective
of the exposome, cancer is not a genetic disease nor is it a genetically inevitable disease.
Rather, cancer is an acquired disease that can largely be prevented [56]. Indeed, most of
the significant improvements seen in reduced cancer incidence and mortality over the
past two to three decades have been through advances in cancer prevention and cancer
screening rather than in gene-guided precision cancer treatments [55,112,113]. From an
etiological perspective, the exposome basically explains how most cancers are initiated.
That is, certain environmental or lifestyle agents appear to cause the mutations, genetic
instability, inflammation, or reduced immune surveillance needed to start carcinogenesis.
Once initiated, the genetic or epigenetic changes caused by the exposome are propagated to
other cells via the newly altered genome. This cell-mediated, genetically driven propagation
ultimately leads to the appearance of detectable tumors or detectable cancerous tissues.
This linear process of the exposome leading to mutations in the genome, which in turn lead
to cancer (Figure 1), is fundamental to the somatic mutation theory (SMT) of cancer [8].

Figure 1. A simplified depiction of how the somatic mutation theory (SMT) and the genomic view
of cancer explain oncogenesis. Environmental exposures (the exposome) lead to mutations in the
genome which lead to tumor development.

However, this is still an incomplete picture of how cancer is initiated, propagated
and sustained. Indeed, the influence of the exposome only explains one aspect (initiation)
and just one hallmark of cancer (genetic instability). Additionally, the influence of the
genome (i.e., driver genes) only appears to explain the propagation aspect of cancer and
perhaps four or five cancer hallmarks. For a more complete understanding of how cancer
is sustained and how the other hallmarks of cancer can be explained, we need to look at
cancer from the perspective of the metabolome.

4. Cancer as a Metabolic Disease (the Metabolome View)

Prior to 1970, most cancer researchers thought of cancer as a metabolic disorder. In
1927, Otto Warburg noticed that cancer cells exhibited a distinct metabolic phenotype,
consuming 200× more glucose than normal cells (the “Warburg effect”) [6]. This metabolic
dysregulation was marked by a shift away from mitochondrial-based oxidative phosphory-
lation (OXPHOS) toward cytoplasmically driven aerobic glycolysis. In other words, cancer
cells moved from being inert entities producing large amounts of ATP (a fundamental
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characteristic of OXPHOS) to rapidly dividing cellular engines generating huge quantities
of amino acids, nucleotides, and fatty acids needed to produce the biomass (proteins, lipids,
and DNA/RNA) for sustained cellular growth and division. Warburg’s discovery was
noted by many other investigators, and it explained not only the dysregulated metabolism
seen in cancer, but it also explained how cancer cells could replicate forever, how they
could resist cell death, how their proliferation signals could persist, and how they could
avoid growth suppression (i.e., five of the 10 hallmarks of cancer [11]).

Indeed, because Warburg’s findings cast such an enormous influence over the cancer
community, most cancer drugs discovered in the 1950s and 1960s were called “antimetabo-
lites” [114]. Strictly speaking, an antimetabolite is a metabolite-like compound designed to
interfere with cellular metabolism, especially with DNA synthesis. Indeed, antimetabolites
such as 5-fluorouracil, methotrexate, and 6-mercaptopurine are still widely used today
and serve as very effective cancer therapies. However, Warburg’s theory of metabolic
dysregulation did not really explain how cancer was initiated or acquired. Likewise, it did
not explain how cancer cells could be propagated through multiple generations or why so
many genetic instabilities/mutations were found in cancer cells. With Warburg’s death in
1970 and the discovery of oncogenes in the same year [2], most cancer researchers rapidly
shifted their thinking to view cancer as almost exclusively a genetic disease rather than a
metabolic disease. This genetic/genomic perspective has largely come to dominate today’s
thinking about cancer, ranging from its origins and etiology to its diagnosis and treatment.

The “re-discovery” of cancer as a metabolic disorder has mostly occurred in the
last 10–15 years. This shift in thinking is primarily due to the increased awareness and
accessibility of metabolomics [115]. This, in turn, has led to the realization that many
oncogenes and tumor suppressors actually serve as metabolic hubs [116,117]. For instance,
oncogenes such as PI3K/Akt and BCR-ABL are both known to enhance glucose uptake and
increase hexokinase II activity [117]. Likewise, activation of the c-Myc, Ras, and Her2/Neu
oncogenes leads to enhanced glycolysis [117,118]. In contrast, the tumor suppressor p53
promotes oxidative phosphorylation, while its loss leads to glycolysis. Similarly, the
tumor suppressors SDH (succinate dehydrogenase), FH (fumarate hydratase), and IDH
(isocitrate dehydrogenase) are responsible for maintaining the tricarboxylic acid (TCA)
cycle, while their loss leads to genetic instabilities and epigenetic alterations [117]. This
connection between oncogenes and metabolism has brought the genomic view of cancer
into closer alignment with the metabolomic view. In addition to building bridges between
the genetic and metabolic perspectives on cancer, metabolomics has also led to three other
important advances: the delineation of key metabolic pathways or metabotypes involved in
cancer [14,117], the discovery of “oncometabolites” [10], and the elucidation of how cancer-
associated metabolites and cancer-associated metabolism explain many of the hallmarks of
cancer [119].

The identification of the key cancer metabolic pathways or metabotypes represents
one of the more significant contributions of metabolomics to the field of cancer research. Es-
sentially, almost all cancers exhibit one or more forms of metabolic dysregulation [14,119].
These include: (1) aerobic glycolysis, (2) glutaminolysis, (3) disrupted one-carbon metabolism,
and/or 4) altered metabolism of essential amino acids [14,117]. Aerobic glycolysis, a metabolic
process found in many proliferating cells, is characterized by high levels of glucose con-
sumption, modest energy production, significant lactate production, and the generation of
the nucleotides and lipid precursors needed for cell biosynthesis [120]. The genes involved
in glycolysis are overexpressed in 70% of known cancers, with lymph node, prostate, kid-
ney, and brain cancer exhibiting particularly high levels of expression of these glycolytic
genes [121,122]. Aerobic glycolysis is sometimes called “glucose addiction” as it highlights
the critical need for glucose to sustain cancer cell growth. Glutaminolysis or “glutamine
addition” is another type of metabolic process found in actively proliferating cells. It
is characterized by unusually high levels of glutamine uptake. Glutamine is the most
abundant amino acid in blood and is an important source of energy for many tissues. In
glutaminolysis, the amino acid glutamine is broken down and converted to TCA interme-
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diates and other nitrogen-containing precursors that can, then, be used to produce nucleic
acids, certain amino acids, and lipids. Glutaminolysis is also essential for maintaining
redox homeostasis, via the production of glutathione, making cancer cells more tolerant
to reactive oxygen species (ROS) [123]. Glutamine and glutaminolysis play key roles in
cancer cell growth signaling (via the mTOR pathway), providing biomass, energy, and
antioxidants to help cancer cells replicate continuously, avoiding growth suppression by
reducing autophagy, limiting cell death, and activating cellular invasion or metastasis.
Glutaminolysis is commonly seen in lung, breast, bladder, and blood cancers, as well as
other c-Myc-driven cancers [118,124].

In addition to aerobic glycolysis and glutaminolysis, several cancers, particularly
breast and lung cancer, lymphoblastic leukemia, neuroblastoma, and melanoma, exhibit
dysregulation of one-carbon metabolism [125]. One-carbon metabolism involves the use of
methionine, glycine, serine, choline, and folate as sources of methyl groups needed for the
synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. These methyl
groups are also essential for the methylation of histones and DNA. Therefore, dysregulated
one-carbon metabolism is believed to contribute to the epigenetic changes often seen in
cancer [125]. A less appreciated form of metabolic dysregulation in cancer lies in the use
(or misuse) of essential amino acids by cancer cells. Essential amino acids must be obtained
from the diet, but if insufficient quantities are available, the body will often scavenge these
amino acids from muscle tissue [126,127]. This metabolic scavenging, which can arise from
both tumor growth and tumor-induced inflammation, gives rise to cancer cachexia (muscle
wasting), which is particularly common in pancreatic, gastric, lung, esophageal, colorectal,
as well as head and neck cancer [127,128]. Essential amino acids, especially branched
chain amino acids, and their breakdown products (such as kynurenine and polyamines)
are also used as signaling molecules to increase anabolic processes (via mTOR), induce
inflammation, support immunosuppression, or enhance cellular proliferation—all of which
are key hallmarks of cancer [129].

The fact that there may be just four major metabolic pathways or metabotypes asso-
ciated with cancer has been something of a revelation. Rather than viewing cancer as an
incredibly complex genetic disorder with each tumor being one of a combinatorial infinite
collection of dozens of different oncogenic mutations, it is now possible to look at cancer as
being a far more finitely defined disease [14]. Indeed, it appears that most cancers appear
to be classifiable into a small (<10) number of unique metabotypes or combinations of
metabotypes. This opens up some interesting opportunities with regard to diagnosing and
even treating cancer [14,119].

The other key contribution of metabolomics to our understanding of cancer has
been the discovery of oncometabolites. Oncometabolites are endogenous metabolites
whose accumulation initiates or sustains tumor growth and metastasis [10,14,130]. The first
oncometabolite to be discovered was 2-hydroxyglutarate (2-HG), a relatively rare metabolite
that is found in high concentrations in gliomas [10]; 2-HG (especially the D-isomer) inhibits
histone lysine demethylases leading to altered histone methylation patterns. This activates
oncogenes and inactivate tumor-suppressor genes, ultimately leading to carcinogenesis.
Since 2-HG’s discovery in 2009, two additional widely recognized oncometabolites have
been identified, i.e., fumarate and succinate. These compounds also induce genetic and
epigenetic changes through a similar mechanism, leading to carcinogenesis [130]. However,
the “requirement” that an oncometabolite must be inherently mutagenic or that it must
physically alter the genome is incorrect. Indeed, such a view tends to ignore the many
other roles that oncometabolites play in carcinogenesis. For instance, 2-HG not only
leads to genome instability, but it also induces angiogenesis [131], prevents apoptosis or
necroptosis [132], leads to immunosuppression [133], and actively signals cell growth via
the mTOR pathway [134]. By considering the broader roles that oncometabolites (and other
endogenous metabolites) play in carcinogenesis and by remembering that oncometabolites
are simply metabolites that initiate or sustain tumor growth, then, it is possible to identify
many more oncometabolites than commonly acknowledged. Table 3 provides a reasonably
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complete list of oncometabolites assembled from the current literature [135–163]. This
list includes a number of new or lesser known oncometabolites that have been recently
identified, as well as a number of well-known metabolites that play key roles in oncogenesis,
but which have not been “officially” identified as oncometabolites.

Table 3. Oncometabolites (traditional and non-traditional), their associations with different cancers,
their mechanisms, and cancer hallmark associations.

Oncometabolite Cancer(s) Mechanisms Cancer HallMarks Reference

Arginine

Ovarian cancer,
pancreatic cancer, glioma,

acute lymphoblastic
leukemia (ALL), lung
cancer, bladder cancer,

colon cancer

Metastasis signaling, cell
growth signaling (mTOR),
reduced autophagy, DNA
instability, mitochondrial

dysfunction, Angiogenesis,
anti-apoptosis, immune

suppression

Evading growth suppressors,
sustained proliferative

signaling, genome instability,
resisting cell death,

replicative immortality,
evading immune destruction,

inducing angiogenesis

[135]

Asparagine
Acute lymphoblastic

leukemia, breast cancer,
lung cancer

Anti-apoptosis, Cell
growth signaling,

metastasis signaling

Dysregulated metabolism,
resisting cell death, sustained

proliferative signaling,
evading growth suppressors,

activating invasion and
metastasis

[136]

Choline Prostate cancer, brain
cancer, breast cancer

Hypoxic, hyperglycemic
growth, epigenetic

modifications

Dysregulated metabolism,
genome instability, sustained

proliferative signaling
[137]

Cystathionine Breast cancer ROS protection,
anti-apoptosis

replicative immortality,
resisting cell death [138]

Deoxycholic acid Colon cancer

Mitochondrial dysfunction,
ROS production,
anti-apoptosis,

proinflammation

evading growth suppressors,
tumor promoting

inflammation, resisting cell
death

[139]

Diacetylspermine
Neuroblastoma, liver
cancer, breast cancer,

colon cancer, lung cancer

Anti-apoptosis, cell growth
signaling, immune

suppression

Resisting cell death,
sustained proliferative

signaling, evading immune
destruction

[140]

Estradiol
Ovarian cancer,

endometrial cancer
breast cancer

Cell growth signaling,
metastasis signaling

Sustained proliferative
signaling, activating invasion

and metastasis
[141]

Fumarate
Praganglioma,

pheochromocytoma,
renal cell carcinoma

Epigenetic modifications,
protein modification

Dysregulated metabolism,
genome instability, sustained

proliferative signaling
[142]

N-acetyl-D-
glucosamine Systemic mastocytosis Cell growth signaling,

proinflammation

Sustained proliferative
signaling, tumor promoting

inflammation
[143]

Glucose Most cancers
Hyperglycemic growth,

aerobic glycolysis, protein
modification

Dysregulated metabolism,
sustained proliferative
signaling, replicative

immortality

[144]

Glutamine
Glioma, acute myeloid
leukemia, lung cancer,

breast cancer

Glutaminolysis, ROS
protection, cell growth

signaling (mTOR), reduced
autophagy, DNA

instability, mitochondrial
dysfunction, metastasis

signaling

Dysregulated metabolism,
replicative immortality,
sustained proliferative

signaling, evading growth
suppressors, genome

instability, resisting cell
death, activating invasion

and metastasis

[145]
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Table 3. Cont.

Oncometabolite Cancer(s) Mechanisms Cancer HallMarks Reference

D-2-hydroxy-glutarate
Glioma, acute myeloid

leukemia, prostate cancer,
colon cancer

Epigenetic modifications,
hypoxic, hyperglycemic

growth, cell growth
signaling (mTOR), ROS

production, angiogenesis,
immune suppression

Dysregulated metabolism,
genome instability, inducing
angiogenesis, resisting cell

death, sustained proliferative
signaling, evading immune

destruction

[10]

L-2-hydroxy-glutarate Renal cell carcinoma

Epigenetic modifications,
hypoxic, hyperglycemic

growth, cell growth
signaling (mTOR), immune

suppression, ROS
production

Dysregulated metabolism,
genome instability, resisting

cell death, sustained
proliferative signaling,

evading immune destruction

[146]

Glycine Lung cancer, glioma
hyperglycemic growth,

aerobic glycolysis,
epigenetic modifications

Dysregulated metabolism,
genome instability [147]

Homocysteine Most cancers
Reduced DNA repair,

proinflammation,
epigenetic modifications

Genome instability, tumor
promoting inflammation [148]

Hypotaurine Glioma
Epigenetic modifications,
hypoxic, hyperglycemic

growth

Dysregulated metabolism,
genome instability, sustained

proliferative signaling
[149]

Isoleucine
Lung cancer, glioma,
breast cancer, glioma,
endometrial cancer

Cell growth signaling
(mTOR), reduced
autophagy, DNA

instability, mitochondrial
dysfunction

Evading growth suppressors,
sustained proliferative

signaling, genome instability,
resisting cell death,

replicative immortality

[150]

Kynurenine
Colon cancer, lung cancer,
prostate cancer, glioma,

breast cancer

Cell growth signaling,
immune suppression,
metastasis signaling,

proinflammation

Sustained proliferative
signaling, evading immune

destruction, tumor
promoting inflammation,
activating invasion and

metastasis

[151]

Lactate Most cancers

Metastasis signaling,
immune suppression,

angiogenesis,
anti-apoptosis,

proinflammation

Dysregulated metabolism,
activating invasion and

metastasis, inducing
angiogenesis, evading

immune destruction, tumor
promoting inflammation

[152]

Leucine
Lung cancer, glioma,
breast cancer, glioma,
endometrial cancer

Cell growth signaling
(mTOR), reduced
autophagy, DNA

instability, mitochondrial
dysfunction

Evading growth suppressors,
sustained proliferative

signaling, genome instability,
resisting cell death,

replicative immortality

[150]

Lithocholic acid Colon cancer

Mitochondrial dysfunction,
ROS production,
anti-apoptosis,

proinflammation

Evading growth suppressors,
tumor promoting

inflammation, resisting cell
death

[139]

Methionine
Colon cancer, pancreatic

cancer, glioma,
endometrial cancer

Cell growth signaling
(mTOR), reduced

autophagy, epigenetic
modifications,

mitochondrial dysfunction,
anti-apoptosis, Immune

suppression

Evading growth suppressors,
sustained proliferative

signaling, genome instability,
resisting cell death,

replicative immortality,
evading immune destruction

[153]

Methylglyoxal Breast cancer
Metastasis signaling,
protein modification,

proinflammation

Dysregulated metabolism,
activating invasion and

metastasis, tumor promoting
inflammation

[154]
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Table 3. Cont.

Oncometabolite Cancer(s) Mechanisms Cancer HallMarks Reference

Methylmalonate Liver cancer

Mitochondrial dysfunction,
ROS production, DNA

instability,
proinflammation

Dysregulated metabolism,
resisting cell death, genome
instability, tumor promoting

inflammation

[155]

Nitric Oxide

Lung cancer, colon
cancer, breast cancer,

pancreatic cancer,
prostate Cancer

Angiogenesis, metastasis
signaling, DNA instability,

proinflammation

Inducing angiogenesis,
activating invasion and

metastasis, genome
instability, tumor promoting

inflammation

[156]

Progesterone Ovarian cancer Cell growth signaling,
metastasis signaling

Sustained proliferative
signaling, activating invasion

and metastasis
[141]

Putrescine
Neuroblastoma, liver
cancer, breast cancer,

colon cancer, lung cancer

Anti-apoptosis, cell growth
signaling, immune

suppression

Resisting cell death,
sustained proliferative

signaling, evading immune
destruction

[140]

4-Pyridone-3-
carboxamide-1-beta-D-

ribonucleoside

Lung cancer, breast
cancer Metastasis signaling Activating invasion and

metastasis [157]

SAICAR Oral cancer, most cancers
Aerobic glycolysis, PKM2

signaling, cell growth
signaling

Dysregulated metabolism,
sustained proliferative

signaling
[158]

Sarcosine Prostate cancer Epigenetic modifications,
metastasis signaling

Dysregulated metabolism,
genome instability, activating

invasion and metastasis
[159]

Serine Breast cancer, glioma,
cervical cancer

Hyperglycemic growth,
aerobic glycolysis, PKM2

signaling

dysregulated metabolism,
replicative immortality [160]

Spermidine
Neuroblastoma, liver
cancer, breast cancer,

colon cancer, lung cancer

Anti-apoptosis, cell growth
signaling, immune

suppression

resisting cell death, sustained
proliferative signaling,

evading immune destruction
[140]

Spermine
Neuroblastoma, liver
cancer, breast cancer,

colon cancer, lung cancer

Anti-apoptosis, cell growth
signaling, immune

suppression

Resisting cell death,
sustained proliferative

signaling, evading immune
destruction

[140]

Succinate
Praganglioma,

pheochromocytoma,
renal cell carcinoma

Epigenetic modifications,
hypoxic, hyperglycemic

growth, angiogenesis,
proinflammation, cell

growth signaling

Dysregulated metabolism,
genome instability, tumor
promoting inflammation,

inducing angiogenesis,
sustained proliferative

signaling

[161]

Succinyl-acetoacetate Liver cancer Protein modification, cell
growth signaling

Dysregulated metabolism,
Genome instability,

sustained proliferative
signaling

[162]

Succinyl-acetone Liver cancer Protein modification, cell
growth signaling

Dysregulated metabolism,
genome instability, sustained

proliferative signaling
[162]

Uric acid
Liver cancer, lung cancer,

liver cancer, bladder
cancer, prostate cancer

Proinflammation, ROS
protection

Tumor promoting
inflammation, replicative

immortality
[163]

Valine
Lung cancer, glioma,
breast cancer, glioma,
endometrial cancer

Cell growth signaling
(mTOR), reduced
autophagy, DNA

instability, mitochondrial
dysfunction

Evading growth suppressors,
sustained proliferative

signaling, genome instability,
resisting cell death,

replicative immortality

[150]
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Table 3 provides information about different oncometabolites and about the cancers
with which they are associated, the mechanisms by which these oncometabolites work,
along with the hallmarks of cancer [11] to which they contribute. As seen from this table,
there are several broad categories to which oncometabolites belong. A number (fumarate,
succinate, and 2-HG) are TCA intermediates, some are amino acids (glutamine, asparagine,
glycine, leucine, isoleucine, lysine, etc.), others are polyamines (spermine and spermidine),
while still others are hormones or bile acids (estrogen, progesterone, and lithocholic acid).
It is also evident that certain oncometabolites are quite specific to certain types of cancers,
while others (such as homocysteine, glucose, and lactate) are found in almost all cancers.

It is important to note that different oncometabolites work through different mecha-
nisms. As shown in Table 3, some oncometabolites only appear to a have a small number
of oncogenic functions (SAICAR, uric acid, and succinylacetone), while others such as
2-HG, glutamine, and arginine have a much larger number of oncogenic functions or roles.
Many of these oncometabolites are known cancer biomarkers, with radioactive derivatives
of glucose and glutamine being widely used in PET-based tumor imaging [164]. Other
oncometabolites are much more cancer-specific and may be elevated in blood or urine
depending on which type of cancer is manifested [165–170]. What is most striking about
the data in Table 3 is how many of the hallmarks of cancer can be explained by this rel-
atively short list of 38 oncometabolites. Collectively, every one of the 10 known cancer
hallmarks [11] can be rationalized by at least one of these oncometabolites. In fact, just three
nearly ubiquitous oncometabolites (lactate, glutamine, and glucose) can explain or partic-
ipate in processes that explain all 10 cancer hallmarks. Much more detailed information
regarding how many of these oncometabolites play roles in manifesting or rationalizing
the hallmarks of cancer has been provided in several recent reviews [13,14,117,119].

Interestingly, the coverage or “explainability” of all 10 cancer hallmarks by this set
of 38 oncometabolites (or even just the oncometabolites lactate, glutamine, and glucose)
is somewhat more than the six hallmarks of cancer that can be explained by the nearly
600 known oncogenes and tumor suppressors. This numeric discrepancy underlines the
importance of metabolites and metabolism in cancer. Indeed, as seen in Table 3, on-
cometabolites play a key role in not only initiating but in sustaining cancer. This metabolic
sustenance often leads to further genetic instability, leading to even greater metabolic dys-
regulation. This more expansive view of what constitutes an oncometabolite certainly helps
us understand why oncometabolites are so important and why metabolic dysregulation,
and the consequences that arise from it, can explain so many of the hallmarks of cancer.
Clearly, as the definition of what constitutes an oncogene or tumor suppressor continues
to expand (i.e., through the inclusion of more metabolic enzymes and transporters), it is
likely that the ability of these genetic cancer drivers to explain the hallmarks of cancer will
also expand.

5. Connecting the Multiple Views of Cancer through Metabolomics

As show throughout this review, the genome, the exposome, and the metabolome all
play roles in the development and manifestation of cancer. The vast majority of cancers
are initiated by environmental exposures (the exposome) which lead to cancer-inducing
genetic changes. The resulting genetic changes are, then, propagated through the altered
DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are
nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the
metabolome). This multi-step view of carcinogenesis, where the exposome initiates it, the
genome propagates it, and the metabolome sustains it, certainly provides a more holistic,
multi-omics view of the disease. It also helps explain how each of these different “omes”
contribute to the hallmarks of cancer. However, it will be shown later that even this linear,
multi-omics view is incomplete. Furthermore, such a simplified perspective does not fully
explain how the individual components within these different cancer “omes” ultimately
lead to cancer or how they underlie each of the hallmarks that characterize cancer. Therefore,
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a key challenge over the past two decades has been trying to identify the constituents that
define the cancer genome, the cancer exposome, and the cancer metabolome.

Thanks to metabolomics, it has been possible to identify many of these omic con-
stituents and to explore how the genome, exposome, and metabolome interact to initiate,
propagate, and sustain cancer. For instance, the study and characterization of the can-
cer exposome has been made much easier by advances in metabolomics. Nearly all the
200+ organic compounds in the IARC lists of known or suspected carcinogens can be
identified, quantified, or monitored via mass spectrometry (MS)-based metabolomic meth-
ods [171–176]. With increased accessibility to metabolomics resources, it is now fairly
routine to measure these compounds in biofluids, tissues, and the environment [177,178].
Likewise, most of the 50+ inorganic, metal, or mineral carcinogens in the IARC lists can
be detected, quantified, or monitored via metabolomic methods, especially those that use
inductively coupled plasma (ICP) mass spectrometry [179,180]. Similarly, many of the
dietary or lifestyle exposures identified by IARC or highlighted in Table 2 of this paper can
also be detected, either directly or indirectly, via metabolomic methods [181–185]. More
importantly, the molecular effects and the molecular consequences of these exposures on
cells, tissues, or biofluids can also be characterized via metabolomics [186–189]. While the
genetic consequences of different exposures can also be detected via genomics or transcrip-
tomics, it is important to note that metabolomics provides more useful insights into the
inflammatory, immunosuppressive, signaling, and metabolic changes which more directly
affect a cancer’s progression or phenotype [178,190].

Technical and methodological advances in metabolomics have also led to a new un-
derstanding of the cancer metabolome. Indeed, the application of metabolomics to cancer
research has led to the discovery of dozens of oncometabolites [135–163] and literally hun-
dreds of metabolite-based cancer biomarkers [165–170], some of which are already being
used in clinics [164,191,192]. Furthermore, metabolomics has enabled the identification of
a number of key cancer metabotypes (or metabolic phenotypes), which has revealed that
a relatively small number of key metabolites and an even smaller number of metabolic
processes contribute significantly to the hallmarks of cancer [14,117,119]. These metabolic
discoveries are leading to a better understanding of the molecular mechanisms underlying
carcinogenesis, and to a better understanding of how to treat cancer.

In particular, the observation that certain endogenously produced metabolites (i.e.,
oncometabolites) can cause cancer certainly suggests that their depletion or reduction could
potentially arrest cancer. For instance, depleting dietary glucose (a key oncometabolite)
through low carbohydrate, ketogenic diets has been shown to have positive effects in
patient survival, tumor sensitization, and tumor shrinkage [13,193]. Similarly, caloric
restriction, intermittent fasting, or the deprivation of certain “oncogenic” amino acids in
the diet has also been shown to have positive effects in cancer for various animal models
and in some cancer patients [194–197]. Likewise, the addition of certain basic compounds
(such as bicarbonate, lysine, or Tris) in the diet to buffer against the effects of lactate and the
general tumor acidosis has shown some unexpected benefits in both animal tumor models
and in some cancer patients [198–200]. In many cases, the anticancer effects of these dietary
modifications were amplified with the inclusion of more conventional chemotherapies or
antimetabolite therapies [196,200].

Metabolomics has also enabled the identification and mechanistic characterization
of metabolites or dietary compounds that are anti-oncometabolites or cancer preventing
agents. For instance, metabolome-wide association studies have shown that individuals
with high plasma levels of vitamin C, carotenoids, and alpha-tocopherol were protected
against gastric cancer [201], while those with high calcium and vitamin D levels were
protected against colorectal cancer [201]. More recent studies have shown that higher
plasma levels of valine, leucine, and bilirubin also protect against colorectal cancer [202].
Whether these are simply associations or whether these metabolites have a true cancer
protective or anti-oncogenic effect still needs further work. However, the anti-oncogenic
effect of endogenously produced short-chain fatty acids (SCFAs) is much clearer. Once
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again, metabolomics has also played a key role in characterizing SCFAs and their antitumor
effects, especially in colorectal cancer [203,204]. As shown through a number of studies,
SCFAs, such as butyric acid, acetic acid, and propionic acid, can act as histone deacetylase
inhibitors or as autophagy/apoptosis promoters [204,205]. The production of SCFAs is
largely driven by gut microbiota which convert dietary fiber into these anti-oncogenic fatty
acids. This largely explains why those with high levels of dietary fiber have much lower
levels of colorectal cancer [201].

As the role of metabolites as genetic signaling molecules or as the products of spe-
cific (mutated) metabolic enzymes has become clearer, so too has the connection be-
tween the metabolome and the genome been strengthened. Thanks to metabolomics,
more and more metabolic enzymes are being listed as oncogenes and tumor suppres-
sors [116,206]. Likewise, many cancer-associated genes are being re-evaluated for their roles
as metabolic hubs or as components in metabolic pathways, largely through metabolomic
studies [118,207–209]. The fact that metabolites can serve as substrates for genome-encoded
enzymes and the fact that metabolites can both activate or suppress the activity of genes
and proteins has also made metabolites (or antimetabolites) more interesting to genome-
oriented cancer researchers. Historically, some of the most successful cancer chemother-
apies (5-fluorouracil, methotrexate, and 6-mercaptopurine) have targeted enzymes asso-
ciated with nucleotide synthesis, such as thymidylate synthase or hypoxanthine-guanine
phosphoribosyltransferase. More recently, cancer chemotherapies have begun to target
other kinds of biosynthetic enzymes such as the tumor suppressor isocitrate dehydrogenase
(IDH). IDH was first identified as a tumor suppressor because its loss of function led
to the production of the oncometabolite 2-HG [10]. Metabolomic studies helped reveal
the crucial connection between IDH function and 2-HG production and this led to the
development of at least two IDH-targeting drugs. One was developed for IDH2 inhibition
(enasidenib) and the other for IDH1 inhibition (ivosidenib); both are now approved by
the FDA [210,211]. These IDH inhibitors are now used to treat acute myeloid leukemia,
while ivosidenib is also being used to treat cholangiocarcinoma. The success of drugs
that alter cancer metabolism and the cancer metabolome has led to explorations into re-
purposing other metabolism-altering drugs to serve as anticancer therapies. Drugs such
as metformin (a diabetic biguanide that inhibits hexokinase II), dichloroacetate (a lactic
acidosis drug that inhibits pyruvate dehydrogenase kinase), orlistat (an anti-obesity drug
that blocks fatty acid synthase), and statins (anti-cholesterol drugs that inhibit 3-hydroxy-3-
methylglutaryl-coenzyme A reductase) are all showing promise as anticancer therapies or
cancer prevention prophylactics [119,212]. These findings suggest that cancer, if viewed
primarily as a metabolic disorder, may be somewhat simpler to treat and simpler to under-
stand than if it is viewed primarily as a genetic disorder [14].

6. The Big Picture View of Cancer

On the one hand, from a genetic view, cancer can seem impossibly complex, with each
tumor exhibiting almost innumerable genetic faults and variations. On the other hand,
from a metabolic perspective, cancer appears to be a relatively simple disease characterized
by a remarkably small number of distinct metabolic phenotypes. When viewed from this
metabolic perspective, the role of both primary and secondary metabolites in carcinogenesis
also becomes clearer. In particular, rather than serving merely as nutrients or building
blocks, (onco)metabolites function as important cellular regulators and cellular signaling
molecules helping to initiate and sustain carcinogenesis. Indeed, when it comes to cancer,
metabolites may play a role that is equal to or even exceed that often ascribed to proteins or
genes. As a result, the past decade has seen metabolomics play an increasingly important
role in unifying the different omics views of cancer. In particular, metabolomics has helped
to characterize the cancer exposome, to reveal the cancer metabolome, and to identify
new members of the cancer genome. In addition to characterizing these cancer “omes”,
metabolomics has also helped us understand more about their molecular mechanisms.
For instance, metabolomics has shown how different members of the cancer exposome
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function and how these environmental molecules, lifestyles, or microbial exposures lead
to genetic instability, ROS production, or tumor promoting inflammation. Metabolomics
has also shown that many of these external mutagens can be metabolized to even more
potent carcinogens within the body and that they have cancer-inducing effects that extend
far beyond simple mutagenesis. Similarly, metabolomics has helped identify the many
endogenously produced chemicals that amplify the effects of exogenous exposures (i.e.,
oncometabolites). The carcinogenic mechanisms behind most oncometabolites have also
been revealed through metabolomics (and other omics fields) and these studies have shown
that a large number of genes and proteins play a role in their production. The identification
of these oncometabolite genes (oncogenes and tumor suppressors) has helped further
refine and define the cancer genome. It has also helped link the cancer metabolome to the
cancer genome.

The fact that endogenous metabolites, on their own, have been shown to induce cancer
via direct mutagenesis or the induction of genetic instability argues against the sequential
process of carcinogenesis depicted in Figure 1. This particular figure suggests the exposome
(alone) alters the genome which, then, alters the cells and their metabolome, which, then,
leads to cancer. However, as shown in this review, the exposome, the metabolome, and
even the genome can lead to genetic alterations that initiate oncogenesis. Furthermore,
there is both crosstalk between the different “omes” and feedback between the different
“omes” which can help amplify and sustain oncogenic signals. Therefore, a more integrated,
less linear view of carcinogenesis must be considered. This revised, “big picture” view is
depicted in Figure 2.

Figure 2. An interconnected, multi-omics view of cancer. In this view the exposome, the genome, and
the metabolome all contribute individually to the development of cancer (arrows pointing inward).
Any of these three “omes” is capable of initiating oncogenic transformation. Once transformed,
the growing tumor also modifies the surrounding metabolome, exposome, and genome through its
own altered metabolism and its own altered tumor microenvironment (arrows pointing outward).
This constant feedback seems to amplify many of the genetic/metabolic drivers of cancer and helps
manifest most of the hallmarks of cancer. The arrows connecting the genome with the exposome, and
the metabolome are intended to show that each of these “omes” impacts the other. The genome can
affect the exposome (or one’s proclivity to certain lifestyles or exposures), the exposome can impact
the genome (through mutagenesis or ROS induced modifications). Likewise, the metabolome can
alter the exposome (via chemical or enzymatic processes), while the exposome can also impact the
metabolome (via catabolic or anabolic processes on exposure agents). Finally, the metabolome can
affect the genome through epigenetic and direct genetic modifications, while the genome can alter
the metabolome through genetically driven metabolic reprogramming.

As shown in Figure 2, the exposome, the genome, and the metabolome can all con-
tribute to the development of cancer by initiating oncogenic transformation. Once trans-
formed, cancer cells continue to modify their internal metabolomes and genomes as well as
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the surrounding exposome through their own altered (genetically encoded) metabolism.
This feedback amplifies many of the initial genetic/metabolic drivers and helps manifest
most of the hallmarks of cancer. In addition to the direct influence on cancer cells, the
genome, the exposome, and the metabolome can also affect each other. This is explained
in more detail in the figure legend. It is likely that this multi-omics crosstalk can either
increase or reduce one’s risk for developing cancer.

While this big picture, multi-omics view of cancer may seem somewhat more complex
than the usual cause and effect models associated with most cancer theories, it actually helps
to unify many of the historically disparate views on cancer. It also explains why a single
type of cancer treatment (for example, one that only targets the genome) or why a single
type of prevention strategy (for example, one that only targets the exposome) has generally
been unsuccessful arresting or preventing most cancers. Rather, multi-pronged therapeutic
approaches and multi-pronged prevention strategies must be used–not unlike those that
have been so successfully used to treat and prevent COVID-19 or to combat AIDS.

As mentioned at the beginning of this review, cancer is a disease of many disguises.
These disguises have confounded and confused physicians and scientists for centuries.
Thankfully, through the increased use of metabolomics and the integration of multiple
omics techniques in cancer research, great strides have been made in learning to distinguish
cancer’s many different masks and manifestations. By recognizing cancer as a multi-faced,
multifaceted disorder and learning to combat each of its different manifestations with more
multi-pronged prevention strategies and more multi-pronged therapies, we should be
hopeful that someday we will tame this cunning and deceptive disease.
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168. Simińska, E.; Koba, M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids.

2016, 48, 1339–1345. [CrossRef]
169. Lee, S.H.; Mahendran, R.; Tham, S.M.; Thamboo, T.P.; Chionh, B.J.; Lim, Y.X.; Tsang, W.C.; Wu, Q.H.; Chia, J.Y.; Tay, M.H.W.; et al.

Tryptophan-kynurenine ratio as a biomarker of bladder cancer. BJU Int. 2021, 127, 445–453. [CrossRef]
170. Wang, W.; Tian, S.L.; Jin, D.; Liu, B.; Wang, W.; Chang, H.; Chen, C.; Yu, Z.; Wang, Y.Z.; Li, Y.L. The role of bile acid subtypes in

the diagnosis of cholangiocarcinoma. Asia Pac. J. Clin. Oncol. 2021. [CrossRef]
171. Hu, X.; Walker, D.I.; Liang, Y.; Smith, M.R.; Orr, M.L.; Juran, B.D.; Ma, C.; Uppal, K.; Koval, M.; Martin, G.S.; et al. A scalable

workflow to characterize the human exposome. Nat. Commun. 2021, 12, 5575. [CrossRef]
172. Chung, M.K.; Kannan, K.; Louis, G.M.; Patel, C.J. Toward capturing the exposome: Exposure biomarker variability and coexposure

patterns in the shared environment. Environ. Sci. Technol. 2018, 52, 8801–8810. [CrossRef]
173. Sexton, K.; Adgate, J.L.; Fredrickson, A.L.; Ryan, A.D.; Needham, L.L.; Ashley, D.L. Using biologic markers in blood to assess

exposure to multiple environmental chemicals for inner-city children 3–6 years of age. Environ. Health Perspect. 2006, 114, 453–459.
[CrossRef]

174. Kirman, C.R.; Aylward, L.L.; Blount, B.C.; Pyatt, D.W.; Hays, S.M. Evaluation of NHANES biomonitoring data for volatile organic
chemicals in blood: Application of chemical-specific screening criteria. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 24–34. [CrossRef]

175. Dresen, S.; Ferreirós, N.; Gnann, H.; Zimmermann, R.; Weinmann, W. Detection and identification of 700 drugs by multi-target
screening with a 3200 Q TRAP LC-MS/MS system and library searching. Anal. Bioanal. Chem. 2010, 396, 2425–2434. [CrossRef]

176. Rappaport, S.M.; Barupal, D.K.; Wishart, D.; Vineis, P.; Scalbert, A. The blood exposome and its role in discovering causes of
disease. Environ. Health Perspect. 2014, 122, 769–774. [CrossRef]

177. Wang, A.; Gerona, R.R.; Schwartz, J.M.; Lin, T.; Sirota, M.; Morello-Frosch, R.; Woodruff, T.J. A suspect screening method for
characterizing multiple chemical exposures among a demographically diverse population of pregnant women in San Francisco.
Environ. Health Perspect. 2018, 126, 077009. [CrossRef]

178. Walker, D.I.; Juran, B.D.; Cheung, A.C.; Schlicht, E.M.; Liang, Y.; Niedzwiecki, M.; LaRusso, N.F.; Gores, G.J.; Jones, D.P.; Miller,
G.W.; et al. High-resolution exposomics and metabolomics reveals specific associations in cholestatic liver diseases. Hepatol.
Commun. 2021. Epub ahead of print. [CrossRef]

179. Kowalska, G. The safety assessment of toxic metals in commonly used herbs, spices, tea, and coffee in Poland. Int. J. Environ. Res.
Public Health. 2021, 18, 5779. [CrossRef]

180. Li, X.; Tian, T.; Shang, X.; Zhang, R.; Xie, H.; Wang, X.; Wang, H.; Xie, Q.; Chen, J.; Kadokami, K. Occurrence and health risks of
organic micro-pollutants and metals in groundwater of Chinese rural areas. Environ. Health Perspect. 2020, 128, 107010. [CrossRef]

181. Maruvada, P.; Lampe, J.W.; Wishart, D.S.; Barupal, D.; Chester, D.N.; Dodd, D.; Djoumbou-Feunang, Y.; Dorrestein, P.C.; Dragsted,
L.O.; Draper, J.; et al. Perspective: Dietary biomarkers of intake and exposure-exploration with omics approaches. Adv. Nutr.
2020, 11, 200–215. [CrossRef]

182. Dragsted, L.O.; Gao, Q.; Scalbert, A.; Vergères, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Afman, L.A.; Wishart, D.S.; Andres
Lacueva, C.; et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 2018, 13, 14.
[CrossRef] [PubMed]

183. Loftfield, E.; Stepien, M.; Viallon, V.; Trijsburg, L.; Rothwell, J.A.; Robinot, N.; Biessy, C.; Bergdahl, I.A.; Bodén, S.;
Schulze, M.B.; et al. Novel biomarkers of habitual alcohol intake and associations with risk of pancreatic and liver cancers and
liver disease mortality. J. Natl. Cancer Inst. 2021, 113, 1542–1550. [CrossRef]

http://doi.org/10.3390/ijerph182111225
http://doi.org/10.1016/j.tibs.2014.02.004
http://doi.org/10.1111/febs.13295
http://doi.org/10.15252/embj.2019101964
http://doi.org/10.7150/jca.46200
http://doi.org/10.4137/BIC.S27483
http://doi.org/10.1007/s11306-018-1376-2
http://doi.org/10.3390/cancers10080246
http://doi.org/10.1038/s41585-019-0185-3
http://doi.org/10.1007/s00726-016-2215-2
http://doi.org/10.1111/bju.15205
http://doi.org/10.1111/ajco.13588
http://doi.org/10.1038/s41467-021-25840-9
http://doi.org/10.1021/acs.est.8b01467
http://doi.org/10.1289/ehp.8324
http://doi.org/10.1038/jes.2011.37
http://doi.org/10.1007/s00216-010-3485-2
http://doi.org/10.1289/ehp.1308015
http://doi.org/10.1289/EHP2920
http://doi.org/10.1002/hep4.1871
http://doi.org/10.3390/ijerph18115779
http://doi.org/10.1289/EHP6483
http://doi.org/10.1093/advances/nmz075
http://doi.org/10.1186/s12263-018-0603-9
http://www.ncbi.nlm.nih.gov/pubmed/29861790
http://doi.org/10.1093/jnci/djab078


Metabolites 2022, 12, 154 28 of 29

184. Schmidt, J.A.; Fensom, G.K.; Rinaldi, S.; Scalbert, A.; Gunter, M.J.; Holmes, M.V.; Key, T.J.; Travis, R.C. NMR metabolite profiles in
male meat-eaters, fish-eaters, vegetarians and vegans, and comparison with MS metabolite profiles. Metabolites 2021, 11, 121.
[CrossRef] [PubMed]
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