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Abstract A lack of the complete pig proteome has left a gap in our knowledge of the pig genome

and has restricted the feasibility of using pigs as a biomedical model. In this study, we developed a

tissue-based proteome map using 34 major normal pig tissues. A total of 5841 unknown protein iso-

forms were identified and systematically characterized, including 2225 novel protein isoforms, 669

protein isoforms from 460 genes symbolized beginning with LOC, and 2947 protein isoforms with-

out clear NCBI annotation in the current pig reference genome. These newly identified protein iso-

forms were functionally annotated through profiling the pig transcriptome with high-throughput

RNA sequencing of the same pig tissues, further improving the genome annotation of the corre-

sponding protein-coding genes. Combining the well-annotated genes that have parallel expression

pattern and subcellular witness, we predicted the tissue-related subcellular locations and potential
tion and
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functions for these unknown proteins. Finally, we mined 3081 orthologous genes for 52.7% of

unknown protein isoforms across multiple species, referring to 68 KEGG pathways as well as 23

disease signaling pathways. These findings provide valuable insights and a rich resource for

enhancing studies of pig genomics and biology, as well as biomedical model application to human

medicine.
Introduction

The domestic pig (Sus scrofa) is one of the most popular live-
stock species predominately raised for human consumption
worldwide. Besides its socio-economic importance, pig has been
generally recognized as a valuable model species for studying

human biology and disease due to its striking resemblances with
humans in anatomy, physiology, and genome sequence [1,2]. To
date, many porcine biomedical models have been created for

exploring etiology, pathogenesis, and treatment of a wide range
of human diseases, e.g., Parkinson’s disease [3], obesity [4], brain
disorder [5], cardiovascular, atherosclerotic disease [6], and

Huntington’s disease [7]. Furthermore, pigs and humans share
similarities in the size of their organs, making pig organs poten-
tial candidates for porcine-to-human xenotransplantation [8,9].

Recently,major efforts have been devoted to the development of
tools for further enhancing the value of pigs as a biomedical
model for humanmedicine as well as its role inmeat production.
Of essential significance is the completion of the assembly of the

pig genome sequence (Sus scrofa11.1) in recent time. It provides
researchers with a vast amount of genomic information, facili-
tating characterization of individual pig genome as well as

genome comparison between pigs and humans.
With the progress of large-scale genome projects, such as

Encyclopedia of DNA Elements [10] and Human Proteome

Projects [11], many genes have been annotated at RNA and
protein levels, and diverse regulatory elements across the
human genome have been systematically characterized. This
creates great opportunities for exploring how genetic varia-

tions underly complex human phenotypes [12]. In particular,
a spate of groundbreaking studies have been succeeded in
building high-resolution maps of the proteome [13–15] in a

variety of human tissues and cells. Findings from these studies
greatly facilitate the functional annotation of the genome at
multiple-omic levels and further improve the understanding

of the complexity of human phenotypes.
Compared with humans, however, studies of pig proteome

are very limited [16,17]. In particular, in-depth identification

and characterization of the proteome maps of the pig genome
across a broad variety of pig tissues are not yet available. To
date, the leading protein database UniProtKB comprised
around 1419 reviewed and 34,201 unreviewed pig proteins in

Swiss-Prot and TrEMBL, respectively. It is far less than the
numbers of entries in Swiss-Prot (20,215 proteins) and
TrEMBL (159,615 proteins) corresponding to human

proteome data. Although the recent update of the Pig
PeptideAtlas presented 7139 canonical protein identifications
from 25 tissues and 3 body fluids [18], it is still a limited

promotion to whole pig proteome research. In fact, a large
number of unreviewed and PeptideAtlas-identified pig proteins
are not well annotated in current genome (Sus scrofa11.1) due

to lack of specific genomic locations and corresponding
assembled RNA transcripts. This suggests that there are still
plenty of poorly annotated proteins that have not been
identified and characterized in previous pig studies. In
addition, even if nearly 20% of the annotated pig protein-

coding genes (PCGs) have been symbolized beginning with
LOC, the orthologues and functions of these genes have not
been determined, which also presents one of the key limitations
of pig gene set enrichment analysis. The absence of completive

maps for the pig proteome triggers a substantial bottleneck in
the progress of refining pig genome annotation and even
hinders systematic comparison of omics data between humans

and pigs.
Therefore, considering the potential contribution to

develop pig proteomic atlases, we conducted in-depth

characterization of pig proteome across 34 histologically nor-
mal tissues using high-resolution mass spectrometry (MS).
Accordingly, we exploited the novel proteins, poorly anno-

tated proteins, and LOC proteins, and defined these as the
pig unknown proteins. These unknown proteins were mapped
to the latest pig genome (Sus scrofa11.1) for confirming their
available genomic locations. Jointly profiling the proteome

and transcriptome across multiple pig tissues investigated
herein, we found that the majority expression of transcripts
was dominated by the expression of a small proportion of

PCGs and most of the newly identified protein isoforms
exhibited relatively higher tissue-specific expression than the
proteins encoded by the existing PCGs. We subsequently

constructed the tissue-based PCG spectrum of tissue-
enriched, group-enriched, and ubiquitously expressed genes
in the pig genome, and determined 452 unknown protein iso-

forms as the novel candidates of pig housekeeping genes.
Accordingly, we developed a pig transcriptomic atlas and
characterized the subcellular locations for these unknown
protein isoforms to infer their connections with the specific

functions of tissues. Finally, by systematically comparing the
orthologous relationships of these unknown pig proteins with
other 10 species, we further predicted the potential functions of

these unknown protein isoforms to ensure their availability in
future relevant studies. Findings herein will benefit studies
and development of pig genome and will allow further

investigation of swine gene functions and networks of
particular interest to the scientific community.
Results

Tissue-based map of the pig proteome

We explored the pig proteome from 34 tissue samples
(Figure 1A) using liquid chromatography tandem mass

spectrometry (LC–MS/MS). In silico analyses (Figure 1B) were
then conducted to construct the whole landscape of the pig
proteome with a view to furthering pig biological research
and human medical studies. The resulting proteome data

involved a total of 21,681,643 MS/MS spectra produced from
680 LC–MS/MS runs (20 runs per tissue).



Figure 1 Overview of pig proteome-based annotation

A. Diagram showing pig tissues analyzed in this study. 34 representative normal pig tissue samples were selected as the resource of

proteome and transcriptome for exploring convincing evidence of putative PCGs. B. The custom pipeline for proteome-based annotation.

Three pig databases (D1–D3), as well as the cRAP database, were used for protein search based on Mascot and X!Tandem software with

the same criteria. PCG, protein-coding gene; PBMC, peripheral blood mononuclear cell; cRAP, common Repository of Adventitious

Proteins.
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To exploit convincing peptide evidence for all putative
PCGs in the pig genome, we searched the raw MS/MS data

by Mascot [19] against three pig databases, as well as the com-
mon Repository of Adventitious Proteins (cRAP) database
which assumes the digestion enzyme trypsin. The three pig

databases included the primary pig database of UniProt [20]
for the initial search and two custom-developed databases
for sequential searches of unmatched spectra, i.e., 1) RNA

sequencing (RNA-seq)-based de novo assembly transcriptomic
database, including the RNA-seq data generated from the 34
tissue samples in this study, the 1.08 giga-base (Gb) data from
an external public expressed sequence tag (EST) database, and

the 953.57 Gb publicly available RNA-seq data (see Materials
and methods); and 2) a six-frame-translated pig genome data-
base. Those corresponding matched spectra extracted from
each subset of databases were re-searched against the same
database by X!Tandem [21] for further filtration, producing

the final 5,082,599 peptide spectrum matches (PSMs) at 1%
PSM false discovery rate (FDR). Subsequently, Scaffold (ver-
sion Scaffold_4.4.5, Proteome Software, Portland, OR) was

run for MS/MS-based peptide and protein identification, both
of them using the local FDR criterion of 0.01.

Totally, we identified 212,154 non-redundant peptides with

a median number of 8 unique peptides per protein (quality
assessment of protein identification is shown in Figures S1–
S14). Comparison of identified peptides with the largest pig
peptide resource PeptideAtlas (http://www.peptideatlas.org/)

showed that 49,144 out of 87,909 curated peptides (55.9%)
were confirmed by our identification. The peptides we detected
greatly outnumbered those deposited in PeptideAtlas, with a

http://www.peptideatlas.org/
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major fraction (77.0%) found to be novel. A total of 24,431
protein isoforms with median sequence coverage of 30.3%
were determined by Scaffold, which corresponded to 19,914

PCGs. To ascertain whether our protein identification
achieved a reasonable false positive error rate, we additionally
validated 31 proteins from different proteogenomic categories.

By comparing MS/MS spectra from 71 synthetic peptides with
those obtained from our analyzed pig tissues, we obtained
100% of validation (Table S1; File S1).

Identification and characterization of unknown pig protein isoforms

Classifying all of 24,431 identified protein isoforms (Figure 2A)

indicated that 16,738 (68.5%) protein isoforms were confirmed
by the UniProt protein evidence, 9204 (37.7%) protein iso-
forms had evidence from Pig PeptideAtlas [18], 17,781
(72.8%) protein isoforms were included in NCBI protein data-

base, and 7910 (32.4%) were supported by all of them. Of all
confirmed protein isoforms, 17,781 (85.8%) protein isoforms
corresponding to 11,308 PCGs were included in known NCBI

annotations, 669 protein isoforms corresponding to 460 PCGs
were annotated in the pig genome but classified as uncharac-
terized LOC genes, and 2947 protein isoforms remained a lack

of NCBI annotation support in the pig genome (Figure 2B).
Among the rest of 3703 protein isoforms identified by
MS/MS data for the first time in this study, 2225 had higher
confidence (PSMs with Mascot ion score > 20 and identifica-

tion probability > 20%; details in Table S2), and thus were
considered as potential novel proteins.

To further enhance the annotation of PCGs for the current

pig genome, we systematically characterized the features
or/and genomic locations of these 5841 unknown protein
Figure 2 Characterization of unknown pig protein isoforms

A. Confirmation of 24,431 identified protein isoforms by other pig pro

Bar chart and pie chart show the numbers and percentages of 5841 u

Relationship between the improvement of genome quality and the nu
isoforms detected in current study (i.e., 669 protein isoforms
of LOC genes, 2947 protein isoforms without genomic location
annotation, and 2225 novel protein isoforms firstly identified

herein). Considering only 11.4% of protein isoforms had
available genomic locations, we mapped the rest of 5172
unknown protein isoforms to the pig reference genome

(Sus scrofa11.1) by MAKER annotation workflow [22]. First,
the low-complexity repeats of pig reference genome were
soft-masked by RepeatMasker, and then the 5172 unknown

protein isoforms (non-LOC genes) were aligned to the masked
reference genome by BLAST [23]. Second, Exonerate [24] was
run to realign and polish the exon–intron boundaries of the
unknown genes with the splice-site aware alignment algorithm.

A total of 4026 (77.8%) unknown protein isoforms were
successfully aligned to the reference genome with > 95%
sequence identity and similarity (2073 with the 100% identity

and 100% similarity), including 3886 assigned to chromosomes
and 140 resided on 23 unplaced scaffolds. More interestingly,
we found that the proportion of novel proteins mapped in

respective chromosomes was related to the improvement of
genomic annotation from Sus scrofa10.2 to Sus scrofa11.1
for different chromosomes (Figure 2C; R2 = 0.67,

P = 0.0015). This result demonstrated that these unknown
proteins, especially the novel proteins, were actually ignored
in the current pig genome annotation, since most of previous
studies have been limited to the incomplete annotation of

Sus scrofa10.2 genome and the small number of tissues
investigated.

Comparison of the unknown protein isoforms (n = 5841)

with the well-annotated proteins (n = 17,781) revealed that
a major fraction of unknown protein isoforms (2281/5841,
39.1%), especially the novel protein isoforms (1020/2225,
tein databases. B. Classification of unknown pig protein isoforms.

nknown pig protein isoforms in three categories, respectively. C.

mber of novel protein isoforms for each chromosome.
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45.8%), were merely identified in a single tissue, which were far
more than the well-annotated proteins. It was most likely due
to the tissue-specific and low-abundance expression of these

novel protein isoforms. Further analysis of the reliability for
these unknown protein isoforms revealed that a major fraction
of them (3529/5841, 60.4%) were regarded as abundant pro-

teins that had more than ten spectral counts [25]. Particularly,
although the novel protein isoforms were first identified in this
study, almost 60.7% of them were supported by a high spectral

count of > 5.

Expression landscape of unknown protein isoforms by profiling

pig transcriptome

To further probe potential functions of unknown protein iso-
forms, we characterized the expression landscape of unknown
protein isoforms by high-throughput RNA-seq of the 34 tissue

samples analyzed in the LC–MS/MS assays.
Approximately 1495 million paired-end reads (376.7 Gb per

tissue) were obtained through sequencing 116 strand-specific

paired-end RNA libraries, of which 1230 million were mapped
to the pig genome (Sus scrofa11.1) with an overall pair align-
ment rate of 88.3% (Table S3). As expected, a total of

2,486,239 transcripts [fragments per kilobase per million
(FPKM) > 0.1 in at least one tissue] corresponding to
29,270 genes were then assembled and quantified across all
tissues, which contained 5250 annotated transcripts

corresponding to 3486 known noncoding genes, 7595 poten-
tially novel alternatively spliced transcripts corresponding to
2421 known noncoding genes, 55,328 annotated transcripts

corresponding to 20,401 PCGs, 136,537 potentially novel alter-
natively spliced transcripts corresponding to 15,385 PCGs, and
2,281,529 newly assembled transcripts corresponding to 26,493

genes in the pig genome without annotation information.
These findings clearly increased the average number of
transcripts per gene compared with the existing gene

annotation in NCBI (Human-NCBI, n = 7.27; Pig-NCBI,
n = 2.75; Pig-identified, n = 6.60; Figure 3A).

On the basis of all the currently well-annotated genes (the
genes annotated in NCBI), we constructed a tissue similarity

map across the 34 tissue samples using hierarchical clustering
based on the Pearson correlation. As shown in Figure 3B, with
the exception of three obvious outliers [i.e., adult testis, pan-

creas, and peripheral blood mononuclear cells (PBMCs)], the
data were clustered into multiple known connected groups:
liver and kidney, muscular system (longissimus dorsi and

heart), nervous system (retina, brain, and spinal cord), adult
immune organs (spleen, salivary gland, and lymph), and blad-
der tissue (urinary bladder, gall bladder, and oesophagus).
These results revealed the expected biology that had a similar

expression profile to that of human tissues [13], reflecting the
biological similarity between humans and pigs, as well as the
reliability of transcripts we constructed.

Intriguingly, a total of 51.7% (3018/5841) of unknown pro-
tein isoforms were successfully confirmed by the transcripts
constructed herein, which offered a detailed view of the under-

standing of unknown proteins. Considering that unknown
protein isoforms are usually expressed at low levels, we applied
zFPKM normalization method [26] to generate high-

confidence estimates of gene expression. The observed zFPKM
values of unknown protein isoforms ranged from �3.02 to
19.89, showing a lower average expression level
(zFPKM = 2.47), especially for the novel protein isoforms
(zFPKM = 2.21), than the well-annotated PCGs

(zFPKM = 3.62). Besides, we also found that these unknown
protein isoforms tended to be expressed in less tissues
(in average 12.1 tissue samples) than the well-annotated PCGs

(in average 21.3 tissue samples), and nearly 39.0% (1178/3018)
of unknown protein isoforms were only identified in a single
tissue (Figure 3C). The results suggested that their tissue-

specific expression characteristics may be one of the factors
that lead to the incomplete annotation of these unknown
protein isoforms.

Screening the expression patterns of protein isoforms in

each tissue, we observed that the majority expression of tran-
scripts was dominated by the expression of a small proportion
of genes in all of the investigated tissues (Table S4).

Specifically, the adult pig tissues (prostate, longissimus dorsi,
pancreas, gall bladder, etc.) had the least complex transcrip-
tome, with 50% expression of the transcripts coming from a

few highly expressed genes (3–8 transcripts). In contrast, the
reproductive tissues (i.e., uterus, testis, and ovary), expressed
more complex transcriptome, with a large number of genes

expressed. Similar transcriptomic patterns have also been
reported in human tissues [27]. It was surprising that 203
unknown protein isoforms were potentially associated with
148 (14.0%) highly expressed genes, suggesting that these

unknown protein isoforms may play an important role in basic
function among tissues or organs.

Function prediction of unknown proteins from pig transcriptome

Several approaches for systematic analysis of gene expression
across different tissues have indicated that gene expression

patterns are usually associated with their biological functions,
and genes with the similar functions are more likely to exhibit
similar expression patterns [28]. Implementing the similar

classification criteria for human genes [13] on the RNA-seq
data generated from the multiple pig tissues herein, we
classified 23,887 putative NCBI genes (including 18,377 PCGs;
corresponding to well-annotated 60,578 transcripts) and 3018

unknown protein isoforms into three categories (tissue-
enriched, group-enriched, and ubiquitously-expressed) for
exhibiting their expression features. The numbers of tissue-

enriched genes, group-enriched genes, and ubiquitously-
expressed genes are also displayed as a network plot to show
an overview of pig PCGs (Figure 4A).

In multicellular organisms, genes expressed in a few tissue
types are thought to be tissue-enriched genes, which have
tissue-specific related functions. We observed 8482 (14.0%)
well-annotated transcripts (5592 genes) and 1178 (39.0%)

unknown protein isoforms that have a specific expression in
a particular tissue. Furthermore, 16,356 (27.0%) well-
annotated transcripts (9726 genes) and 203 (6.7%) unknown

protein isoforms were expressed at least 5-fold higher at the
zFPKM level in one tissue than in the tissue with the second
highest expression. Similar to a previous study in humans [13]

(Figure 4B), the largest number of tissue-enriched genes were
detected in the adult testis, followed by infancy brain, adult
retina, and adult brain. These results reflect that the tissues

with complex biological processes usually have more tissue-
enriched genes, and these tissue-enriched genes are strongly



Figure 3 The pig transcriptome in unknown protein isoforms

A. Comparison of the average number of transcripts expressed per gene (log10-transformed) between humans and pigs. The comparison

was performed within three transcript datasets, including known human Ensembl set (human annotation), known pig Ensembl set (pig

annotation), and the newly identified set in the present study (pig identified). B. The heatmap for Pearson correlation of gene expression

between 34 tissue samples.‘‘A” and ‘‘I” indicate adult and infant, respectively. C. Bar chart showing tissue-based transcriptomic evidence

of unknown protein isoforms (n = 3018). The x-axis represents the number of tissue samples and the y-axis represents the percentage of

proteins identified in different number of tissue samples.
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associated with the functions of the corresponding tissues. This
can be exemplified by the RHO (Rhodopsin) gene that was

enriched in retina and was proven to play important roles in
retinal pigments [29]. This demonstrates that the tissue speci-
ficity can not only confirm the biological characteristics of

known genes but also predict basic function of undefined genes
in pigs. Accordingly, we successfully updated 1386 tissue-
enriched unknown protein isoforms to further explain the

functional differences among tissues.
Apart from the genes observed to have tissue specificity,
some group-enriched genes were over-represented in the group

of tissues/organs that together perform closely related func-
tions. Accordingly, we found that a total of 1322 (2.2%)
well-annotated transcripts (948 genes) and 48 (1.6%) unknown

protein isoforms were detected and could be grouped into
seven types of tissues (Figure 4C). The largest fraction of
group-enriched genes belonged to the brain tissues (996/1370,

72.7%), followed by the muscular system (cardiac muscle



Figure 4 Expression landscape in pig transcriptome

A. Network plot for the overview of pig PCGs. Numbers in the yellow, blue, and green nodes represent the numbers of ubiquitously-

expressed (expressed in all tissues), tissue-enriched, and group-enriched genes, respectively. G1–G7 indicate immune organs, female

reproductive system, male reproductive system, liver and gall bladder, adrenal gland and thymus gland, muscle tissues, and brain tissues,

respectively. B. Numbers of tissue-enriched isoforms for known and unknown protein isoforms. C. Numbers of group-enriched isoforms

for different tissue groups. D. Expression patterns of the group-enriched gene MYL3 in muscular system and non-muscular system

between humans and pigs. E. Expression patterns of the group-enriched gene ENC1 in brain and non-brain tissues between humans and

pigs. F. Expression landscape of known ‘‘housekeeping” genes ubiquitously expressed in 34 tissue samples. G. Hierarchical cluster tree for

all ubiquitously-expressed genes. 24 modules corresponding to branches are labelled in 24 different colors. FPKM, fragments per kilobase

per million.
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and longissimus dorsi; 201/1370, 14.7%), adrenal and thymus
glands (90/1370, 6.6%), as well as liver and gallbladder
(61/1370, 4.5%). Generally, these group-enriched genes have

potential roles in biological system functions, and their expres-
sion patterns are usually similar between different species. As
exemplified by the group-enriched expression of MYL3

(myosin light chain 3, a known myosin component)
(Figure 4D) and ENC1 (ectodermal-neural cortex 1, involved
in mediating uptake of synaptic material) (Figure 4E), these

two genes separately displayed similar expression patterns in
the muscular system and brain tissue between humans and
pigs. Therefore, the 48 of unknown protein isoforms will be
the valuable resources for further enriching the functional

and comparative genomics between pig and human.
Specifically, we identified 5656 well-annotated transcripts

corresponding to 5147 (21.6%) NCBI genes expressed in all

tested pig tissues. Among these genes, a variety of known
‘‘housekeeping” genes, such as ACTB, GAPDH, PGK1, and
RPL19 (Figure 4F), are usually intracellular and tend to be

functionally essential to cell subsistence that are involved
in metabolism, transcription, and RNA processing or
translation [30]. Interestingly, 452 (15.0%) of unknown protein
Figure 5 Subcellular characterization of the unknown pig proteome

A. Pie chart showing the distribution of all identified pig protein iso

diagram showing the distribution of identified pig PCGs (n = 17,75

C. Distribution of protein isoforms in 34 tissue samples for each type

three types of subcellular locations in each tissue. The top 10, top 100,

selected as protein sets for each tissue.
isoforms were detected as the ubiquitously-expressed genes.
The finding of these unknown protein isoforms offers an
important supplement to pig genomic annotation. To

characterize the gene set of ubiquitous expression of the
unknown genes identified herein, we constructed a
co-expression network heatmap that consisted of 24 blocks to

assess the interactions among these ubiquitously-expressed
unknown genes across all pig tissues (Figure 4G). Obviously,
these unknown protein isoforms have potentially functional

connections with the well-annotated genes in the same blocks
(Table S5), which can be explained by those genes within
modules of a co-expression network involved in similar or
related pathways and biological processes [31].
Subcellular characterization of the unknown pig proteome

Proteins with different subcellular locations usually play

different roles in physiological and pathological processes.
To characterize these unknown pig proteins at the subcellular
level, we performed a proteome-wide subcellular classification

for all identified pig protein isoforms (n = 24,431) based on
forms (n = 24,431) with different subcellular locations. B. Venn

9) encoding protein isoforms with different subcellular locations.

of subcellular location. D. Distribution of protein isoforms with

and top 1000 highly expressed proteins as well as all proteins were
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the existing prediction methods [13] (as described in Materials
and methods). A major fraction (17,745/24,431, 72.6%) of pig
protein isoforms were predicted to be soluble protein isoforms,

followed by 21.6% (5272/24,431) of membrane protein iso-
forms and 5.8% (1414/24,431) of secreted protein isoforms
(Figure 5A; Table S6). For an in-depth comparative analysis

on PCGs (n = 17,759), we further clustered all proteins with
available protein isoforms into four basic categories including
12,744 soluble proteins, 3918 membrane proteins, 1050

secreted proteins, and 47 membrane and secreted proteins
(Table S7). As shown in Figure 5B, there were only 2.4% of
PCGs (n = 416) with isoforms belonging to two or more
categories, which is far less than the percentage of PCGs

(19.3%, n = 3917) with the similar type of isoforms in human
[13]. It is worth noting that the novel protein isoforms
(1875/2225, 84.3%) has a greater proportion of soluble

proteins than the known protein isoforms (11,090/16,782,
66.1%). The results hint that the solubility of soluble proteins
in liquids may be one of the reasons that lead to the missing of

some proteins in the current pig proteome.
More interestingly, we found that the functions of organs

or tissues were also related to the subcellular locations of their

expressed proteins. Ranking all of identified proteins by their
zFPKM values for each tissue, we selected the top 1% to rep-
resent their main proteins. As shown in Figure 5C, a higher
proportion of membrane proteins were associated with ner-

vous tissues, such as spinal cord, brain, and retina. Moreover,
muscle tissues had a higher proportion in soluble proteins, and
a higher proportion of secreted proteins were highly expressed

in some secretory tissues, such as liver, uterus, pancreas, gall
bladder, and gut. In addition, similar to human proteome
[13], proteins highly expressed in secretory tissues tended

to be secreted proteins (Figure 5D). For example, proteins
encoded by LOC100620249 and Progastricsin (PGC) were
secreted proteins highly expressed in the stomach tissue, and

the latter is a known secreted protein and constitutes a major
component of the gastric mucosa. This result suggests that the
LOC100620249 gene more likely has the stomach-related func-
tion, providing a valuable information for enhancing studies of

pig genomics and biology.

Inferring orthologous functions of unknown pig proteome across

multiple species

To pursue stronger evidence and orthologous functions for
these unknown pig proteins, we further aligned the sequence

of each isoform against the top 10 species databases. We
adopted two criteria to identify homologous sequences to the
newly identified pig proteins with those of other species: 1)
percentage of identity greater than 80% and 2) length of

homologous sequence longer than 80% of the pig protein
sequence. Consequentially, 3081 out of 5841 (52.7%) unknown
protein isoforms were inferred to have orthologues in other

species. Although 90.2% (2778/3081) of the unknown isoforms
had orthologues in at least other two species, 36.5%
(1125/3081) of the unknown isoforms had orthologues in 9

(except chicken) or all 10 species (Figure 6A). Interestingly,
43.6% (970/2225) of the novel protein isoforms had
orthologues in other species, and almost 73.1% (709/970) of

them were mapped in the pig genome (Sus scrofa11.1)
(Figure 6B). The results indicate that the novel proteins
identified herein can be considered as the reliable proteome
data that significantly enhance both the pig genome annota-
tion and the current pig protein database.

In addition, compared with the existing orthologues in
OMA browser (http://omabrowser.org) and current genome
sequences, 3081 of the unknown protein isoforms enriched

12,375 novel pairwise orthologous relationships between pigs
and other species (Table S8). These pairwise orthologous rela-
tionships of proteins between pigs and other species provided a

feasible way to investigate the potential functions of corre-
sponding PCGs in the pig genome if these orthologous pro-
teins have been well studied in other species. Therefore,
considering the most complete set of annotated genes in

human genome, we preformed the functional gene set enrich-
ment for human orthologous proteins of these unknown pro-
tein isoforms to speculate their potential functions. A

functional Gene Ontology (GO) analysis for these unknown
protein isoforms showed that most unknown protein isoforms
were enriched for the GO terms of cell and intracellular parts

(corrected P < 0.01), providing an important supplement to
understand the biological process in pig (Table S9). Mean-
while, by further examining the functional characterization

of these unknown protein isoforms, we found 68 Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways repre-
sented in our unknown proteome (Table S10), mainly
involving metabolic pathways (corrected P = 5.2E�20), focal

adhesion (corrected P = 2.4E�09), and regulation of actin
cytoskeleton (corrected P = 5.1E�07). Importantly, we
detected 23 disease signaling pathways from the KEGG

disease database (corrected P < 0.05) that included the meta-
bolism, nervous system, skeletal, muscular, and skin diseases
(Table S11). These findings will help us better recognize the

potential functions of the unknown pig protein isoforms, and
provide a valuable resource to support the pig as a biomedical
model for human medicine and as donors for porcine-to-

human xenotransplantation.

Discussion

Here we presented the landscape of a tissue-based proteome for
pigs. Our findings not only offered the verification for 84.8% of
the existing pig proteins that have been deposited in the Uni-

protKB (n = 16,738), Pig PeptideAtlas (n = 9204), and NCBI
Protein database (n = 17,781), but also identified 2225 novel
protein isoforms. Besides, we also detected 669 protein isoforms

from uncharacterized LOC genes and 2947 protein isoforms
without NCBI annotation in the current reference genome of
Sus scrofa11.1. Eventually, a total of 5841 unknown protein iso-
forms were exploited to further optimize the annotation of

PCGs for the current pig genome.
We systematically characterized unknown protein pro-

teome for their expression features, subcellular locations, and

orthologous functions, providing a valuable resource for
enhancing studies of pig genomics, as well as offering the
opportunities for exploring the potential functions of these

unknown proteins. Our findings clearly showed that the
missing protein annotation in previous studies was due to
the three aspects: 1) low-quality assembly in Sus scrofa10.2
genome; 2) specific features (including low expression level,

tissue specificity, and greater proportion of soluble
components in novel protein isoforms); and 3) inevitable errors

http://omabrowser.org


Figure 6 Orthologous proteins of unknown pig proteome across multiple species

A. The heatmap showing the orthologous relationships of 3081 unknown pig protein isoforms with other 10 species. N represents the

number of species that each unknown pig isoform shared homology with, whereas the percentage within the color bar means the

percentage of unknown pig protein isoforms for the corresponding N. Number in the parenthesis indicates the number of orthologous

proteins with pig for each species. B. The distribution of novel proteins (indicated by the red lines) in each chromosome of the pig genome.
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derivded from the traditional gene prediction and annotation
methods [32]. The in-depth identification and subcellular

characterization of proteome using multiple tissues make it
feasible to develop a tissue-based pig proteome map and
facilitate studies of functional genomics and relevant research

fields. We effectively improved the genome annotation for
4026 unknown protein isoforms by mapping their protein
sequences to the current pig genome (Sus scrofa11.1), of which

3886 were assigned to chromosomes and 140 were resided on
23 unplaced scaffolds.

High-resolution profiling of pig transcriptome allows us to
further reveal 1434 unknown protein isoforms that display a

tissue-enriched (1386) or group-enriched (48) function
expression pattern. In addition, 452 of unknown protein
isoforms were ubiquitously expressed in 34 tissue samples,

which raised 7.4% of the potential ‘‘housekeeping” gene in
the pig genome. These findings provide new insight into under-
standing the molecular function of the respective tissue or

organ. Further inferring the biological function of unknown
pig proteome by human orthologous proteome, we found that
these unknown protein isoforms were enriched in 68 KEGG

pathways and 23 disease signaling pathways, including the
pathways involved in disease of concern for human medicine,
such as metabolism, nervous system, skeletal, muscular, and
skin diseases. The integrated data of proteome and transcrip-

tome in the 34 pig tissue samples herein were respectively
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presented in Tables S12 and S13, and 5841 unknown protein
isoforms with corresponding genomic locations, expression
landscapes, subcellular characterizations, orthologous pro-

teins, and predicted functions were also summarized in
Table S14. All findings herein will provide valuable insights
and resources for enhancing studies of pig genomics and

biomedical model application to human medicine in the future.
Materials and methods

Sample collection

The tissue samples and PBMCs used for protein identification
and mRNA expression analyses were collected from pigs
raised in the Ninghe breeding pig farm in Tianjin, China.

For purpose of generating profiles of transcriptome and pro-
teome of all major organs and tissues of pigs, we totally col-
lected 34 samples (i.e., 33 pooled tissues and the PBMCs)

from the nine unrelated Duroc pigs, including three adult male
pigs and three female pigs at 200–240 days of age, as well as
three male infant pigs at 21–25 days of age. All pig tissues were

histologically confirmed to be normal and healthy by an expe-
rienced pathologist. An overview of all involved tissues and
cell samples is provided in Table S3.

Preparation of pig samples

All samples were snap frozen within 20 min after slaughter and
stored in liquid nitrogen until usage. PBMCs were isolated

using Ficoll-Hypaque PLUS (GE Healthcare, Beijing, China)
following the manufacturer’s instructions. In brief, the whole
blood was first diluted by an equal volume of phosphate buffer

solution (PBS). Then, 20 ml of diluted blood was carefully
added on top of 10 ml of Ficoll-Hypaque solution in a 50 ml
conical tube and centrifuged at 460 g for 20 min at room tem-
perature. After centrifugation, the middle whitish interface

containing mononuclear cells was transferred to a new tube,
washed by PBS, and centrifuged at 1000 r/min for 10 min
twice.

Separation of protein and RNA

Fresh frozen tissue was thawed, cut into small pieces, and

extensively washed with precooled PBS. A pool of equal
amounts of tissues from three unrelated pigs was homogenized
and sonicated in cold lysis buffer. Extraction of 100 lg protein

using protein extraction buffer (8 M urea, 0.1% SDS) contain-
ing an additional 1 mM phenylmethylsulfonyl fluoride (Bey-
otime Biotechnology, Shanghai, China) and protease
inhibitor cocktail (Roche, CA) was kept on ice for 30 min

and then centrifuged at 16,000 g for 15 min at 4 �C. The super-
natant was collected and determined with BCA assay (Pierce,
WA) and 10%–20% SDS–PAGE. The cell lysate was stored

at �80 �C before LC–MS/MS analysis.
Total RNA was extracted from the pooled tissues via the

Trizol method (Invitrogen, Carlsbad, CA) according to stan-

dard protocols. RNA degradation and contamination were
monitored on 1% agarose gels. The purity and contamination
of total RNA were checked using NanoPhotometer

(IMPLEN, Los Angeles, CA) and Qubit RNA Assay Kit in
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA).
RNA integrity was measured using the RNA Nano 6000 Assay
Kit of the Bioanalyzer 2100 system (Agilent Technologies,

Palo Alto, CA). All pig samples with an RNA integrity num-
ber (RIN) value greater than 7.0 and at least 5 lg of total RNA
were included and batched for RNA-seq.

Library construction and RNA-seq

Total RNA of samples meeting quality control (QC) criteria

were rRNA depleted, and depleted QC was done using the
RiboMinus Eukaryote System v2 and RNA 6000 Pico chip
according to the manufacturer’s protocol. RNA-seq libraries

were constructed using the NEBNext Ultra RNA Library Prep
Kit (New England Biolabs, Ipswich, England) for Illumina
with 3 lg rRNA-depleted RNA according to the manufac-
turer’s recommendation. RNA-seq library preparations were

clustered on a cBot Cluster Generation System using HiSeq
PE Cluster Kit v4 cBot (Illumina, CA) and sequenced using
the Illumina Hiseq 2500 platform according to the manufac-

turer’s instructions, to a minimum of 10 G reads per sample
(corresponding to 125 bp paired-end reads).

Fractionation of peptide mixture using a C18 column

Peptide mixture from each sample was first lyophilized and
reconstituted in buffer A [2% acetonitrile (ACN), 98% H2O,
pH 10]. Then, it was loaded onto a Xbridge PST C18 Column

(130 Å, 5 lm, 250 mm � 4.6 mm, Waters, MA) on the Dionex
Ultimate 3000 HPLC (Dionex, CA) equipped with a UV detec-
tor. Mobile phase consists of buffer A and buffer B (90%

ACN, 10% H2O, pH 10). The column was equilibrated with
100% buffer A for 25 min before sample injection. The mobile
phase gradient was set as follows at a flow rate of 1.0 ml/min:

1) 0–19.9 min: 0% buffer B; 2) 19.9–20 min: 0%–4% buffer B;
3) 20–22 min: 4%–8% buffer B; 4) 22–42 min: 8%–20% buffer
B; 5) 42–59 min: 20%–35% buffer B; 6) 59–60 min: 35%–45%

buffer B; 7) 60–61 min: 45%–95% buffer B; 8) 61–66 min: 95%
buffer B; 9) 66–67 min: 95%–0% buffer B; and 10) 67–91 min:
0% buffer B. A fraction was collected every minute from
24 min to 63 min, and a total of 40 fractions collected were

then concentrated to 20 fractions, vacuum dried, and stored
at –80 �C until further LC–MS/MS analysis.

LC–MS/MS

Peptide mixture was analyzed on a Q Exactive instrument
(ThermoFisher Scientific, MA) coupled to a reversed phase

chromatography on a Dionex nano-UPLC system using an
Acclaim C18 PepMap100 nano-Trap column (75 lm � 2 cm,
2 lm particle size, ThermoFisher Scientific) connected to an

Acclaim PepMap RSLC C18 analytical column
(75 lm � 25 cm, 2 lm particle size, ThermoFisher Scientific).
Before loading, the sample was dissolved in sample buffer,
containing 4% ACN and 0.1% formic acid. Samples were

washed with 97% mobile phase A (99.9% H2O, 0.1% formic
acid) for concentration and desalting. Subsequently, peptides
were eluted over 85 min using a linear gradient of 3%–80%

mobile phase B (99.9% ACN, 0.1% formic acid) at a flow rate
of 300 nl/min using the following gradient: 3% B for 5 min;
3%–5% B for 1 min; 5%–18% B for 42 min; 18%–25% B
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for 11 min; 25%–30% B for 3 min; 30%–80% B for 1 min;
hold at 80% B for 5 min; 80%–3% B for 0.5 min; and then
hold at 3% B for 21.5 min. High mass resolution and

higher-energy collisional dissociation (HCD) was employed
for peptide identification. The nano-LC was coupled online
with the Q Exactive mass spectrometer using a stainless steel

emitter coupled to a nanospray ion source. The eluent was
sprayed via stainless steel emitters at a spray voltage of
2.3 kV and a heated capillary temperature of 320 �C. The Q

Exactive instrument was operated in data-dependent mode,
automatically switching between MS and MS2. MS analysis
was performed in a data dependent manner with full scans
(350–1600 m/z) acquired using an Orbitrap mass analyzer at

a mass resolution of 70,000 at 400 m/z on Q Exactive using
an automatic gain control (AGC) target value of 1 � 106

charges. All the tandem mass spectra were produced by

HCD. Twenty most intense precursor ions from a survey scan
were selected for MS/MS from each duty cycle and detected at
a mass resolution of 17,500 at m/z of 400 in Orbitrap analyzer

using an AGC target value of 2 � 105 charges. The maximum
injection time for MS2 was 100 ms and dynamic exclusion was
set to 20 s.

Validation of identified proteins

In total, 71 peptides from 31 proteins (7 known proteins, 11
homologous novel proteins, and 13 non-homologous novel

proteins) were randomly selected for peptide synthesis (GL
biochem, Shanghai, China) for validation of identified pro-
teins. The synthesized peptide sequences were mixed and pro-

cessed twice by chromatographic separation using the Thermo
Scientific EASY-nLC HPLC system and Thermo Scientific
EASY column. Mass spectral analysis was then performed

by Q Exactive (ThermoFisher Scientific) and processed by
Mascot V2.5.1. Finally, all these peptides were compared with
those identified from our proteome analysis to verify novel

proteins.

QC processing

We conducted a QC step on raw fastq reads for efficient and

accurate RNA-seq alignment and analysis. In this step, raw
reads were cleaned up for downstream analyses using the fol-
lowing steps: removal of adapter sequences using BBDuk

(http://sourceforge.net/projects/bbtools/) [33]; calculation of
the Q20, Q30, and GC content of the clean data for QC and
filtering using FASTQC (http://www.bioinformatics.babra-

ham.ac.uk/projects/fastqc/); and homopolymer trimming to
the 30 end of fragments and removed the N bases from the
30 end using FASTX-Toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/).

Read mapping and assembly

RNA-seq data were mapped and genome indexed with Hisat

0.1.6-beta 64-bit [34] to the pig genome release version of
Sus scrofa11.1 (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF
/000/003/025/GCF_000003025.6_Sscrofa11.1/). Sus scrofa11.1

annotation was used as the transcript model reference for
alignment, splice junction identification, and quantification
of all PCGs and isoforms. To obtain expression levels for all
pig genes and transcripts across all 34 samples, FPKM values
were calculated using Stringtie 1.0.4 (Linux_x86_64) [35] with
the default parameters. A gene or transcript was defined as

expressed if it’s FPKM value was measured greater than 0.1
across all tissues. For each tissue, we applied zFPKM
normalization method [26] to generate high-confidence

estimates of gene expression.
zFPKM level-based classification of genes

Refer to the gene classification in human, we also classified the
pig genes into one of the three categories based on the zFPKM
levels in 34 samples: 1) ‘‘tissue-enriched” was only detected in a

single tissue as well as at least 5-fold higher at the zFPKM level
in one tissue compared to the tissue with the second highest
expression; 2) ‘‘group-enriched” was detected in all tissues
from a group, and the expression of genes in any tissue from

the group was higher than that in the tissue(s) not from the
group; and 3) ‘‘ubiquitously-expressed” was detected in all
34 tissue samples.

Construction of a reference protein database

To identify novel proteins and improve existing protein

annotations in the pig genome, the database for protein
searching (MS/MS data searched against protein database)
was taken from three different levels using in-house perl
scripts, including: 1) UniProt database (Sus scrofa); 2)

three-frame-translated mRNA de novo sequences from the
current study; and 3) six-frame-translated pig genome
database. The details are as follows:

Primary database of proteins

Resource protein datasets for pig (UniProt version 20150717
containing 34,131 entries, with 1486 Swiss-Prot and 32,643

TrEMBL) were downloaded from the UniProt database
(http://www.uniprot.org/).

Secondary database of proteins

It is well known that pig proteins were insufficiently repre-
sented by the known detectable proteins, because of the incom-
plete nature of the pig genome assembly and limited

annotation. In our study, three RNA resources were used
(Table S15): 1) EST datasets including 34,131 entries from
UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/susScr3/

bigZips/) and 1,676,406 entries from the NCBI database
(http://www.ncbi.nlm.nih.gov/nucest). ESTs are normally
assembled into longer consensus sequences for three-frame-

translated mRNA protein database using iAssembler version
1.3.2.x64 [36] with default parameter; 2) paired-end read
libraries including 34 RNA-seq libraries from our study and
7 previously published articles and NCBI databases. To con-

struct a complete protein database for three-frame-translated
mRNA, we used Trinity (version 2.0.6) [37] for de novo tran-
scriptome assembly from RNA-seq data, and identified poten-

tial coding regions within Trinity-reconstructed transcripts by
TransDecoder (developed and included with Trinity); and 3)
single-end reads from 10 previous studies were downloaded

from NCBI (http://www.ncbi.nlm.nih.gov/sra/). The methods
for sequence assembly and coding region prediction were

http://sourceforge.net/projects/bbtools/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.uniprot.org/
http://hgdownload.soe.ucsc.edu/goldenPath/susScr3/bigZips/
http://hgdownload.soe.ucsc.edu/goldenPath/susScr3/bigZips/
http://www.ncbi.nlm.nih.gov/nucest
http://www.ncbi.nlm.nih.gov/sra/
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similar to that used for the paired-end reads. Finally, the
length cutoff of the translated proteins was set as 100 amino
acids to ensure the quality of all databases and reduce the

number of false positive hits.

Tertiary database of proteins

To capture the proteins missed during the laboratory discovery

process as far as possible, protein annotation of the pig
genome was carried out using the ab initio methods with
GeneScan (version 1.0) software [38].

Finally, we compared different protein databases to detect
the repetitive protein isoforms (redundancies) among three
protein databases using BLASTP software. And then the

repetitive protein isoforms were removed and reserved for only
one according to the following database priorities:
UniProt > De novo > Ab initio.
Peptide identification based on database searching

All MS/MS data were analyzed using Mascot (version
2.5.1, Matrix Science, London, UK) [39] and X!Tandem

(version 2010.12.01.1, The GPM, Rockville, MD) [40]. Mas-
cot was set up to search the three pig databases (UniProt,
De novo, and Ab initio), as well as the common Repository

of Adventitious Proteins (cRAP) database (downloaded on
07 Jul 2015, 116 sequences) assuming the digestion enzyme
trypsin.

The high-resolution peaklist files were converted into
Mascot generic format prior to database searching by
ProteoWizard (version 3.0.6). X!Tandem was set up to

search a subset of the pig databases, as well as the
cRAP database. The target-decoy option of Mascot and
X!Tandem was enabled (decoy database with reversed
protein sequences). Mascot and X!Tandem were used for

searching with a fragment ion mass tolerance of
0.050 Da and a parent ion tolerance of 10.0 PPM. The
number of maximums allowed missed cleavage sites was

set to 2. All PSMs identified at 1% FDR were set for
all samples. Carbamidomethyl of cysteine was specified
in Mascot and X!Tandem as a fixed modification. Gln-

>pyro-Glu of the N-terminus, oxidation of methionine,
and acetylation of the N-terminus were specified in Mas-
cot as variable modifications. Glu->pyro-Glu of the
N-terminus, ammonia-loss of the N-terminus, Gln-

>pyro-Glu of the N-terminus, oxidation of methionine,
and acetylation of the N-terminus were specified in
X!Tandem as variable modifications.

Scaffold was used to validate MS/MS-based peptide and
protein identification. Peptide identification was accepted if
it achieved an FDR < 1% by the Scaffold local FDR algo-

rithm. Protein identification was accepted if it had an
FDR < 1% and contained at least 2 identified peptides.
Protein probability was assigned by the Protein Prophet algo-

rithm. Proteins that contained similar peptides and could
not be differentiated based on MS/MS analysis alone were
grouped to satisfy the principles of parsimony. Proteins
sharing significant peptide evidence were grouped into clus-

ters. In the database searching workflow, unmatched MS/
MS spectra generated from the Uniprot database searching
were then searched against next level protein database (De

novo and Ab initio).
Mapping the protein isoforms to the pig genome

We attempted to map all unknown protein isoforms against
the pig genome using MAKER annotation workflow [22].
First, the low-complexity repeats of pig reference genome were

soft-masked by RepeatMasker. Then, the unknown protein
isoforms were aligned to the masked reference genome by
BLAST [23] for identifying their genomic location roughly.
Last, Exonerate [24] was used to realign and polish the

exon–intron boundaries of the unknown gene with the splice-
site aware alignment algorithm. The house-python script was
used to deal with the result: if a successfully aligned protein

had 95% identity overall, 95% coverage, and a less than
50-kb distance from its neighboring exon, it was recorded to
be an effectively aligned sequence.

Subcellular prediction and classification of pig proteome

The prediction of pig membrane proteins was carried out

similarly to how these proteins were classified in the human
proteome. A total of seven methods, MEMSAT3 [41],
MEMSAT-SVM [42], SPOCTOPUS [43], THUMBUP [44],
SCAMPI multi-sequence-version [45], TMHMM [46], and

Phobius version 1.01 [47], were used to identify membrane
protein topology with different assessment algorithms [e.g.,
opological models, neural networks, support vector machines

(SVMs), scale of free energy contributions, and hidden
Markov models (HMMs)]. In our study, a protein isoform
was assigned as transmembrane if it was predicted by at least

four out of the seven methods.
In accordance with human secretome analysis, the predic-

tion of signal peptides was based on neural networks and
HMMs with three software programs: SignalP4.0 [48], SPOC-

TOPUS [43], and Phobius version 1.01 [47]. The protein iso-
forms, which were predicted to contain a signal peptide by at
least two out of the three methods, were classified as poten-

tially secreted.
Integrating the prediction results of pig membrane proteins

and pig secreted proteins, we classified each pig protein iso-

form into one of the three classes: secreted, membrane, or
soluble (neither membrane nor secreted protein). In order to
compare the proteome between pig and human conveniently,

we also constructed four major categories to classify proteins
composed of single or multipe subunits: 1) ‘‘soluble” contained
proteins with subunits only from the soluble category; 2)
‘‘secreted” contained proteins with subunits only from the

secreted category or from both the soluble and secreted
categories; 3) ‘‘membrane” included proteins with subunits
only from the membrane category or from both the soluble

and membrane categories; and 4) ‘‘membrane and secreted”
contained proteins with subunits from both the secreted and
membrane categories or from the soluble, secreted, and

membrane categories.

Weighted gene co-expression network analysis

In order to reveal the groups of PCGs that are functionally
related in the whole pig organism, 34 pig tissue datasets were
constructed using the WGCNA method. In our study, we
mainly used the blockwiseModules function in the WGCNA

R package [49] to perform the co-expression network
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construction, with the following parameters: corType = pear-
son; maxBlockSize = 30,000; power = 8; minMod-
uleSize = 30; mergeCutHeight = 0.1. The brief function of

blockwiseModules automatically constructed a correlation net-
work, created a cluster tree, defined modules as branches,
merged close modules, and yielded the module colors and

module eigen genes for subsequent analysis (such as visualiza-
tion by the plotDendroAndColors function).
Functional annotations for pig PCGs

GO analysis and KEGG (http://www.genome.jp/kegg/) path-
way enrichment analysis were performed and corrected by

FDR method with KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/
anno_iden.php). GO terms appearing in this study were sum-
marized within three categories: cell component, molecular
function, and biological process. In view of the most complete

gene annotation in human genome, we gave priority to those
human annotated genes which were homologous to pig genes
and utilized them as the background.
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