
sensors

Article

Multi-State Energy Classifier to Evaluate the
Performance of the NILM Algorithm

Sanket Desai 1 , Rabei Alhadad 1 , Abdun Mahmood 1 , Naveen Chilamkurti 1 and
Seungmin Rho 2,*

1 Department of Computer Science and Information Technology, La Trobe University, Melbourne 3086,
Australia; s6desai@students.latrobe.edu.au (S.D.); R.Alhadad@latrobe.edu.au (R.A.);
A.Mahmood@latrobe.edu.au (A.M.); N.Chilamkurti@latrobe.edu.au (N.C.)

2 Department of Software, Sejong University, Seoul 05006, Korea
* Correspondence: smrho@sejong.edu

Received: 11 October 2019; Accepted: 26 November 2019; Published: 28 November 2019 ����������
�������

Abstract: With the large-scale deployment of smart meters worldwide, research in non-intrusive
load monitoring (NILM) has seen a significant rise due to its dual use of real-time monitoring of
end-user appliances and user-centric feedback of power consumption usage. NILM is a technique
for estimating the state and the power consumption of an individual appliance in a consumer’s
premise using a single point of measurement device such as a smart meter. Although there are
several existing NILM techniques, there is no meaningful and accurate metric to evaluate these
NILM techniques for multi-state devices such as the fridge, heat pump, etc. In this paper, we
demonstrate the inadequacy of the existing metrics and propose a new metric that combines both
event classification and energy estimation of an operational state to give a more realistic and accurate
evaluation of the performance of the existing NILM techniques. In particular, we use unsupervised
clustering techniques to identify the operational states of the device from a labeled dataset to compute
a penalty threshold for predictions that are too far away from the ground truth. Our work includes
experimental evaluation of the state-of-the-art NILM techniques on widely used datasets of power
consumption data measured in a real-world environment.

Keywords: non-intrusive load monitoring; smart grid; smart metering; performance metrics; privacy;
energy disaggregation; data collection

1. Introduction

Recent social advancements and rapid industrialization have led to concerns about climate change
and the ever-increasing demand for energy, which is a recognized problem of international significance.
The World Energy Outlook Report [1] indicates that global energy demand is set to grow by 90% by
2040. The need for the efficient use of energy resources and reduced carbon footprints has led to a
systematic deployment of cyber–physical systems (CPS) such as smart grid [2]. A smart grid enables
the distribution and consumption of energy resources in a more efficient, effective and economical
way. Smart meters are now an integral part of advanced metering infrastructure (AMI) of a smart grid
that allows appliance load monitoring (ALM) [3] to enable real-time energy consumption reporting
and feedback.

Non-intrusive load monitoring (NILM) is a process of estimating the energy consumption of the
appliances in a consumer’s (e.g., household or industry) premises. NILM is a non-intrusive technique
that estimates appliance-level energy consumption based on the aggregated power consumption
readings gathered from a consumer’s smart meter [3]. NILM also enables real-time monitoring and
feedback on the end-user’s appliance consumption. It also allows utilities to perform real-time load
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analysis and more accurate energy forecasting, which saves them operational time and expense. This
feedback gives the consumer insight into the amount of energy an appliance consumes to help make
informed decisions about conserving power, whether motivated by economic or ecologic concerns
(or both). Research findings suggest that residential appliance-level power usage feedback results
in savings of up to 12% of annual power consumption [4]. Feedback also improves awareness of
one’s behavior. The more closely electricity consumption can be linked to specific appliances and
activities, the clearer the relevance of the behavior becomes. Detailed appliance-specific feedback i.e.,
the operational state can help a consumer determine as to how a certain appliance behaves and its
effect on electricity consumption whether economic or ecological. This also increases the sense of
control because the consumer can find out how changes in behavior or appliance operation can affect
the outcome [5].

Research in NILM has made advances in integrating a combination of signal processing, statistical
and machine learning technologies to provide a cost-effective approach for load forecasting [6],
real-time monitoring, and feedback [7]. However, one of the key issues is to accurately evaluate
and report the performance of existing NILM approaches. Recent research findings [8,9] on NILM
algorithms and their implementation conclude that there are some practical limitations of the existing
metrics: first, existing event classification metrics do not classify multi-state devices accurately with
respect to events in the original ground truth; second, although the overall energy of a device is
estimated, it does not measure the energy estimation of each classified state of the device; finally,
with relatively large errors the metric result exceeds the usual accuracy interval of 0 and 1, making it
less intuitive and explainable.

This paper solves these problems by proposing multi-state energy classifier (MEC) which is
a new metric based on unsupervised clustering technique that combines event classification and
energy estimation by identifying the operational states of the device from a labeled dataset to compute
a penalty threshold for predictions that are too far away from the ground truth. We evaluate our
approach using the widely accepted NILMKTK [10] framework and various publicly available datasets
such as the Reference Energy Disaggregation dataset (REDD) [11], Dutch Residential Energy dataset
(DRED) [12] and Almanac of Minutely Power dataset (AMPds) [13].

1.1. Motivation and Related Works

NILM takes the aggregate power readings from a smart meter and predicts power levels and
device states for every appliance connected to the smart meter. Figure 1 presents the ground truth
power signal pattern (blue) and the disaggregated output (yellow) of a NILM algorithm for the
fridge. Although NILM techniques have been applied widely for real-time monitoring and energy
consumption feedback, the accurate evaluation of NILM approaches has been a critical issue, especially
for multi-state devices. An accurate evaluation of different operational states of a multi-state device
can help the consumer gain valuable insight as to how a certain appliance behaves, its operational
efficiency and the effect on electricity consumption. Several performance metrics have been proposed
and used by researchers to evaluate NILM algorithms.

Tsai et al. [14] and Chang et al. [15] used the concept of recognition accuracy, which works at a very
high sampling rate (e.g., 1 µs to 100 ms) to match patterns. However, these techniques cannot be directly
applied to smart-meter-based power disaggregation since smart meters report data at a much lower
sampling rate (e.g., 1 s up to 10 min based on utility settings). Batra et al. [16] used root mean square
error (RMSE) as one of the energy estimation accuracy metrics. RMSE measures how spread out the
predicted values are from their ground truth. The measure is not normalized which makes it difficult
to compare the disaggregation accuracy between different appliances. The normalized disaggregation
error (NDE) [17] metric addresses the normalization issue of RMSE. However, NDE tends to report
inflated accuracy.

Kolter et al. [11] proposed total energy correctly assigned (TECA), a method to report estimation
accuracies. However, the metric tends to report inflated accuracies. As shown in Figure 1, a fridge has
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the ground-truth value of 186W (compressor ON-state) and an estimated value of 7W (compressor
off-state) for a given time period t1. The TECA metric reported accuracy of 51% for time t1.
Huang et al. [18] and Osathanunkul et al. [19] used the information retrieval domain metric F1-score
to evaluate the performance of the energy disaggregation approaches for different sampling rates.
The information retrieval domain metric F-score does not differentiate between the multiple operational
states of an appliance.

Kim et al. [20] presented a modified F-score (M-Fscore) which combines the appliance state
classification and power estimation accuracies together. The MF-score applies a threshold of standard
deviation by the mean to divide the true positive (TP) into accurate true positive (ATP) and inaccurate
true positive (ITP) for the appliance. However, the MF-score does not consider the multistate
characteristic of an appliance.
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Figure 1. Power signal pattern of a type-IV (always on) appliance fridge.

As shown in Figure 1, suppose we have an appliance (fridge) with σ of 82.31 and a µ of 70.99,
then the threshold ρ is 1.15. For a given time period t1, the ground truth value of the fridge is 186 W
(compressor on-state) and the estimated value is 7 W (compressor off-state). The higher threshold ρ

resulted in classifying this event as an ATP which would result in an inaccurate increase in reporting
NILM accuracy.

Makonin et al. [21] proposed Finite-state F-score (FS-FScore) to calculate the accuracy of a
non-binary classification. A partial penalization measure called an inaccurate portion of true-positive
(inacc) was introduced to convert the binary nature of TP into a discrete measure. There are two
problems associated with FS-Score. First, the calculation of inacc requires the knowledge of pre-defined
states of an appliance. Second, while the FS F-score differentiates between multiple states, it does not
correctly consider the measurement variations within the same operational state. For example, for a
given time period t2 in Figure 1, the ground truth value of the fridge is 196 W and the estimated value
is 162 W. Clearly, the metric does not penalize the algorithm for such a large variation.

1.2. Contribution

In this paper, we propose a novel performance evaluation metric multi-state energy classifier
(MEC) which can be used to accurately measure the performance of the NILM algorithms, yielding the
following contributions:

• the proposed metric accurately classifies the operational states of an appliance of different
categories with respect to events in the original ground truth;

• the proposed metric combines energy estimation with event classification to accurately quantify
and penalize the algorithm with respect to variation in the measurements of the state of an
appliance;
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• evaluation and implementation of two state-of-the-art NILM approaches and their performance
with several existing and proposed evaluation metrics (see Section 4);

The paper is organized as follows. In Section 2, we briefly discuss the technological concepts used
in this work. In Section 3, we present the proposed metric and perform classification and estimation
testing in Section 4 on real-world publicly available datasets. We look at why researchers need to
report accuracy with respect to both event classification and energy estimation and conclude the paper
in Section 5.

2. Background

2.1. Energy Disaggregation

The energy disaggregation problem can be formulated as follows: given a smart meter SM,
there exists an aggregate power consumption series P = {p1, p2, p3, ..., pt} for time T = {1, 2, 3, ...., t},
we want to infer the power consumption yi

t of appliance i ∈ {1, 2, 3, ...., M} of the M active appliances,
such that

PT = ∑M
i=1 y(i)t + σ(t) (1)

where σ(t) represents unaccounted power or noise.
A NILM system consists of four steps as shown in Figure 2: power signal acquisition and

pre-processing; event detection and feature extraction; inference and learning; and appliance classification.
Power signal acquisition is the first step in energy disaggregation and is responsible for acquiring
aggregated load measurements at a different sampling rate. The Event Detection and Feature Extraction
step involves noting down the steady-state or transient state changes in these pre-processed power
measurements. Features corresponding to these events are extracted. These are unique consumption
patterns corresponding to each individual appliance operation. In the Learning and Inference step,
the necessary supervised or unsupervised methods are applied to determine the appliances. The final
step, appliance classification involves dividing the total aggregate readings into individual appliance
states and the power consumption corresponding to that appliance state [22].

Smart Meter 
Data

NILM
Performance

Metrics
Disaggregation

Event 
Detection

Inference & 
Learning

Appliance  
Classification

Power Signal 
Aquisition

Figure 2. Non-intrusive load monitoring (NILM) process.

2.2. Appliance States

NILM enables the identification of individual appliances with their operating states and the
corresponding power consumption. An appliance can operate in different states as per their
functionality or use. Researchers have presented four abstract models, commonly used to represent
and categorize these appliances [23]:

• Type 1—on/off appliances: On/off type of devices have a pre-defined set of operation, i.e., two
states of either being on or off at a given time period. This category represents various basic home
appliances such as toaster, light bulb, water pump, etc. The On state corresponds to a specific
amount of power.

• Type II—finite state machines or multi-state appliances: Multi-state appliances consist of more
than one state of operation i.e., active state. Each active state or the operational state has a
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corresponding energy consumption. This category includes devices such as washing machines,
stove burners, fridges, etc.

• Type III—infinite state or continuously variable appliances: Continuously variable appliances do
not have a finite set of states. Such appliances are a challenge in relation to the concept of energy
disaggregation as they are difficult to model or identify using NILM algorithms. An infinite state
includes appliances such as light dimmers, power drills, battery chargers, laptops, phones, etc.

• Type IV—always on: the type IV category refers to appliances that have a constant source of
consumption. These appliances may have single or multiple operational states. The appliances in
this category include smoke alarms, fridges, landline phones, etc.

These operating states of a device are very important to accurately classify the appliances and
also estimate their power consumption [3]. Figure 3 shows the power patterns of different appliances
in the aforementioned categories.
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Figure 3. Power pattern of devices in the aforementioned appliance categories (a) type IV (always on):
fridge (b) type II (multi-state): clothes washer (c) type I (on/off): fan (d) type III (infinite state): laptop.

2.3. NILM Dataset

A NILM dataset is a publicly available dataset consisting of power consumption data measured in
a real-world environment such as a house or a building. It consists of smart metering (i.e., aggregate)
data and may or may not have an individual device (i.e., ground truth) power consumption data based
on the purpose of the dataset. To evaluate the performance of NILM algorithms, it is essential to have
the ground truth for an appliance for which the disaggregation is being performed. In this paper,
we use the three most widely used datasets: Reference Energy Disaggregation dataset (REDD), Dutch
Residential Energy dataset (DRED) and Almanac of Minutely Power dataset (AMPds) for energy
disaggregation.

2.4. Unsupervised Clustering

Clustering refers to unsupervised learning algorithms that do not need pre-labeled data to extract
rules for grouping similar data instances [24]. Based on different criteria, a clustering process partitions
the data differently. There are various types of clustering techniques, however, we will discuss the one
that has been used in the proposed metric.
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Basic K-Means Algorithm

The k-means algorithm is a well-known unsupervised partitioning algorithm. The k-means is
a point-based clustering method that allocates a data point to the most similar cluster and updates
the center value of the cluster. This process is done iteratively until the cluster assignment is stable.
The k-means cluster is represented by the mean value of the data points in that cluster, also known as
the centroid. The distance between each data point of the cluster and mean value i.e. the centroid is
measured using Euclidean’s distance. The k-means algorithm is a widely used partition algorithm
based on determining the number of groups by defining the initial centroid value. However, it requires
the user to provide the number of clusters (k) [25]. An approach for providing the value of k is to use
the Elbow method.

2.5. Performance Metrics in NILM

Performance metrics are one of the evaluation standards which enable empirical evaluation and
comparison of different NILM approaches. One of the most basic accuracy measures is defined as

Acc = CorrectMatches
CorrectMatches+IncorrectMatches , (2)

where CorrectMatches refer to a correct prediction by a NILM technique based on the ground truth and
the predicted values.

NILM researchers have also used several performance metrics to evaluate energy disaggregation
divided into categories as shown in Figure 4.

Root Mean Squared Error (RMSE)

Relative Error (RE)

Energy Error (EE)

Total Energy Correctly Assigned 

Standard Deviation of Error (SDE) Fβ Measure

Total Power Change (TPC)

True Positive Percentage (TPP)

Average Power Change (APC)

False Positive Rate (FPR)

Failed Detection (FD)

EVENT DETECTIONENERGY ESTIMATION

Finite State F-Score

Modified F-Score

Performance
Evaluation

Figure 4. Performance evaluation metrics for energy disaggregation.

2.5.1. Standard Metrics

Event detection metrics were designed to keep track of the energy usage patterns of the consumer
over time. Event detection metrics enable NILM to keep track of individual events and usage patterns
over a given time period. Event detection metrics consist of metrics such as F-measure, total correctly
assigned energy (TECA) and accuracy (A).

Energy estimation metrics were designed to compare and evaluate the NILM disaggregation
results i.e., predicted results versus the actual energy consumption i.e., ground truth. Energy estimation
metrics consist of probabilistic techniques such as root mean square error (RMSE), R squared, mean
average error (MAE), etc. which show how far the predictions are from the actual results.

2.5.2. State-of-the-Art Metrics

State-of-the-art metrics were proposed by researchers to measure the accuracy of NILM algorithms
by combining event classification and power estimation.
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• Modified F-score (M-FScore): modified F-score [20] is a modified version of F-score to account for
non-binary outcomes, such as a power signal. The metric splits the True positive into accurate
true positive (ATP) and incorrect true positive (ITP). A threshold T was introduced to divide
the true positive (TP) into ATP and ITP. The threshold T is calculated by dividing the standard
deviation by the mean of the whole ground truth of an appliance.

∀ gt > 0 and pt > 0 , |pt−gt |
gt
≤ T, then the prediction is ATP

∀ gt > 0 and pt > 0 , |pt−gt |
gt

> T, then the prediction is ITP

The ATP and ITP are applied to the Precision and Recall while the definition of F-score remains
the same.

• Finite state F-score (FS F-score): finite state F-score [21] converts the binary nature of the TP into a
discrete measure by introducing a partial penalty inacc. The inacc is defined as

inacc =∑T
t=1

|p(m)
t −g(m)

t |
K(m) , (3)

where p(m)
t is the estimated state of appliance m at time t, g(m)

t is the ground truth state, and K(m)

is the number of states for appliance m. The inacc is applied to the precision and recall while the
definition of F-score remains the same.

3. Proposed Metric

This section presents the MEC metric, as shown in Figure 5. Figure 5 illustrates the overall MEC
process which comprises three important steps: appliance state clustering; event classification penalty;
and energy estimation penalty.

sends GT

sends PT

Sends state information
EC Penalty + EE Penalty 

APPLIANCE M
Appliance State 

ClusteringGround Truth GT

Predicted Values PT

Energy 
Estimation

Event 
Classification

Total Penalty

Figure 5. Multi-state energy classifier (MEC) overview.

Algorithm 1 describes the process depicted in Figure 5. Line 1 of Algorithm 1 identifies the
operational states of the appliance. The operational states compute the required parameters and
the threshold to accurately penalize misclassification or incorrect energy estimation. We apply the
penalty for inaccurate event classification in line 2. Next, we penalize the incorrect energy estimation in
line 3. The total penalty for incorrect event classification and inaccurate energy estimation is computed
in line 4.
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Algorithm 1 Multi-state energy classifier (MEC).
Input:
GT = {g1, g2...gt} is the ground truth of appliance m
PT = {p1, p2...pt} is the predicted values of appliance m
ε = Accuracy weightage for event classification
(1− ε) = Accuracy weightage for energy estimation
Output:
MEC = MEC accuracy for appliance m

1: CState=ApplianceStateClustering(GT)

2: Penalty(m)
EC =ECPenalty (GT ,PT ,CState)

3: Penalty(m)
EE =EEPenaly (GT ,PT ,CState)

4: TotalPenaltym=(ε · Penalty(m)
EC ) + ((1− ε) · Penalty(m)

EE )

5: return TotalPenaltym

TotalPenaltym=(ε · Penalty(m)
EC ) + ((1− ε) · Penalty(m)

EE ) (4)

The total penalty is divided into two parts: event classification penalty and energy estimation
penalty. A user-supplied parameter ε enables the users to assign more or less weight to either type
of penalty according to their requirement. The total penalty is the weighted sum of the individual
penalties (Equation (4)). The three key processes of the MEC metric are presented in detail in the
following subsections and also presented in Figure 6.

Appliance State Clustering

…….

Identify 
Operational States S1 S2

{Cstate [C1. . .CN], GT, PT}
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1 - Ɛ 
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Ɛ 
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GT = {G1 . . . . Gt} PT = {P1 . . . . Pt} CState = [C1 . . . . Ck]

Appliance Ground Truth

GT = {G1 . . . . Gt}

K

K, GT

Are State 
equal?

Figure 6. Detailed process of multi-state energy classifier (MEC).

3.1. Appliance State Clustering

The appliance state clustering process identifies different clusters that relate to the different
operational states of an appliance. To improve the performance of event classification and energy
estimation, the usage of the clustering scheme is an important factor. In this paper, we use the k-means
algorithm for clustering the operational states of the appliance based on the ground truth data available
in the NILM dataset.
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To determine the number of clusters, we use the elbow method with k-means clustering.
Once the number of clusters is determined, the k-means clustering algorithm is applied to the

appliance ground truth. Based on the unlabelled clustering results, we identify the different operational
states of an appliance. Furthermore, we compute the parameters related to the operational state of the
appliances as shown in Algorithm 2 which will be used by Algorithms 3 and 4.

Algorithm 2 Appliance state clustering.
Input:
GT = {g1, g2, ..., gt} is the ground truth of appliance m
N = Maximum number of states
Output:
CState = [C1, C2, ..., CK] is the clustered operational states of appliance m

1: GScale = Standardize the values of GT time series
2: for K = 1 to N do

3: Compute within groups sum of squares (WSS)
4: end for
5: Obtain K using elbow method
6: Perform K-Means clustering on GT to find K clusters Clus1, Clus2, ..., ClusK

7: where Clus1 =
{

G(1)
T_Clus1

, ..., G(n1)
T_Clus1

}
, ..., ClusK =

{
G(1)

T_ClusK
, ..., G(nK)

T_ClusK

}
8: for i = 1 to K do

9: Get Cmean and Cstd.dev of cluster Clusi

10: CThres =
Cstd.dev
Cmean

11: CRate =
λCstd.dev

Cmean
where λ = 3

12: Store
[
Si, Cmean, Cstd.dev, CThres, CRate

]
in Ci

13: Store Ci in CState

14: end for
15: return Cstate

3.2. Event Classification Penalty

As explained in Section 1.1, the existing metrics often overestimate the accuracy of a NILM
algorithm due to the incorrect classification of multiple states of an appliance. Algorithm 3 quantifies
the inaccuracy of an event that has been misclassified by the NILM algorithm and applies a penalty
based on the appliance states computed in Algorithm 2. Algorithm 3 describes the process depicted in
Figure 6 in detail.
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Algorithm 3 Event classification penalty (ECPenalty).
Input:
GT = {g1, g2...gt} is the ground truth of appliance m
PT = {p1, p2...pt} is the predicted values of appliance m
CState is the clustered operational state data of appliance m
Output:

∑T
i=1 EC(m)

i is the total Event Classification Penalty for appliance m

1: Set TotalPenaltym = 0
2: for t = 1 to T do

3: Get datapoint gt and pt
4: if gt > 0 and pt > 0 then

5: Compute closestCluster (gt, CState[Ci_Cmean ])
6: Set state of gt to Ci_Si
7: Compute closestCluster (pt, CState[Ci_Cmean ])
8: Set state of pt to Ci_Si
9: end if

10: if state of gt 6= pt then

11: Set penalty EC(m)
t equal to 1

12: else

13: Set penalty EC(m)
t equal to 0

14: end if
15: end for
16: return ∑T

i=1 EC(m)
i

The input for Algorithm 3 is the operational states information CState (output from Algorithm 2),
the ground truth GT = {g1, g2...gt} and the predicted values PT = {p1, p2...pt} of a NILM algorithm
for appliance m. Next, in Line 3, Algorithm 3 takes the data points (gi, pi) that correspond to the TP
output from an NILM algorithm. For a True Positive prediction of a NILM, gi refers to the ground
truth value while pi refers to its corresponding predicted value. Lines 5–8 obtain the clusters (obtained
from Algorithm 2) closest to the data points (gi, pi) and matches the states Si of the assigned clusters in
Lines 6 and 8. Lines 10–14 assign a penalty EC(m)

t if the states of corresponding data points (gi, pi) do

not match. We define ∑T
i=1 EC(m)

i as the total penalty for the inaccurate classification of operational
state. The energy estimation penalty is explained next.

3.3. Energy Estimation Penalty

The energy estimation penalty process quantifies the inaccuracy of the estimated energy using an
NILM algorithm. Algorithm 4 describes the process depicted in Figure 6 in detail.
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Algorithm 4 Energy estimation penalty (EEPenalty)
Input:
GT = {g1, g2...gt} is the ground truth of appliance m
PT = {p1, p2...pt} is the predicted values of appliance m
CState is the clustered operational state data of appliance m
GSlice is a vector of all IR
PSlice is a vector of all IR
Output:

∑T
i=1 EE(m)

i is the total Energy estimation Penalty for appliance m

1: Init k, l = 1
2: for t = 1 to T do

3: Obtain data point gt and pt

4: if gt > 0 and pt > 0 then

5: Compute Cg = closestCluster(CState, gt)

6: Compute Cp = closestCluster(CState, pt)

7: Obtain Cg_CRate and Cp_CRate

8: Set k = t and l = t
9: while

(
( |gt+1−gt |

gt
< Cg_CRate) and ( |pt+1−pt |

pt
< Cp_CRate)

)
do

10: Add data point gt to GSlice

11: Add data point pt to PSlice

12: Increment l
13: end while
14: Set t = l + 1
15: Pjw = Call ComputePenalty(GSlice, PSlice)
16: Call AssignPenalty(GT , PT , Pjw)
17: end if
18: end for
19: return ∑T

i=1 EE(M)
i

20:

21: Procedure ComputePenalty(GSlice, PSlice)

22: Compute Jw(GSlice, PSlice) =
∑i min(gi ,pi)
∑i max(gi ,pi)

23: Compute Pjw = (1− Jw(GSlice, PSlice))

24: EndProcedure
25:

26: Procedure AssignPenalty(GT , PT , Pjw)

27: for i = k to l do

28: if
(
(gi > 0)and(pi > 0)and( |pi−gi |

gi
> Cg_CThres)

)
then

29: Assign penalty EE(m)
i = Pjw

30: else

31: Assign penalty EE(m)
i = 0

32: end if
33: end for
34: EndProcedure
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Algorithm 4 takes the operational states information CState (output from Algorithm 2), the ground
truth and the predicted values of an appliance as an input to provide a penalty for an inaccurate
estimation EE(m)

i . Similar to the event classification penalty process, we implement Algorithm 4 for all
the predicted TP values from an NILM algorithm. The energy estimation penalty process is subdivided
into three steps:

Step 1—window selection: in the window selection process, the basic idea of Algorithm 4 is
to divide the time series values of ground truth GT and the corresponding predicted values PT into
windows, based on changes in the power consumption that reflect a change in the operational state
of an appliance as shown in Figure 9. The algorithm starts by traversing through the data points of
the ground truth time series GT = {g1, g2...gt} and the predicted value time series PT = {p1, p2...pt}.
The operational states of the starting data points gt > 0 and pt > 0 are determined by assigning
the data points to their closest clusters Cg and Cp for the ground truth and the predicted values,
respectively. Next, to check if the following points i.e., gt+1 and pt+1 belong to the same state, line 10

checks the rate of change of power using
|g(t+1)−gt |

gt
< Cg_CRate and

|p(t+1)−pt |
pt

< Cp_CRate . The Cg_CRate

and Cp_CRate are thresholds for the clusters to which gt and pt belong to. The threshold CRate is defined

as CRate =
λCstd.dev

CMean
, where λ = 3 represents 99.7% probability that the points belong to that cluster.

While traversing through the time series, if Algorithm 4 detects a rate of change in either of the
time series Gt and Pt, it marks the end of the same operational state and stores them in GSlice and PSlice
respectively (lines 10–11). The traversing process in this step ensures that; firstly GSlice and PSlice only
contain true positives; secondly, the data points in GSlice and PSlice belong to the same operational state
as their members respectively.

Step 2—computing energy estimation penalty: the next step in Algorithm 4 involves calculating
the penalty for the GSlice and PSlice. In line 15, Algorithm 4 calls the ComputePenalty(GSlice, PSlice)

procedure defined in Line 21–26. Next, the ComputePenalty() procedure calculates the penalty Pjw =

(1− Jw(GSlice, PSlice)) in Line 24, where Jw(GSlice, PSlice) is ∑i min(gi ,pi)
∑i max(gi ,pi)

.
Step 3—assigning energy estimation penalty: the third step of Algorithm 4 is to assign the penalty

computed in the previous step. In line 31, Algorithm 4 assigns the penalty Pjw to all the true postive
values of the window that have predicted values too far from the ground truth as defined by line 28
|pi−gi |

gi
> Cg_CThres , where CThres ensures that the predicted values far from the clustered operational

state are penalized. CThres is defined as Cstd.dev
Cmean

, where Cstd.dev and Cmean is the standard deviation and
mean of the cluster, the ground truth data point gi belongs to.

4. Implementation and Results

The MEC is implemented on the disaggregation results of two NILM algorithms: FHMM [20] and
SparseViterbi [26]. Several appliances are selected from the REDD, DREDD and the AMPds dataset at
a sampling rate of 60 s. The appliances are chosen from different appliance categories as discussed in
Section 2.2 to ensure the feasibility of the metric across different appliance categories.

The MEC algorithms are implemented in their sequential order as shown in Figure 5. In the first
step, Algorithm 2, i.e., the appliance state clustering process is implemented on the ground truth data
of the fridge. In this process, Algorithm 2 identifies the operational states of the fridge as shown in
Figure 7. This includes the computation of the required parameters and thresholds to improve the
performance of event classification and energy estimation as illustrated in Algorithm 2.
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Figure 7. Appliance state clustering of (a) type-IV (always on) and (b) type-I (on/off) appliances.

The second step of the implementation is Algorithm 3, i.e., the event classification penalty process.
Figure 8 shows the implementation of this process on the fridge. In this process, each data point gt of
the ground truth and its corresponding predicted value pt is assigned a state of its closest centroid Ci.
A penalty is assigned if the assigned states of the ground truth and its corresponding predicted value
do not match. Algorithm 3 outputs ∑T

i=1 EC(Fridge)
i .
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Figure 8. Event classification penalty process of a type-IV category (always on) device.

The third step of the implementation is Algorithm 4, i.e., the energy estimation penalty process.
As shown in Figure 9, this process divides the ground truth and its corresponding predicted value
time series of a fridge into several windows i.e., N, N + 1, N + 2, etc. Algorithm 4 then penalizes
incorrect energy estimation. As illustrated in Figure 9, an incorrect energy estimation is due to the
different estimation of states (window N + 1) or to the inaccurate estimation of energy in the same
state (window N + 5). The algorithm considers both these scenarios and assigns a penalty accordingly.
Algorithm 4 outputs ∑T

i=1 EE( f ridge)
i .
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Figure 9. Energy estimation penalty process a type-IV category (always on) device.

The total penalty as defined in Equation (4) is applied to precision and recall while the definition
of F-score remains the same. Therefore precision and recall for a fridge is now defined as

Precision f ridge =
TPf ridge−TotalPenalty f ridge

TPf ridge+FPf ridge
(5)

Recall f ridge =
TPf ridge−TotalPenalty f ridge

TPf ridge+FN f ridge
, (6)

where TPf ridge represents on state samples labelled as on state (true positive), FPf ridge represents off
state samples labelled as on state (false positive), and FN f ridge represents the on state samples labelled
as off (false negative). Therefore, the F-score evaluating the performance of NILM algorithm is defined
as follows:

F− score f ridge = 2 · Precision f ridge ·Recall f ridge
Precision f ridge+Recall f ridge

(7)

Table 1 presents the accuracy scores of two state-of-the art disaggregation algorithms FHMM and
SparseViterbi using various metrics. Due to lack of space, we show the results for the user-specified
ε = 0.5, i.e., equal weighting to event classification and energy estimation. However, it can be varied
(between 0 and 1) according to the user’s emphasis on event classification or energy estimation needs.
In the MEC metric, the EC penalty and the EE penalty allows user to directly infer if the NILM
algorithm is penalized more for event misclassification or variation in the energy estimation of the
state. In type-I (on/off) appliance categories, the MEC metric tends to provide similar accuracies as
that of MF-score and FS F-score as shown in Table 1. This is because type-I (on/off) devices do not
have multiple active states to classify and therefore will not be penalized for incorrect classification
of the operational states by MEC. However, the MEC metric results show a noticeable decrease in
accuracy for multiple state appliance categories such as type-II (finite state machines or multi-state
appliances) and type-IV (always on) for various datasets. This is due to the incorrect classification of
multiple operational states and inaccurate energy estimation by other metrics as shown in Table 1.
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Table 1. Experimental results and comparison of metrics.

Algorithm Appliance Appliance Category MF-Score FS F-Score MEC
EC Penalty EE Penalty Total Accuracy

FHMM

Fridge Type-IV 95.4 95.8 390.5 405.1 79.16
Fan Type-I 27.64 27.64 0 05.53 27.21
Cooker Type-I 92.8 91.45 0 04.30 90.32
Heat Pump Type-II 88.9 89.36 47.50 244.7 82.59
Clothes Dryer Type-II 40.5 41.10 05.50 03.52 34.8

SparseViterbi

Fridge Type-IV 93.70 98.12 155 155.7 91.27
Fan Type-I 85.64 85.64 0 04.69 85.05
Cooker Type-I 100 99.22 0 08.90 98.09
Heat Pump Type-II 92.00 89.33 91.0 99.31 86.82
Clothes Dryer Type-II 92.57 91.40 01.0 01.34 89.89

5. Conclusions and Future Works

This paper proposed a new MEC metric that addressed the three issues with existing
state-of-the-art metrics: a lack of a unified metric that reflects both state classification and energy
estimation at the same time; accurate penalization of predictions that are too far from the ground truth
in the context of a state; and the accurate classification of multi-state appliances. The proposed metric
solves these issues by combining energy estimation with event classification to accurately quantify
and penalize the algorithm. In this work, we used unsupervised clustering techniques to identify the
operational states of the device from a labelled dataset to compute a penalty threshold for predictions
that are too far away from the ground truth.

In our experimental results, the MEC exhibits the intuitive nature of the metric using
state-of-the-art disaggregation algorithms. Existing metrics such as M F-score and FS F-score have
reported higher accuracies due to inaccurate state classification and incorrect penalization of energy
estimation respectively. However, our MEC metric provides better results over several datasets and
devices from different appliance categories. The MEC accurately quantifies and penalizes the state
misclassification and variation in the energy estimation of a state.

From the implemented MEC metric results, the MEC performs well in accurately evaluating
the performance of various disaggregation algorithms with respect to event classification and energy
estimation. Therefore, we are planning to use MEC metric accuracy as a means to quantify the noise
needed to obfuscate a power consumption time series for privacy preservation as our future work.
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