
https://doi.org/10.1007/s12021-020-09467-7

SOFTWARE ORIGINAL ARTICLE

MEArec: A Fast and Customizable Testbench Simulator
for Ground-truth Extracellular Spiking Activity

Alessio Paolo Buccino1,2 ·Gaute Tomas Einevoll1,3

© The Author(s) 2020

Abstract
When recording neural activity from extracellular electrodes, both in vivo and in vitro, spike sorting is a required and very
important processing step that allows for identification of single neurons’ activity. Spike sorting is a complex algorithmic
procedure, and in recent years many groups have attempted to tackle this problem, resulting in numerous methods and
software packages. However, validation of spike sorting techniques is complicated. It is an inherently unsupervised problem
and it is hard to find universal metrics to evaluate performance. Simultaneous recordings that combine extracellular and
patch-clamp or juxtacellular techniques can provide ground-truth data to evaluate spike sorting methods. However, their
utility is limited by the fact that only a few cells can be measured at the same time. Simulated ground-truth recordings
can provide a powerful alternative mean to rank the performance of spike sorters. We present here MEArec, a Python-
based software which permits flexible and fast simulation of extracellular recordings. MEArec allows users to generate
extracellular signals on various customizable electrode designs and can replicate various problematic aspects for spike
sorting, such as bursting, spatio-temporal overlapping events, and drifts. We expect MEArec will provide a common
testbench for spike sorting development and evaluation, in which spike sorting developers can rapidly generate and evaluate
the performance of their algorithms.

Keywords Spike sorting testbench · Benchmark data · Extracellular recordings simulator · Open-source software

Introduction

Extracellular neural electrophysiology is one of the most
used and important techniques to study brain function.
It consists of measuring the electrical activity of neurons
from electrodes in the extracellular space, that pick up the
electrical activity of surrounding neurons. To communicate
with each other, neurons generate action potentials, which

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s12021-020-09467-7) contains
supplementary material, which is available to authorized users.

� Alessio Paolo Buccino
alessiob@ifi.uio.no; alessio.buccino@bsse.ethz.ch

1 Centre for Integrative Neuroplasticity (CINPLA), University
of Oslo, Oslo, Norway

2 Present address: Bio Engineering Laboratory, Department
of Biosystems Science and Engineering, ETH Zürich,
Zürich, Switzerland

3 Faculty of Science and Technology, Norwegian University
of Life Sciences, Ås, Norway

can be identified in the recorded signals as fast potential
transients called spikes.

Since electrodes can record the extracellular activity
of several surrounding neurons, a processing step called
spike sorting is needed. Historically this has required
manual curation of the data, which in addition to being
time consuming also introduces human bias to data
interpretations. In recent years, several automated spike
sorters have been developed to alleviate this problems.
Spike sorting algorithms (Rey et al. 2015; Lefebvre et al.
2016) attempt to separate spike trains of different neurons
(units) from the extracellular mixture of signals using a
variety of different approaches. After a pre-processing step
that usually involves high-pass filtering and re-referencing
of the signals to reduce noise, some algorithms first
detect putative spikes above a detection threshold and
then cluster the extracted and aligned waveforms in a
lower-dimensional space (Quiroga et al. 2004; Rossant
et al. 2016; Chung et al. 2017; Hilgen et al. 2017; Jun
et al. 2017). Another approach consists of finding spike
templates, using clustering methods, and then matching
the templates recursively to the recordings to find when

Published online: 9 July 2020

Neuroinformatics (2021) 19:185–204

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-020-09467-7&domain=pdf
https://doi.org/10.1007/s12021-020-09467-7
mailto: alessiob@ifi.uio.no
mailto: alessio.buccino@bsse.ethz.ch

a certain spike has occurred. The general term for these
approaches is template-matching (Pachitariu et al. 2016;
Yger et al. 2018; Diggelmann et al. 2018). Other approaches
have been explored, including the use of independent
component analysis (Jäckel et al. 2012; Buccino et al. 2018)
and semi-supervised approaches (Lee et al. 2017).

The recent development of high-density silicon probes
both for in vitro (Berdondini et al. 2009; Frey et al. 2009)
and in vivo applications (Neto et al. 2016; Jun et al. 2017)
poses new challenges for spike sorting (Steinmetz et al.
2018). The high electrode count calls for fully automatic
spike sorting algorithms, as the process of manually
curating hundreds or thousands of channels becomes more
time consuming and less manageable. Therefore, spike
sorting algorithms need to be be capable of dealing with
a large number of units and dense probes. To address
these requirements, the latest developments in spike sorting
software have attempted to make algorithms scalable and
hardware-accelerated (Pachitariu et al. 2016; Jun et al. 2017;
Yger et al. 2018; Pachitariu et al. 2019).

The evaluation of spike sorting performance is also not
trivial. Spike sorting is unsupervised by definition, as the
recorded signals are only measured extracellularly with
no knowledge of the underlying spiking activity. A few
attempts to provide ground-truth datasets, for example by
combining extracellular and patch-clamp or juxtacellular
recordings (Henze et al. 2000; Harris et al. 2000; Neto et al.
2016; Yger et al. 2018; Marques-Smith et al. 2018; Allen
et al. 2018) exist, but the main limitation of this approach
is that only one or a few cells can be patched at the same
time, providing very limited ground-truth information with
respect to the number of neurons that can be recorded
simultaneously from extracellular probes. An alternative
method consists of adding artificial or previously-sorted
and well-isolated spikes in the recordings (hybrid method)
(Rossant et al. 2016; Wouters et al. 2019). The hybrid
approach is convenient as all the characteristics of the
underlying recording are kept. However, only a few hybrid
units can be added at a time, and this limits the validation
capability of this method.

Biophysically detailed simulated data provide a powerful
alternative and complementary approach to spike sorting
validation (Einevoll et al. 2012). In simulations, recordings
can be built from known ground-truth data for all neurons,
which allows one to precisely evaluate the performance of
spike sorters. Simulators of extracellular activity should be
able to replicate important aspects of spiking activity that
can be challenging for spike sorting algorithms, including
bursting modulation, spatio-temporal overlap of spikes,
unit drifts over time, as well as realistic noise models.
Moreover, they should allow users to have full control over
these features and they should be efficient and fast. While

simulated recordings provide ground-truth information of
many units at once, it is an open question how realistically
they can reproduce real recordings.

In the last years, there have been a few projects
aiming to develop neural simulators for benchmarking spike
sorting methods (Camuñas-Mesa and Quiroga 2013; Hagen
et al. 2015; Mondragón-González and Burguière 2017):
Camunas et al. developed NeuroCube (Camuñas-Mesa
and Quiroga 2013), a MATLAB-based simulator which
combines biophysically detailed cell models and synthetic
spike trains to simulate the activity of neurons close to a
recording probe, while noise is simulated by the activity
of distant neurons. NeuroCube is very easy to use with
a simple and intuitive graphical user interface (GUI). The
user has direct control of parameters to control the rate of
active neurons, their firing rate properties, and the duration
of the recordings. The cell models are shipped with the
software and recordings can be simulated on a single
electrodes or a tetrode. It is relatively fast, but the cell model
simulations (using NEURON (Carnevale and Hines 2006))
are re-simulated for every recording.

Hagen et al. developed ViSAPy (Hagen et al. 2015),
a Python-based simulator that uses multi-compartment
simulation of single neurons to generate spikes, network
modeling of point-neurons in NEST (Diesmann and
Gewaltig 2001) to generate synaptic inputs onto the spiking
neurons, and experimentally fitted noise. ViSAPy runs
a full network simulation in NEURON (Carnevale and
Hines 2006) and computes the extracellular potentials using
LFPy (Lindén et al. 2014; Hagen et al. 2018). ViSAPy
implements a Python application programming interface
(API) which allows the user to set multiple parameters
for the network simulation providing the synaptic input,
the probe design, and the noise model generator. Cell
models can be freely chosen and loaded using the LFPy
package. Further, 1-dimensional drift can be incorporated
in the simulations by shifting the electrodes over time
(Franke et al. 2010). Learning to use the software and, in
particular, tailoring the specific properties of the resulting
spike trains, for example burstiness, requires some effort
by the user. As the running of NEURON simulations with
biophysically detailed neurons can be computationally
expensive, the use of ViSAPy to generate long-duration
spike-sorting benchmarking data is boosted by access to
powerful computers.

Mondragon et al. developed a Neural Benchmark
Simulator (NBS) (Mondragón-González and Burguière
2017) extending the NeuroCube software. NBS extends
the capability of NeuroCube for using user-specific
probes, and it combines the spiking activity signals (from
NeuroCube), with low-frequency activity signals, and
artifacts libraries shipped with the code. The user can set

186 Neuroinform (2021) 19:185–204

different weight parameters to assemble the spiking, low-
frequency, and artifact signals, but these three signal types
are not modifiable.

Despite the existence of such tools for generating
benchmarking data, their use in spike sorting literature
has until now been limited, making the benchmarking and
validation of spike sorting algorithms non-standardized and
unsystematic. A natural question to ask is thus how to best
stimulate the use of such benchmarking tools in the spike
sorting community.

From a spike sorting developer perspective, we argue
that an ideal extracellular simulator should be i) fast, ii)
controllable, iii) biophysically detailed, and iv) easy to
use. A fast simulator would enable spike sorter developers
to generate a large and varied set of recordings to test
their algorithms against and to improve their spike sorting
methods. Controllability refers to the possibility to have
direct control of features of the simulated recordings.
The ideal extracellular spike simulator should include the
possibility to use different cell models and types, to decide
the firing properties of the neurons, to control the rate of
spatio-temporal spike collisions, to generate recordings on
different probe models, and to have full reproducibility of
the simulated recordings. A biophysically detailed simulator
should be capable of reproducing key physiological aspects
of the recordings, including, but not limited to, bursting
spikes, drifts between the electrodes and the neurons, and
realistic noise profiles. Finally, to maximize the ease of use,
the ideal extracellular simulator should be designed as an
accessible and easy to learn software package. Preferably,
the tool should be implemented with a graphical user
interface (GUI), a command line interface (CLI), or with a
simple application programming interface (API).

With these principles in mind, we present here MEArec,
an open-source Python-based simulator. MEArec provides
a fast, highly controllable, biophysically detailed, and
easy to use framework to generate simulated extracellular
recordings. In addition to producing benchmark datasets,
we developed MEArec as a powerful tool that can serve
as a testbench for optimizing existing and novel spike
sorting methods. To facilitate this goal, MEArec allows
users to explore how several aspects of recordings affect
spike sorting, with full control of challenging features such
as bursting activity, drifting, spatio-temporal synchrony, and
noise effects, so that spike sorter developers can use it to
help their algorithm design.

The source code for MEArec is on Github (https://
github.com/alejoe91/MEArec) and the Python package is
on PyPi (https://pypi.org/project/MEArec/). An extensive
documentation is available (https://mearec.readthedocs.io/),
and the code is tested with a continuous integration platform
(https://travis-ci.org/). Moreover, all the datsets generated

for this article and used to make figures are available on
Zenodo (https://doi.org/10.5281/zenodo.3696926).

The article is organized as follows: in Section “Getting
started with MEArec” we introduce the principles of
MEArec and we show how to run simulations with the CLI
and Python API. In Section “MEArec features” we explain
the different features available in MEArec, including the
capability of simulating recordings for MEAs, reproducing
bursting behavior, controlling spatio-temporal overlaps,
reproducing drifts, and replicating biological noise charac-
teristics. In Section “Testbench for spike sorting development
and evaluation” we present the use of MEArec as a testbench
for spike sorting development, and its integration with the
SpikeInterface framework (Buccino et al. 2019). In Section
“Simulation output” we document the simulation outputs
and how to save and load them with the MEArec API.
Finally, in Section Discussion we discuss the presented soft-
ware and contextualize it with respect to the state-of-the-art.

Getting started with MEArec

We start by describing the principle of the MEArec
simulator and showing examples on how to get started with
the simulations.

The simulation is split in two phases: templates
generation (Fig. 1a) and recordings generation (Fig. 1b).
Templates (or extracellular action potentials - EAPs) are
generated using biophysically realistic cell models which
are positioned in the surroundings of a probe model.
The templates generation phase is further divided into an
intracellular and an extracellular simulation. During the
intracellular simulation, each cell model is stimulated with
a constant current and transmembrane currents of action
potentials are computed (using NEURON (Carnevale and
Hines 2006)) and stored to disk (the intracellular simulation
is the most time consuming part and storing its output to
disk enables one to run it only once). The extracellular
simulation uses the LFPy package (Lindén et al. 2014;
Hagen et al. 2018) to compute extracellular potentials
generated at the electrodes’ locations using the well-
established line-source approximation (see Supplementary
Methods – Templates generation – for details). In particular,
the cell morphology is loaded and shifted to a random
position around the probe. Additionally, the user can
add different rotations to the models. When the cell
model is shifted and rotated, the previously computed and
stored transmembrane currents are loaded and the EAP is
computed. This step is repeated several times for each cell
model, for different positions and rotations. The templates
generation phase outputs a library of a large variety of
extracellular templates, which can then be used to build the

187Neuroinform (2021) 19:185–204

https://github.com/alejoe91/MEArec
https://github.com/alejoe91/MEArec
https://pypi.org/project/MEArec/
https://mearec.readthedocs.io/
https://travis-ci.org/
https://doi.org/10.5281/zenodo.3696926

recordings. The templates generation phase is the most time
consuming, but the same template library can be used to
generate multiple recordings. It is therefore recommended
to simulate many more templates than needed by a single
recording, so that the same template library can be used to
simulate a virtually infinite number of recordings.

MEArec, at installation, comes with 13 layer 5 cortical
cell models from the Neocortical Microcircuit Portal

(Ramaswamy et al. 2015). This enables the user to dive into
simulations without the need to download and compile cell
models. On the other hand, the initial set of cell models
can be easily extended as outlined in the Supplementary
Methods – Templates generation.

To generate 30 extracellular spikes (also referred as
templates) per cell model recorded on a shank tetrode probe,
the user can simply run this command:

a b

Fig. 1 Overview of the MEArec software. The simulation is divided
in two phases: templates generation and recordings generation. a The
templates generation phase is split in an intracellular and extracellular
simulation. The intracellular simulation computes, for each available
cell model, the transmembrane currents generated by several action
potentials. In the extracellular simulation, each cell model is randomly
moved and rotated several times and the stored currents are loaded

to the model to compute the extracellular action potential, building a
template library. b The recordings generation phase combines tem-
plates selected from the template library and randomly generated spike
trains. Selected templates are pre-processed before a customized con-
volution with the spike trains. Additive noise is added to the output of
the convolution, and the recordings can be optionally filtered

>> mearec gen-templates -prb tetrode-mea-l -n 30 --seed 0
...
Saved templates in path-to-templates-file.h5

The -prb option allows for choosing the probe model,
-n controls the number of templates per cell model
to generate, and the --seed option is used to ensure
reproducibility and if it is not provided, a random seed is
chosen. In both cases, the seed is saved in the HDF5 file, so
that the same templates can be replicated.

Recordings are then generated by combining templates
selected with user-defined rules (based on minimum dis-
tance between neurons, amplitudes, spatial overlaps, and
cell-types) and by simulating spike trains (Supplementary
Methods – Recordings generation – for details on spike

trains generation and template selection). Selected tem-
plates and spike trains are assembled using a customized
(or modulated) convolution, which can replicate interest-
ing features of spiking activity such as bursting and drift.
After convolution, additive noise is generated and added
to the recordings. Finally, the output recordings can be
optionally filtered with a band-pass or a high-pass fil-
ter. Note that filtering the recordings will affect the shape
and amplitude of the spike waveforms, but this is a com-
mon procedure in spike sorting to remove lower frequency
components.

188 Neuroinform (2021) 19:185–204

Recordings can be generated with the CLI as follows:

Fig. 2 Example of simulated tetrode recording. a One second of the
recording timeseries on the four tetrode channels. The templates for
the different units are overlapped to the recording traces in differ-
ent colors. b Extracted waveforms on the channel with the largest

amplitude for the six units in the recordings. c PCA projections on the
first two PC components of the four tetrode channels. Each color cor-
responds to a neuron. The diagonal plots display the histograms of the
PC projection on the corresponding channel

>> mearec gen-recordings -t path-to-templates-file.h5 -d 30 -ne 4 -ni 2
--st-seed 0 --temp-seed 1 --noise-seed 2 --conv-seed 3
...
Saved recordings in path-to-recordings-file.h5

The gen-recordings command combines the selec-
ted templates from 4 excitatory cells (-ne 4) and 2
inhibitory cells (-ni 2), that usually have a more narrow
spike waveform and a higher firing rate, with randomly
generated spike trains. The duration of the output recordings

is 30 seconds (-d 30). In this case, four random seeds
control the spike train random generation (--st-seed
0), the template selection (--temp-seed 1), the noise
generation (--noise-seed 2), and the convolution
process (--conv-seed 3). Figure 2 shows one second

189Neuroinform (2021) 19:185–204

of the generated recordings (A), the extracted waveforms
and the mean waveforms for each unit on the electrode with
the largest peak (B), and the principal component analysis
(PCA) projections of the waveforms on the tetrode channels.

MEArec also implements a convenient Python API,
which is run internally by the CLI commands. For example,
the following snippet of code implements the same commands
shown above for generating templates and recordings:

import MEArec as mr

generate templates
templates_params = mr.get_default_templates_params()
cell_models_folder = mr.get_default_cell_models_folder()
templates_params[’probe’] = ’tetrode-mea-l’
templates_params[’n’] = 30
templates_params[’seed’] = 0
tempgen = mr.gen_templates(cell_models_folder=cell_models_folder,

params=templates_params)
mr.save_template_generator(tempgen, ’path-to-templates-file.h5’)

generate recordings
recordings_params = mr.get_default_recordings_params()
recordings_params[’spiketrains’][’n_exc’] = 4
recordings_params[’spiketrains’][’n_inh’] = 2
recordings_params[’spiketrains’][’duration’] = 30
recordings_params[’seeds’][’spiketrains’] = 0
recordings_params[’seeds’][’templates’] = 1
recordings_params[’seeds’][’noise’] = 2
recordings_params[’seeds’][’convolution’] = 3
recgen = mr.gen_recordings(params=recordings_params,

templates=’path-to-templates-file.h5’)
mr.save_recording_generator(recgen, ’path-to-recordings-file.h5’)

Moreover, the Python API implements plotting functions
to visually inspect the simulated templates and recordings.
For example, Fig. 2 panels were generated using the
plot recordings() (A), plot waveforms() (B),
and plot pca map() (C) functions.

MEArec is designed to allow for full customization,
transparency, and reproducibility of the simulated record-
ings. Parameters for the templates and recordings gener-
ation are accessible by the user and documented, so that
different aspects of the simulated signals can be finely
tuned (see Supplementary Methods for a list of parameters
and their explanation). Moreover, the implemented com-
mand line interface (CLI) and simple Python API, enable
the user to easily modify parameters, customize, and run
simulations.

Finally, MEArec permits to manually set several random
seeds used by the simulator to make recordings fully
reproducible. This feature also enables one to study how
separate characteristics of the recordings affect the spike
sorting performance. As an example, we will show in
the next sections how to simulate a recording sharing all
parameters, hence with exactly the same spiking activity, but
with different noise levels or drifting velocities.

MEArec features

Generation of realistic Multi-Electrode Array
recordings

The recent development of Multi-Electrode Arrays (MEAs)
enables researchers to record extracellular activity at very
high spatio-temporal density both for in vitro (Berdondini
et al. 2009; Frey et al. 2009) and in vivo applications (Neto
et al. 2016; Jun et al. 2017). The large number of electrodes
and their high density can result in challenges for spike
sorting algorithms. It is therefore important to be able to
simulate recordings from these kind of neural probes.

To deal with different probe designs, MEArec uses
another Python package (MEAutility - https://meautility.
readthedocs.io/), that allows users to easily import several
available probe models and to define custom probe designs.
Among others, MEAutility include Neuropixels probes
(Jun et al. 2017), Neuronexus commercial probes (http://
neuronexus.com/products/neural-probes/), and a wide vari-
ety of square MEA designs with different contact densities
(the list of available probes can be found using the mearec
available-probes command).

190 Neuroinform (2021) 19:185–204

https://meautility.readthedocs.io/
https://meautility.readthedocs.io/
http://neuronexus.com/products/neural-probes/
http://neuronexus.com/products/neural-probes/

Similarly to the tetrode example, we first have to generate
templates for the probes. These are the commands to generate
templates and recordings for a Neuropixels design with 128
electrodes (Neuropixels-128). The recordings contain
60 neurons, 48 excitatory and 12 inhibitory. With similar
commands, we generated templates and recordings for a

Neuronexus probe with 32 channels (A1x32-Poly3-5mm-
25s-177-CM32 - Neuronexus-32) with 20 cells (16
excitatory and 4 inhibitory), and a square 10x10 MEA with
15 μm inter-electrode-distance (SqMEA-10-15) and 50
cells (40 excitatory and 10 inhibitory).

a b

c d e

Fig. 3 Generation of high-density multi-electrode array recordings. a
Example of three available probes: a commercial Neuronexus probe
(left), the Neuropixels probe (middle), and a high-density square
MEA. b Sample templates for each probe design. (C-D-E) One-second

snippets of recordings from the Neuronexus probe c, the Neuropixels
probe d, and the square MEA probe e. The highlighted windows dis-
play the activity over three adjacent channels and show how the same
spikes are seen on multiple sites

>> mearec gen-templates -prb Neuropixels-128 -n 100 --seed 0
...
Saved templates in path-to-Neuropixels-templates-file.h5

>> mearec gen-recordings -t path-to-Neuropixels-templates-file.h5 -d 30 -ne 48 -ni 12
--st-seed 0 --temp-seed 1 --noise-seed 2 --conv-seed 3
...
Saved recordings in path-to-Neuropixels-recordings-file.h5

Figure 3 shows the three above-mentioned probes (A), a
sample template for each probe design (B), and one-second
snippets of the three recordings (C-D-E), with zoomed in
windows to highlight spiking activity.

While all the recordings shown so far have been simulated
with default parameters, several aspects of the spiking
activity are critical for spike sorting. In the next sections,
we will show how these features, including bursting, spatio-
temporal overlapping spikes, drift, and noise assumptions
can be explored with MEArec simulations.

Burstingmodulation of spike amplitude and shape

Bursting activity is one of the most complicated features
of spiking activity that can compromise the performance
of spike sorting algorithms. When a neuron bursts, i.e.,
fires a rapid train of action potentials with very short inter-
spike intervals, the dynamics underlying the generation
of the spikes changes over the bursting period (Hay
et al. 2011). While the bursting mechanism has been
largely studied with patch-clamp experiments, combined

191Neuroinform (2021) 19:185–204

extracellular-juxtacellular recordings (Allen et al. 2018)
and computational studies (Hagen et al. 2015) suggest
that during bursting, extracellular spikes become lower in
amplitude and wider in shape.

In order to simulate this property of the extracellular
waveforms in a fast and efficient manner, templates
can be modulated both in amplitude and shape during
the convolution operation, depending on the spiking
history.

To demonstrate how bursting is mimicked, we built a
toy example with a constant spike train with 10 ms inter-
spike-interval (Fig. 4a). A modulation value is computed
for each spike and it is used to modulate the waveform
for that event by scaling its amplitude, and optionally
stretching its shape. The blue dots show the default
modulation (bursting disabled), in which the modulation
values are drawn from a Gaussian distribution with unitary
mean to add some physiological variation to the spike

waveforms. When bursting is enabled (by setting the
bursting parameter to true), the modulation values are
computed based on the spike history, and it depends on the
number of consecutive spikes in a bursting event and their
average inter-spike-intervals (see Supplementary Methods –
Recordings generation - Modulated convolution – for details
on the modulation values calculation).

Bursting events can be either controlled by the maximum
number of spikes making a burst (orange dots - 5 spikes
per burst; green dots - 10 spikes per burst) or by setting a
maximum bursting duration (red dots - maximum 75 ms).
Note that in Fig. 4a the spike train is constant just to
illustrate the computation of the modulation values. In
actual simulations, instead, the modulation values will
depend on the firing rate and the timing between spikes.

By default, spikes are only modulated in amplitude.
The user can also enable shape modulation by setting
the shape mod parameter to true. The modulation value,

a b c

d e

Fig. 4 Bursting behavior. a Modulation values computation for a sam-
ple spike train of 300 ms with constant inter-spike-intervals of 10 ms.
The blue dots show the modulation values for each spike when bursting
is not activated: each value is drawn from a N (1, 0.052) distribution.
When bursting is activated, a bursting event can be limited by the max-
imum number of spikes (orange - 5 spikes, green - 10 spikes), or by
the maximum bursting event duration (red - 75 ms). b Modulated tem-
plates. The blue lines show templates modulated in amplitude only.
The orange and green lines display the same templates with added
shape modulation. c Modulation in tetrode recordings. The top panel

shows spikes in a one-second period. The middle panel displays the
modulation values for those spikes. The bottom panel shows the modu-
lated template on the electrode with the largest peak after convolution.
(D-E) PCA projections on the first principal component for the tetrode
recordings without bursting (the same as Section Getting started with
MEArec) d and re-simulated with bursting e and shape modulation
enabled. Note that the PCA projections were computed in both cases
from the waveforms without bursting. The clusters, with bursting,
become more spread and harder to separate than without bursting

192 Neuroinform (2021) 19:185–204

computed for each spike, controls both the amplitude
scaling and shape modulation of the spike event. For
amplitude modulation, the amplitude of the spike is
simply multiplied by the modulation value. Additionally,
when shape modulation is enabled, the waveform of each
spike is also stretched. The shape stretch parameter
controls the overall amount of stretch, but the actual
stretch of single waveforms depends on the modulation
value computed for each spike. In Fig. 4b, examples of
bursting templates are shown. The blue traces display
templates only modulated in amplitude, i.e., the amplitude
is scaled by the modulation value. The orange and green
traces, instead, also present shape modulation, with different
values of the shape stretch parameter (the higher the
shape stretch, the more stretched waveforms will be).
We refer to the Supplementary Methods – Recordings
generation - Modulated convolution – for further details on
amplitude and shape modulation.

Figure 4c shows a one-second snippet of the tetrode
recording shown previously after bursting modulation is
activated. The top panel shows the spike events, the middle
one displays the modulation values computed for each
spike, and the bottom panel shows the output of the
modulated convolution between one of the templates (on the
electrode with the largest amplitude) and the spike train.

Figures 4d and e show the waveform projections on the
first principal component of each channel for the tetrode
recording shown in Section Getting started with MEArec
with and without bursting enabled, respectively. In this case
all neurons are bursting units and this causes a stretch in the
PCA space, which is a clear complication for spike sorting
algorithms. Note that shape modulation does not affect all
neurons by the same amount, since it depends on the spike
history and therefore on the firing rate.

Controlling spatio-temporal overlaps

Another complicated aspect of extracellular spiking activity
that can influence spike sorting performance is the occur-
rence of overlapping spikes. While temporal overlapping of
events on spatially separated locations can be solved with
feature masking (Rossant et al. 2016), spatio-temporal over-
lapping can cause a distortion of the detected waveform, due
to the superposition of separate spikes. Some spike sorting
approaches, based on template-matching, are designed to
tackle this problem (Pachitariu et al. 2016; Yger et al. 2018;
Diggelmann et al. 2018).

In order to evaluate to what extent spatio-temporal overlap
affects spike sorting, MEArec allows the user to set the num-
ber of spatially overlapping templates and to modify the
synchrony rate of their spike trains. In Fig. 5 we show
an example of this on aNeuronexus-32probe (see Fig. 3A).
The recording was constructed with two excitatory and
spatially overlapping neurons, whose templates are shown
in Fig. 5a (see Supplementary Methods – Recordings
generation - Overlapping spikes and spatio-temporal
synchrony – for details on the spatial overlap defini-
tion). The spike synchrony rate can be controlled with
the sync rate parameter. If this parameter is not set
(Fig. 5b - left), some spatio-temporal overlapping spikes
are present (red events). If the synchrony rate is set to 0,
those spikes are removed from the spike trains (Fig. 5b
- middle). If set to 0.05, i.e., 5% of the spikes will be
spatio-temporal collisions, events are added to the spike
trains to reach the specified synchrony rate value of spatio-
temporal overlap. As shown in Fig. 5c, the occurrence of
spatio-temporal overlapping events affects the recorded
extracellular waveform: the waveforms of the neurons,
in fact, get summed and might be mistaken for a sepa-
rate unit by spike sorting algorithms when the spikes are
overlapping.

The possibility of reproducing and controlling this
feature of extracellular recordings within MEArec could
aid in the development of spike sorters which are robust to
spatio-temporal collisions.

Generating drifting recordings

When extracellular probes are inserted in the brain,
especially for acute experiments, the neural tissue might
move with respect to the electrodes. This phenomenon is
known as drift. Drift can be due to a slow relaxation of the
tissue (slow drift) or to fast re-adjustments of the tissue, for
example due to an abrupt motion of the tissue (fast drift).
These two types of drifts can also be observed in tandem
(Pachitariu et al. 2019).

Drifting units are particularly critical for spike sorting,
as the waveform shapes change over time due to the
relative movement between the neurons and the probe. New
spike sorting algorithms have been developed to specifically
tackle the drifting problem (e.g. Kilosort2 (Pachitariu
et al. 2019), IronClust (Jun et al. 2017)).

In order to simulate drift in the recordings, we first need
to generate drifting templates:

>> mearec gen-templates -prb Neuronexus-32 -n 30 --drifting --seed 0
...
Saved templates in path-to-Neuronexus-drift-templates-file.h5

193Neuroinform (2021) 19:185–204

0 1 2 3 4 5
time (s)

Neuron 1

Neuron 2

Random synchrony rate

0 1 2 3 4 5
time (s)

Synchrony rate: 0

0 1 2 3 4 5
time (s)

Synchrony rate: 0.05

5 ms

a

b

c

Fig. 5 Controlling spatio-temporal overlapping spikes. a Example of
two spatially overlapping templates. The two templates are spatially
overlapping because on the electrode with the largest signal (depicted
as an black asterisk) for the blue template, the orange template has an
amplitude greater than the 90% of its largest amplitude. b Without set-
ting the synchrony rate, the random spike trains (left) present a few
spatio-temporal collisions (red events). When setting the synchrony

rate to 0 (middle), the spatio-temporal overlaps are removed. When
the synchony rate is set to 0.05 (right), spatio-temporal overlapping
spikes are added to the spike trains. c One-second snippet of the record-
ing with 0.05 synchrony. In the magnified window, a spatio-temporal
overlapping event is shown: the collision results in a distortion of the
waveform

Drifting templates are generated by choosing an initial
and final soma position with user-defined rules (see
Supplementary Methods – Template generation - Drifing
templates – for details) and by moving the cell along the
line connecting the two positions for a defined number of
constant drifting steps that span the segment connecting the
initial and final positions (30 steps by default). An example
of a drifting template is depicted in Fig. 6a, alongside with
the drifting neuron’s soma locations for the different drifting
steps.

Once a library of drifting templates is generated, drifting
recordings can be simulated. MEArec allows users to
simulate recordings with three types of drift modes: slow,
fast, and slow+fast. When slow drift is selected, the
drifting template is selected over time depending on the
initial position and the drifting velocity (5 μ/min by

default). If the final drifting position is reached, the drift
direction is reversed. For fast drifts, the position of a
drifting neuron is shifted abruptly with a user-defined
period (every 20 s by default). The new position is
chosen so that the difference in waveform amplitude of the
drifting neuron on its current maximum channel remains
within user-defined limits (5-20μV by default), in order to
prevent from moving the neuron too far from its previous
position. The slow+fast mode combines the slow and fast
mechanisms.

In Fig. 6b and c we show examples of slow drift and
fast drift, respectively. In the top panel the recordings are
displayed, with superimposed drifting templates on the
electrode with the largest peak. Note that the maximum
channel can change over time due to drift. In the bottom
panels, instead, the amplitude of the waveforms on the

194 Neuroinform (2021) 19:185–204

a b cSlow drift Fast driftDrifting template

Fig. 6 Drifting. a Example of a drifting template. The colored aster-
isks on the left show the trajectory from the initial (blue large asterisk)
to the final (red large asterisk) neuron positions. The positions are
in the x-y coordinates of the probe plane, and the electrode loca-
tions are depicted as black dots. The corresponding templates are
displayed at the electrode locations with the same colormap, showing
that the template peak is shifted upwards following the soma position.
b Slow drift. (top) 60-second slow drifting recording with four neu-
rons moving at a velocity of 20 μ m/min. Templates on the largest

electrode are superimposed in different colors on the recordings. Note
that the maximum channel changes over time. (bottom) Amplitude of
the waveforms over time on the electrode with the largest initial peak.
c Fast drift. (top) 60-second fast drifting recording with four neurons
undergoing a fast drift event every 15 s. Templates on the largest elec-
trode are superimposed in different colors on the recordings. Also for
fast drifts, the maximum channel changes over time. (bottom) Ampli-
tude of the waveforms over time on the electrode with the largest initial
peak

channels with the initial largest peak for each neuron are
shown over time. Slow drift causes the amplitude to slowly
vary, while for fast drifts we observe more abrupt changes
when a fast drift event occurs. In the slow+fast drift mode,
these two effects are combined.

Modeling experimental noise

Spike sorting performance can be greatly affected by
noise in the recordings. Many algorithms first use a spike
detection step to identify putative spikes. The threshold
for spike detection is usually set depending on the noise
standard deviation or median absolute deviation (Quiroga
et al. 2004). Clearly, recordings with larger noise levels will
result in higher spike detection thresholds, hence making it
harder to robustly detect lower amplitude spiking activity.
In addition to the noise amplitude, other noise features
can affect spike sorting performance: some clustering
algorithms, for example, assume that clusters have Gaussian
shape, due to the assumption of an additive normal noise to
the recordings. Moreover, the noise generated by biological

sources can produce spatial correlations in the noise profiles
among different channels and it can be modulated in
frequency (Camuñas-Mesa and Quiroga 2013; Rey et al.
2015).

To investigate how the above-mentioned assumptions on
noise can affect spike sorting performance, MEArec can
generate recordings with several noise models. Figure 7
shows 5-second spiking-free recordings of a tetrode probe
for five different noise profiles that can be generated (A
- recordings, B - spectrum, C - channel covariance, D -
amplitude distribution).

The first column shows uncorrelated Gaussian noise,
which presents a flat spectrum, a diagonal covariance
matrix, and a symmetrical noise amplitude distribution. In
the recording in the second column, spatially correlated
noise was generated as a multivariate Gaussian noise with
a covariance matrix depending on the channel distance.
Also in this case, the spectrum (B) presents a flat profile
and the amplitude distribution is symmetrical (D), but
the covariance matrix shows a correlation depending on
the inter-electrode distance. As previous studies showed

195Neuroinform (2021) 19:185–204

Fig. 7 Noise models. The 5 columns refer to different noise mod-
els: 1) Uncorrelated Gaussian noise, 2) Distance-correlated Gaussian
noise, 3) Colored uncorrelated Gaussian noise, 4) Colored distance-
correlated Gaussian noise, and 5) Noise generated by distant neu-
rons. a One-second spiking-free recording. b Spectrum of the first

recording channel between 10 and 5000 Hz. c Covariance matrix
of the recordings. d Distribution of noise amplitudes for the first
recording channel. The different noise models vary in the spectrum,
channel correlations, and amplitude distributions

(Camuñas-Mesa and Quiroga 2013; Rey et al. 2015), the
frequency content of extracellular noise is not flat, but
its spectrum is affected by the spiking activity of distant
neurons, which appear in the recordings as below-threshold
biological noise. To reproduce the spectrum profile that is
observed in experimental data, MEArec allows coloring
the noise spectrum of Gaussian noise with a second order

infinite impulse response (IIR) filter (see Supplementary
Methods – Recordings generation - Noise models and
post-processing – for details). Colored noise represents an
efficient way of obtaining the desired spectrum, as shown
in the third and fourth columns of Fig. 7, panel B. Distance
correlation is maintained (panel C - fourth column), and
the distribution of the noise amplitudes is symmetrical.

196 Neuroinform (2021) 19:185–204

Finally, a last noise model enables one to generate activity of
distant neurons. In this case, noise is built as the convolution
between many neurons (300 by default) whose template
amplitudes are below an amplitude threshold (10μV by
default). A Gaussian noise floor is then added to the
resulting noise, which is scaled to match the user-defined
noise level. The far-neurons noise profile is shown in the last
column of Fig. 7. While the spectrum and spatial correlation
of this noise profile are similar to the ones generated with
a colored, distance-correlated noise (4th column), the shape
of the noise distribution is skewed towards negative values
(panel D), mainly due to the negative contribution of the
action potentials.

The capability of MEArec to simulate several noise models
enables spike sorter developers to assess how different noise
profiles affect their algorithms and to modify their methods
to be insensitive to specific noise assumptions.

Testbench for spike sorting development
and evaluation

In the previous sections, we have shown several examples on
how MEArec is capable of reproducing several aspects of
extracellular recordings which are critical for spike sorting
performance, in a fully reproducible way. The proposed design
and its integration with a spike sorting evaluation framework
called SpikeInterface (Buccino et al. 2019) enables

developers to actively include customized simulations in the
spike sorting development phase.

Due to its speed and controllability, we see MEArec as
a testbench, rather than a benchmark tool. We provide here
a couple of examples. In Fig. 8a, we show a one-second
section of recordings simulated on a Neuronexus-32
probe with fixed parameters and random seeds regarding
template selection and spike train generation, but with four
different levels of additive Gaussian noise, with standard
deviations of 5, 10, 20, and 30 μV . The traces show the
same underlying spiking activity, so the only variability in
spike sorting performance will be due to the varying noise
levels. Similarly, in Fig. 8b, 1-minute drifting recordings
were simulated with three different drifting velocities. The
recordings show that for low drifting speeds the waveform
changes are almost not visible (green traces), while for
faster drifts (orange and blue traces), the waveform changes
over time become more important.

The capability of MEArec of reproducing such behaviors
in a highly controlled manner could aid in the design of
specific tests for measuring and quantifying the ability of a
spike sorting software to deal with specific complexities in
extracellular recordings. Other examples include simulating
a recording with increasing levels of bursting in order
to measure to what extent bursting units are correctly
clustered, or changing the synchrony rate of spatially
overlapping units to assess how much spatio-temporal
collisions affect performance.

a bNoise level Slow drift velocity

Fig. 8 MEArec as testbench platform for spike sorting. a Four one-
second snippet of recordings generated with a different noise level
parameter (5 - red, 10 - green, 20 - orange, and 30μV - blue). The
underlying spiking activity is exactly the same for all recordings, and
the only difference lies in the standard deviation of the underlying

uncorrelated Gaussian noise. b Three slow drifting recordings gen-
erated with a different drifting velocity parameter (10 - green, 30 -
orange, and 60 μ m/min - blue). Also in this case, the underlying spik-
ing activity is the same, but it can be observed how the different speeds
result in a modification of waveforms over time

197Neuroinform (2021) 19:185–204

Integration with SpikeInterface

We have recently developed SpikeInterface (Buc-
cino et al. 2019), a Python-based framework for running
several spike sorting algorithms, comparing, and validat-
ing their results. MEArec can be easily interfaced to
SpikeInterface so that simulated recordings can be

loaded, spike sorted, and benchmarked with a few lines
of code. In the following example, a MEArec recording
is loaded, spike sorted with Mountainsort4 (Chung
et al. 2017) and Kilosort2 (Pachitariu et al. 2019), and
benchmarked with respect to the ground-truth spike times
available from the MEArec simulation:

import spikeinterface.extractors as se
import spikeinterface.sorters as sorters
import spikeinterface.comparison as sc

loading MEArec recording
recording = se.MEArecRecordingExtractor(’path-to-recording.h5’)
loading ground-truth sorting
sorting_GT = se.MEArecSortingExtractor(’path-to-recording.h5’)

run several spike sorters
sorting_MS4 = sorters.run_mountainsort4(recording)
sorting_KS2 = sorters.run_kilosort2(recording)

compare with ground-truth and get performance
cmp_GT_MS4 = sc.compare_sorter_to_ground_truth(sorting_GT, sorting_MS4)
cmp_GT_KS2 = sc.compare_sorter_to_ground_truth(sorting_GT, sorting_KS2)

get and print performance
cmp_GT_MS4.get_performance()
cmp_GT_KS2.get_performance()

The get performance() function returns the accu-
racy, precision, and recall for all the ground-truth units in
the MEArec recording. For further details on these metrics
and a more extensive characterization of the comparison we
refer to the SpikeInterface documentation and article
(Buccino et al. 2019).

The combination of MEArec and SpikeInterface
represents a powerful tool for systematically testing and
comparing spike sorter performances with respect to
several complications of extracellular recordings. MEArec
simulations, in combination with SpikeInterface, are
already being used to benchmark and compare spike sorting
algorithms within the SpikeForest project (Magland
et al. 2020).

Performance considerations

As a testbench tool, the speed requirement has been
one of the main design principle of MEArec. In order
to achieve high speed, most parts of the simulation
process are fully parallelized. As shown in Fig. 1,
the simulations are split in templates and recordings
generation. The templates generation phase is the most
time consuming, but the same template library can be used
to generate several recordings. This phase is further split

in two sub-phases: the intracellular and extracellular
simulations. The former only needs to be run once, as it
generates a set of cell model-specific spikes that are stored
and then used for extracellular simulations, which is instead
probe specific.

We present here run times for the different phases of the
templates generation and for the recordings generation. All sim-
ulations were run on an Ubuntu 18.04 Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz, with 16 GB of
RAM.

The intracellular simulation run time for the 13 cell
models shipped with the software was ∼ 130 seconds (∼ 10
seconds per cell model).

Run times for extracellular simulations for several probe
types, number of templates in the library, and drifting
templates are shown in the Templates generation section of
Table 1. The run times for this phase mainly depend on the
number of templates to be generated (N templates column),
on the minimum amplitude of accepted templates (Min.
amplitude column, see Supplementary Methods – Templates
generation - Extracellular simulation – for further details),
and especially on drift (Drifting column). When simulating
drifting templates, in fact, the number of actual extracellular
spikes for each cell model is N templates times N drift
steps. Note that in order to generate the far-neurons noise

198 Neuroinform (2021) 19:185–204

Table 1 Templates and recordings generation run times depending on several simulation parameters. The templates simulations were run with 13
concurrent jobs (same as the number of models). The recordings simulations were run with four concurrent jobs, and a chunk duration of 20 s.

Templates generation

Probe N templates N channels Min. amplitude Drifting N drift steps Run time (s)

tetrode-mea-l 30 4 30 No - 169

tetrode-mea-l 100 4 30 No - 588

tetrode-mea-l 100 4 0 No - 236

Neuronexus-32 100 32 30 No - 567

Neuropixels-128 100 128 30 No - 809

SqMEA-10-15 30 100 30 No - 1027

Neuronexus-32 30 32 30 Yes 50 2000

Recordings generation

Probe N cells N channels Duration Bursting Drifting Run time (s)

tetrode-mea-l 6 4 10 No No 0.5

tetrode-mea-l 6 4 600 No No 7

Neuronexus-32 20 32 30 No No 8

Neuronexus-32 20 32 30 Yes No 52

Neuropixels-128 60 128 30 No No 46

SqMEA-10-15 50 100 30 No No 33

Neuronexus-32 4 32 60 No Yes 15

Neuronexus-32 20 32 60 No Yes 37

model, the minimum amplitude should be set to 0, so that
low-amplitude templates are not discarded. The number
of templates available in the template library will be the
specified number of templates (N templates) times the
number of cell models (13 by default).

Recordings are then generated using the simulated
template libraries. In Table 1, the Recordings generation
section shows run times for several recordings with different
probes, durations, number of cells, bursting, and drifting
options. The main parameter that affects simulation times
is the number of cells, as it increases the number of
modulated convolutions. Bursting and drifting behavior
also increase the run time of the simulations, because of
the extra processing required in the convolution step. The
simulation run times, however, range from a few seconds
to a few minutes. Therefore, the speed of MEArec enables
users to generate numerous recordings with different
parameters for testing spike sorter performances. Moreover,
the software internally uses memory maps to reduce the
RAM usage and the simulations can be chunked in time.
These features enable users to simulate long recordings on
probes with several hundreds of electrodes (e.g. Neuropixels
probes) without the need of large-memory nodes or high-
performance computing platforms.

Simulation output

The templates generation outputs a Template
Generator object, containing the following fields:

templates contains the generated templates – array
with shape (n templates, n electrodes, n points) for
non-drifting templates or (n templates, n drift steps,
n electrodes, n points) for drifting ones

locations contains the 3D soma locations of the
templates – array with shape (n templates, 3) for non-
drifting templates or (n templates, n drift steps, 3) for
drifting templates.

rotations contains the 3D rotations applied to the cell
model before computing the template – array with shape
(n templates, 3) (for drifting templates rotation is fixed)

celltypes contains the cell types of the generated
templates – array of strings with length (n templates)

info contains a dictionary with parameters used for the
simulation (params key) and information about the
probe (electrodes key)

The recordings generation outputs a Recording
Generator object, containing the following fields:

recordings contains the generated recordings – array
with shape (n electrodes, n samples)

199Neuroinform (2021) 19:185–204

spiketrains contains the spike trains – list of
(n neurons) neo.Spiketrain objects (Garcia et al.
2014)

templates contains the selected templates – array with
shape (n neurons, n jitters, n electrodes, n templates
samples) templates for non-drifting recordings -
or (n neurons, n drift steps, n jitters, n electrodes,
n neurons) for drifting ones

templates celltypes contains the cell type of the
selected templates – array of strings with length (n neurons)

templates locations contains the 3D soma loca-
tions of the selected templates – array with shape
(n neurons, 3) for non-drifting recordings or (n neurons,
n drift steps, 3) for drifting ones

templates rotations contains the 3D rotations
applied to the selected templates – array with shape
(n neurons, 3)

channel positions contains the 3D positions of the
probe electrodes – array with shape (n electrodes, 3)

timestamps contains the timestamps in seconds –
array with length (n samples)

voltage peaks contains the average voltage peaks of
the templates on each electrode – array with shape
(n neurons, n electrodes)

spike traces contains a clean spike trace for each
neuron (generated by a clean convolution between the
spike train and the template on the electrode with the
largest peak) – array with shape (n neurons, n samples)

info contains a dictionary with parameters used for the
simulation

When simulating with the Python API, the returned
TemplateGenerator and RecordingGenerator
can be saved as .h5 files with:

import MEArec as mr
tempgen is a TemplateGenerator object
mr.save_template_generator(tempgen, ’path-to-templates-file.h5’)
recgen is a RecordingGenerator object
mr.save_recording_generator(recgen, ’path-to-recordings-file.h5’)

The generation using the CLI saves templates and
recordings directly. The saved templates and recordings

can be loaded in Python as TemplateGenerator and
RecordingGenerator objects with:

import MEArec as mr
tempgen = mr.load_templates(’path-to-templates-file.h5’)
recgen = mr.load_recordings(’path-to-recordings-file.h5’)

Discussion

In this paper we have presented MEArec, a Python pack-
age for simulating extracellular recordings for spike sorting
development and validation. We first introduced an overview
of the software function, consisting in separating the tem-
plates and the recordings generation to improve efficiency
and simulation speed. We then showed the ease of use of the
software, whose command line interface and simple Python
API enable users to simulate extracellular recordings with
a couple of commands or a few lines of code. We explored
the capability of reproducing and controlling several aspects
of extracellular recordings which can be critical for spike
sorting algorithms, including spikes in a burst with varying
spike shapes, spatio-temporal overlaps, drifting units, and
noise assumptions. We illustrated two examples of using
MEArec, in combination with SpikeInterface (Buc-
cino et al. 2019), as a testbench platform for developing
spike sorting algorithms. Finally, we benchmarked the speed
performance of MEArec (Table 1).

Investigating the validation section of several recently
developed spike sorting algorithms (Rossant et al. 2016;
Pachitariu et al. 2016; Jun et al. 2017; Hilgen et al.
2017; Jun et al. 2017; Lee et al. 2017; Yger et al.
2018), it is clear that the neuroscientific community needs
a standardized validation framework for spike sorting
performance. Some spike sorters are validated using a so
called hybrid approach, in which well-identified units from
previous experimental recordings are artificially injected
in the recordings and used to compute performance
metrics (Rossant et al. 2016; Pachitariu et al. 2016;
Wouters et al. 2019). The use of templates extracted
from previously sorted datasets poses some questions
regarding the accuracy of the initial sorting, as well as
the complexity of the well-identified units. Alternatively,
other spike sorters are validated on experimental paired
ground-truth recordings (Chung et al. 2017; Yger et al.
2018). While these valuable datasets (Harris et al. 2000;
Henze et al. 2000; Neto et al. 2016; Marques-Smith et al.
2018) can certainly provide useful information, the low

200 Neuroinform (2021) 19:185–204

count of ground-truth units makes the validation incomplete
and could result in biases (for example algorithm-specific
parameters could be tuned to reach a higher performance
for the recorded ground-truth units). A third validation
method consist of using simulated ground-truth recordings
(Einevoll et al. 2012). While this approach is promising,
in combination with experimental paired recordings, the
current available simulators (Camuñas-Mesa and Quiroga
2013; Hagen et al. 2015; Mondragón-González and
Burguière 2017) present some limitations in terms of biologi-
cal realism, controllability, speed, and/or ease of use (see
Introduction). We therefore introduced MEArec, a software
package which is computationally efficient, easy to use,
highly controllable, and capable of reproducing critical
characteristics of extracellular recordings relevant to spike
sorting, including bursting modulation, spatio-temporal
overlaps, drift of units over time, and various noise profiles.

The capability of MEArec to replicate complexities in
extracellular recordings which are usually either ignored or
not controlled in other simulators, permits the user to include
tailored simulations in the spike sorting implementation
process, using the simulator as a testbench platform for
algorithm development. MEArec simulations could not
only be used to test the final product, but specific simulations
could be used to help implementing algorithms that are able
to cope with drifts, bursting, and spatio-temporal overlap,
which are regarded as the most complex aspects for spike
sorting performance (Rey et al. 2015; Yger et al. 2018).

In MEArec, in order to generate extracellular templates,
we used a well-established modeling framework for
solving the single neuron dynamics (Carnevale and Hines
2006), and for calculating extracellular fields generated
by transmembrane currents (Lindén et al. 2014; Hagen
et al. 2015). These models have some assumptions that,
if warranted, could be addressed with more sophisticated
methods, such as finite element methods (FEM). In a recent
work (Buccino et al. 2019), we used FEM simulations
and showed that the extracellular probes, especially MEAs,
affect the amplitude of the recorded signals. While this
finding is definitely interesting for accurately modeling and
understanding how the extracellular potential is generated
and recorded, it is unclear how it would affect the spike
sorting performance. Moreover, when modeling signals on
MEAs, we used the method of images (Ness et al. 2015;
Buccino et al. 2019), which models the probe as a infinite
insulating plane and better describes the recorded potentials
for large MEA probes (Buccino et al. 2019).

Secondly, during templates generation, the neuron
models were randomly moved around and rotated with
physiologically acceptable values (Buccino et al. 2018). In
this phase, some dendritic trees might unnaturally cross the
probes. We decided to not modify the cell models and allow
for this behavior for sake of efficiency of the simulator.

The modification of the dendritic trees for each extracellular
spike generation would in fact be too computationally
intense. However, since the templates generation phase is
only run once for each probes, in the future we plan to both
to include the probe effect in the simulations and to carefully
modify the dendritic positions so that they do not cross the
probes’ plane.

Another limitation of the proposed modeling approach
is in the replication of bursting behavior. We implemented
a simplified bursting modulation that attempts to capture
the features recorded from extracellular electrodes by
modifying the template amplitude and shape depending
on the spiking history. However, more advanced aspects
of waveform modulation caused by bursting, including
morphology-dependent variation of spike shapes, cannot be
modeled with the proposed approach, and their replication
requires a full multi-compartment simulation (Hagen et al.
2015). Nevertheless, the suggested simplified model of
bursting could be a valuable tool for testing the capability of
spike sorters to deal with this phenomenon.

Finally, the current version of MEArec only supports cell
models from the Neocortical Microcircuit Portal (Markram
et al. 2015; Ramaswamy et al. 2015), which includes mod-
els from juvenile rat somatosensory cortex. The same cell
model format is also being used to build a full hippocampus
model (Migliore et al. 2018) and other brain regions, and
therefore the integration of new models should be straightfor-
ward. However, we also provide a mechanism to use custom
cell models. For example, cell models from the Allen Brain
Institute database (Gouwens et al. 2018)1, which contains
models from mice and humans, can be easily used to simu
late templates and recordings, as documented in this
notebook:https://github.com/alejoe91/MEArec/blob/master/
notebooks/generate recordings with allen models.ipynb.
Other cell models can be used with the same approach.

The use of fully-simulated recordings can raise ques-
tions on how well the simulations replicate real extracellular
recordings. For example, recordings on freely moving ani-
mals present several motion artifacts that are complicated
to model and incorporate into simulators. For these reasons,
we believe that spike sorting validation cannot be solely lim-
ited to simulated recordings. In a recent effort for spike sort-
ing validation, named SpikeForest (Magland et al. 2020),
the authors have gathered more than 650 ground-truth
recordings belonging to different categories: paired record-
ings, simulated synthetic recordings (including MEArec-
generated datasets), hybrid recordings, and manually sorted
data. We think that a systematic benchmark of spike sort-
ing tools will benefit from this larger collection of diverse
ground-truth recordings, and in this light, MEArec can
provide high-quality simulated datasets to aid this purpose.

1https://celltypes.brain-map.org/

201Neuroinform (2021) 19:185–204

https://github.com/alejoe91/MEArec/blob/master/notebooks/generate_recordings_with_allen_models.ipynb
https://github.com/alejoe91/MEArec/blob/master/notebooks/generate_recordings_with_allen_models.ipynb
https://celltypes.brain-map.org/

In conclusion, we introduced MEArec, which is
a Python-based simulation framework for extracellular
recordings. Thanks to its speed and controllability, we see
MEArec to aid both the development and validation spike
sorting algorithms and to help understanding the limitation
of current methods, to improve their performance, and to
generate new software tools for the hard and still partially
unsolved spike sorting problem.

Information Sharing Statement

The presented software package is available at https://
github.com/alejoe91/MEArec and https://github.com/
alejoe91/MEAutility (used for probe handling). The pack-
ages are also available on pypi: https://pypi.org/project/
MEArec/ - https://pypi.org/project/MEAutility/. All the
datsets generated for the paper and used to make figures
are available on Zenodo at https://doi.org/10.5281/zenodo.
3696926, where instruction to generate figures are also
provided.

Acknowledgments A.P.B. and G.T.E. are part of the Simula-UCSD-
University of Oslo Research and PhD training (SUURPh) program,
an international collaboration in computational biology and medicine

funded by the Norwegian Ministry of Education and Research. We
would also like to thank Samuel Garcia for the help in improving the
performance of the simulator. Finally, we would like to thank Kristian
Lensjø, Jennifer Hazen, and Mikkel Lepperød for their valuable
feedback on the article.

Funding Open access funding provided by University of Oslo (incl
Oslo University Hospital).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Appendix: A - Command line interface (CLI)

MEArec implements a command line interface (CLI) to make
templates and recordings generation easy to use and to allow for
scripting. In order to discover the available commands, the user can
use the --help option:

>> mearec --help

Usage: mearec [OPTIONS] COMMAND [ARGS]...

MEArec: Fast and customizable simulation of extracellular recordings on
Multi-Electrode-Arrays

Options:
--help Show this message and exit.

Commands:
available-probes Print available probes.
default-config Print default configurations.
gen-recordings Generates RECORDINGS from TEMPLATES.
gen-templates Generates TEMPLATES with biophysical simulation.
set-cell-models-folder Set default cell_models folder.
set-recordings-folder Set default recordings output folder.
set-recordings-params Set default recordings parameter file.
set-templates-folder Set default templates output folder.
set-templates-params Set default templates parameter file.

Each available command can be inspected using the --help option:

>> mearec command --help

At installation, MEArec creates a configuration folder
(.config/mearec) in which global settings are stored. The default
paths to cell models folder, templates and recordings output folders
and parameters can be set using the set- commands. By default,
these files and folders are located in the configuration folder.

>> mearec default-config

{’cell_models_folder’: path-to-cell_models,
’recordings_folder’: path-to-recordings-folder,
’recordings_params’: path-to-recordings-params.yaml,
’templates_folder’: path-to-templates-folder,
’templates_params’: path-to-templates-params.yaml}

202 Neuroinform (2021) 19:185–204

https://github.com/alejoe91/MEArec
https://github.com/alejoe91/MEArec
https://github.com/alejoe91/MEAutility
https://github.com/alejoe91/MEAutility
https://pypi.org/project/MEArec/
https://pypi.org/project/MEArec/
https://pypi.org/project/MEAutility/
https://doi.org/10.5281/zenodo.3696926
https://doi.org/10.5281/zenodo.3696926
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A list of available probes can be found by running the
available-probes command.

References

Allen, B.D., Moore-Kochlacs, C., Bernstein, J.G., Kinney, J.,
Scholvin, J., Seoane, L., Chronopoulos, C., Lamantia, C.,
Kodandaramaiah, S.B., Tegmark, M., et al. (2018). Automated in
vivo patch clamp evaluation of extracellular multielectrode array
spike recording capability Journal of neurophysiology.

Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom,
S., Koudelka-Hep, M., Martinoia, S. (2009). Active pixel sensor
array for high spatio-temporal resolution electrophysiological
recordings from single cell to large scale neuronal networks. Lab
on a Chip, 9(18), 2644–2651.

Buccino, A.P., Hagen, E., Einevoll, G.T., Häfliger, P.D., Cauwenbergh,
G. (2018). Independent component analysis for fully automated
multi-electrode array spike sorting. In 2018 40th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 2627–2630. IEEE,.

Buccino, A.P., Hurwitz, C.L., Magland, J., Garcia, S., Siegle, J.H.,
Hurwitz, R., Spikeinterface, M.H.H. (2019). A unified framework
for spike sorting. Biorxiv page 796599.

Buccino, A.P., Kordovan, M., Ness, T.V., Merkt, B., Häfliger, P.D.,
Fyhn, M., Cauwenberghs, G., Rotter, S., Einevoll, G.T. (2018).
Combining biophysical modeling and deep learning for multi-
electrode array neuron localization and classification. Journal of
neurophysiology.

Buccino, A.P., Kuchta, M., Jæger, K.H., Ness, T.V., Berthet, P.,
Mardal, K.A., Cauwenberghs, G., Tveito, A. (2019). How does the
presence of neural probes affect extracellular potentials? Journal
of neural engineering.

Camuñas-Mesa, L.A., & Quiroga, R.Q. (2013). A detailed and fast
model of extracellular recordings. Neural Computation, 25(5),
1191–1212.

Carnevale, N.T., & Hines, M.L. (2006). The NEURON book
Cambridge University Press.

Chung, J.E., Magland, J.F., Barnett, A.H., et al. (2017). A fully
automated approach to spike sorting. Neuron, 95(6), 1381–1394.

Diesmann, M., & Gewaltig, M.-O. (2001). Nest: An environment for
neural systems simulations. Forschung und wisschenschaftliches
Rechnen. Beiträge Zum Heinz-Billing-Preis, 58, 43–70.

Diggelmann, R., Fiscella, M., Hierlemann, A., Franke, F. (2018).
Automatic spike sorting for high-density microelectrode arrays.
Journal of Neurophysiology, 120(6), 3155–3171.

Einevoll, G.T., Franke, F., Hagen, E., et al. (2012). Towards
reliable spike-train recordings from thousands of neurons with
multielectrodes. Current Opinion in Neurobiology, 22(1), 11–17.

Franke, F., Natora, M., Meier, P., Hagen, E., Pettersen, K.H.,
Linden, H., Einevoll, G.T., Obermayer, K. (2010). An automated
online positioning system and simulation environment for
multi-electrodes in extracellular recordings. In An automated
online positioning Annual International Conference of the IEEE
Engineering in Medicine and Biology, pages 593–597. IEEE.

Frey, U., Egert, U., Heer, F., Hafizovic, S., Hierlemann, A.
(2009). Microelectronic system for high-resolution mapping of
extracellular electric fields applied to brain slices. Biosensors and
Bioelectronics, 24(7), 2191–2198.

Garcia, S., Guarino, D., Jaillet, F., Jennings, T.R., Pröpper, R.,
Rautenberg, P.L., Rodgers, C., Sobolev, A., Wachtler, T., Yger, P.,
et al. (2014). Neo: an object model for handling electrophysiology
data in multiple formats. Frontiers in Neuroinformatics, 8, 10.

Gouwens, N.W. et al. (2018). Systematic generation of biophysically
detailed models for diverse cortical neuron types. Nature
Communications, 9(1), 710.

Hagen, E., Næss, S., Ness, T.V., Einevoll, G.T. (2018). Multimodal
modeling of neural network activity: Computing lfp, ecog, eeg,
and meg signals with lfpy 2.0, (Vol. 92.

Hagen, E., Ness, T.V., Khosrowshahi, A., Sørensen, C., Fyhn, M.,
Hafting, T., Franke, F., Einevoll, G.T. (2015). Visapy: a python
tool for biophysics-based generation of virtual spiking activity for
evaluation of spike-sorting algorithms. Journal of Neuroscience
Methods, 245, 182–204.

Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H., Buzsaki, G.
(2000). Accuracy of tetrode spike separation as determined
by simultaneous intracellular and extracellular measurements.
Journal of Neurophysiology, 84(1), 401–414.

Hay, E., Hill, S., Schürmann, F., Markram, H., Segev, I. (2011).
Models of neocortical layer 5b pyramidal cells capturing a
wide range of dendritic and perisomatic active properties. PLos
Computational Biology, 7(7), e1002107.

Henze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris,
K.D., Buzsaki, G. (2000). Intracellular features predicted by
extracellular recordings in the hippocampus in vivo. Journal of
Neurophysiology, 84(1), 390–400.

Hilgen, G., Sorbaro, M., Pirmoradian, S., Muthmann, J.-O., Kepiro,
I.E., Ullo, S., Ramirez, C.J., Encinas, A.P., Maccione, A.,
Berdondini, L., et al. (2017). Unsupervised spike sorting for large-
scale, high-density multielectrode arrays. Cell Reports, 18(10),
2521–2532.

Jäckel, D., Frey, U., Fiscella, M., et al. (2012). Applicability of
independent component analysis on high-density microelectrode
array recordings. Journal of Neurophysiology, 108(1), 334–348.

Jun, J.J., Mitelut, C., Lai, C., Gratiy, S., Anastassiou, C., Harris,
T.D. (2017). Real-time spike sorting platform for high-density
extracellular probes with ground-truth validation and drift
correction. bioRxiv page 101030.

Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M.,
Barbarits, B., Lee, A.K., Anastassiou, C.A., Andrei, A., Aydın,
Ċ., et al. (2017). Fully integrated silicon probes for high-density
recording of neural activity. Nature, 551(7679), 232.

Lee, J.H., Carlson, D.E., Razaghi, H.S., Yao, W., Goetz, G.A., Hagen,
E., Batty, E., Chichilnisky, E., Einevoll, G.T., Paninski, L. (2017).
Yass: yet another spike sorter. In Advances in Neural Information
Processing Systems, pp 4002–4012.

Lefebvre, B., Yger, P., Marre, O. (2016). Recent progress in multi-
electrode spike sorting methods. Journal of Physiology-Paris,
110(4), 327–335.

Lindén, H., Hagen, E., Leski, S., et al. (2014). LFPY: a tool for
biophysical simulation of extracellular potentials generated by
detailed model neurons. Frontiers in Neuroinformatics, 7, 41.

Magland, J.F., Jun, J.J., Lovero, E., Morley, A.J., Hurwitz, C.L.,
Buccino, A.P., Garcia, S., Barnett, A.H. (2020). Spikeforest:
reproducible web-facing ground-truth validation of automated
neural spike sorters. eLife, 9, e55167.

Markram, H., Muller, E., Ramaswamy, S., et al. (2015). Reconstruc-
tion and simulation of neocortical microcircuitry. Cell, 163(2),
456–492.

Marques-Smith, A., Neto, J.P., Lopes, G., Nogueira, J., Calcaterra, L.,
Frazão, J., Kim, D., Phillips, M.G., Dimitriadis, G., Kampff, A.
(2018). Recording from the same neuron with high-density cmos
probes and patch-clamp: a ground-truth dataset and an experiment
in collaboration. bioRxiv page 370080.

Migliore, R., Lupascu, C.A., Bologna, L.L., Romani, A., Courcol, J.-
D., Antonel, S., Van Geit, W.A., Thomson, A.M., Mercer, A.,
Lange, S., et al. (2018). The physiological variability of channel
density in hippocampal ca1 pyramidal cells and interneurons

203Neuroinform (2021) 19:185–204

explored using a unified data-driven modeling workflow. PLos
Computational Biology, 14(9), e1006423.

Mondragón-González, S.L., & Burguière, E. (2017). Bio-inspired
benchmark generator for extracellular multi-unit recordings.
Scientific Reports, 7, 43253.

Ness, T.V., Chintaluri, C., Potworowski, J., Łȩski, S., Gła̧bska, H.,
Wójcik, D.K., Einevoll, G.T. (2015). Modelling and analysis of
electrical potentials recorded in microelectrode arrays (meas).
Neuroinformatics, 13(4), 403–426.

Neto, J.P., Lopes, G., Frazão, J., et al. (2016). Validating silicon
polytrodes with paired juxtacellular recordings: method and
dataset. Journal of Neurophysiology, 116(2), 892–903.

Pachitariu, M., Steinmetz, N.A., Colonell, J. (2019). Kilosort2, https://
github.com/MouseLand/Kilosort2.

Pachitariu, M., Steinmetz, N.A., Kadir, S.N., et al. (2016). Fast and
accurate spike sorting of high-channel count probes with kilosort.
In Advances in Neural Information Processing Systems, pp 4448–
4456.

Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y. (2004). Unsupervised
spike detection and sorting with wavelets and superparamagnetic
clustering. Neural Computation, 16(8), 1661–1687.

Ramaswamy, S., Courcol, J., Abdellah, M., et al. (2015). The
neocortical microcircuit collaboration portal: a resource for rat
somatosensory cortex. Front Neural Circuits, 44, 9.

Rey, H.G., Pedreira, C., Quiroga, R.Q. (2015). Past, present and future
of spike sorting techniques. Brain Research Bulletin, 119, 106–
117.

Rossant, C., Kadir, S.N., Goodman, D.F., Schulman, J., Hunter, M.L.,
Saleem, A.B., Grosmark, A., Belluscio, M., Denfield, G.H., Ecker,
A.S., et al. (2016). Spike sorting for large, dense electrode arrays.
Nature Neuroscience, 19(4), 634.

Steinmetz, N.A., Koch, C., Harris, K.D., Carandini, M. (2018).
Challenges and opportunities for large-scale electrophysiology
with neuropixels probes. Current Opinion in Neurobiology, 50,
92–100.

Wouters, J., Kloosterman, F., Bertrand, A. (2019). Shybrid: A
graphical tool for generating hybrid ground-truth spiking
data for evaluating spike sorting performance. bioRxiv page
734061.

Yger, P., Spampinato, G.L., Esposito, E., Lefebvre, B., Deny, S.,
Gardella, C., Stimberg, M., Jetter, F., Zeck, G., Picaud, S., et al.
(2018). A spike sorting toolbox for up to thousands of electrodes
validated with ground truth recordings in vitro and in vivo. Elife,
7, e34518.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

204 Neuroinform (2021) 19:185–204

https://github.com/MouseLand/Kilosort2
https://github.com/MouseLand/Kilosort2

	MEArec: A Fast and Customizable Testbench Simulator for Ground-truth Extracellular Spiking Activity
	Abstract
	Introduction
	Getting started with MEArec
	MEArec features
	Generation of realistic Multi-Electrode Array recordings
	Bursting modulation of spike amplitude and shape
	Controlling spatio-temporal overlaps
	Generating drifting recordings
	Modeling experimental noise

	Testbench for spike sorting development and evaluation
	Integration with SpikeInterface
	Performance considerations

	Simulation output
	Discussion
	Information Sharing Statement
	Appendix : A - Command line interface (CLI)
	References

