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Lung transplantation requires optimization of donor’s organ use through ex vivo lung perfusion (EVLP) to avoid primary graft
dysfunction. Biomarkers can aid in organ selection by providing early evidence of suboptimal lungs during EVLP and thus
avoid high-risk transplantations. However, predictive biomarkers of pulmonary graft function such as endothelin-converting
enzyme (ECE-1) and vascular endothelial growth factor (VEGF) have not been described under EVLP with standard prolonged
hypothermic preservation, which are relevant in situations where lung procurement is difficult or far from the transplantation site.
Therefore, this study is aimed at quantifying ECE-1 and VEGF, as well as determining their association with hemodynamic,
gasometric, and mechanical ventilatory parameters in a swine model of EVLP with standard prolonged hypothermic preservation.
Using a protocol with either immediate (I-) or delayed (D-) initiation of EVLP, ECE-1 levels over time were found to remain
constant in both study groups (p > 0:05 RM-ANOVA), while the VEGF protein was higher after prolonged preservation, but it
decreased throughout EVLP (p > 0:05 RM-ANOVA). Likewise, hemodynamic, gasometric, mechanical ventilatory, and histological
parameters had a tendency to better results after 12 hours of hypothermic preservation in the delayed infusion group.
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1. Introduction

Lung transplantation (LTx) is the last resort treatment for
patients with severe chronic lung disease. Unfortunately,
only approximately 15% of donor lungs are suitable for
transplantation, the remainder being generally inadequate
due to brain death-induced lung injury and ICU-related
complications, resulting in endothelial dysfunction and
edema formation [1]. Therefore, LTx requires optimal utili-
zation of available donors and the optimization of donor’s
organ use. This has led to the emergence of ex vivo lung per-
fusion (EVLP) as a tool for evaluation, preservation, and
reconditioning of the donor’s lung prior to transplantation
[2], since it allows the evaluation of lungs under continuous
physiological monitoring, reconditioning lungs with fluid
removal, and intervention/engineering of lungs with intense
therapy during extended preservation. However, it can also
induce inflammation, compromise cellular metabolism and
mitochondrial function, alter microcirculation, and cause
ventilation-induced lung injury [3]. During EVLP, hemody-
namic criteria, pulmonary mechanics, and gas exchange are
important in the decision to accept a graft. With these
parameters, approximately 20% of donor lungs perfused in
EVLP for 4 to 6 hours are rejected for clinical transplanta-
tion due to poor physiologic performance. In addition, there
is also a small percentage of cases that, despite having favor-
able physiology during EVLP, develop primary graft dys-
function (PGD) after transplantation [4]. PGD pathogeny
involves multiple pathways such as inflammation, innate
immunity, platelet dysfunction for coagulation, and fibrino-
lysis that may cause endothelial and epithelial lesions in the
lung. Endothelial dysfunction is manifested by the activation
of endothelial biomarkers such as endothelin (ET) and vas-
cular endothelial growth factor (VEGF), which could lead
to reduced graft survival after brain death. In these circum-
stances, biomarkers can aid in organ selection by providing
early evidence of suboptimal lungs during EVLP and thus
avoid high-risk transplantations [4, 5]. Endothelin-
converting enzyme (ECE-1) is essential for the synthesis of
endothelin (ET), which is a 21 amino acid family of peptides
and exists in three isoforms: ET-1, ET-2, and ET-3. ET-1 is
the most abundant isoform, which acts as a potent vasocon-
strictor, smooth muscle cell and fibroblast mitogen, and a
stimulator of inflammatory cell infiltration [6–8]. Moreover,
ET-1 increases the expression of cell adhesion molecules,
indicating a link between ET-1 and endothelial dysfunction
which mediates increased permeability and edema in the
lungs; this can be used as a predictor of PGD and bronchiol-
itis obliterans [9]. Given that VEGF is the major regulator of
vascular permeability, ET-1 can promote VEGF expression
in lung endothelial and epithelial cells [10]. Nevertheless,
its overexpression may aggravate present edema.

Currently, applying the EVLP platform, it has been dem-
onstrated that lung viability can be successfully maintained
despite a prolonged period of cold preservation [11–13].
This may be especially relevant in situations or places where
lung procurement is difficult or far from the transplantation
site (a frequent problem in developing countries) so that the
graft has to be maintained at hypothermic conditions for

prolonged periods. However, predictive biomarkers of pul-
monary graft function such as ECE-1 (the ET-1 precursor)
and VEGF have not been described under cold preservation
conditions. Therefore, this study is aimed at quantifying
ECE-1 and VEGF, as well as determining their association
with hemodynamic, gasometric, and mechanical ventilatory
parameters, in a porcine model of EVLP with standard pro-
longed hypothermic preservation.

2. Materials and Methods

2.1. Experimental Animals. This study was made at the
Department of Surgical Research of the National Institute
of Respiratory Diseases Ismael Cosío Villegas (INER). Ten
healthy domestic swine, regardless of sex, weighing between
18 and 20 kg were used. This protocol was reviewed and
approved by the Bioethics Committee of the INER (IRB
B25-13). All animals were treated in strict accordance with
the Technical Specifications for the Care and Use of Labora-
tory Animals of the Mexican Official Standard NOM-062-
ZOO-1999 and the Guide for the Care and Use of Labora-
tory Animals [14, 15]. The sample size was reduced in agree-
ment with the principles of experimental techniques
proposed by Balls and Kilkenny et al. [16, 17].

2.2. Study Groups. All animals underwent cardiopulmonary
block procurement and were divided as follows:

Group I (n = 5): the immediate EVLP (I-EVLP) group
underwent lung procurement and normothermic EVLP.

Group II (n = 5): delayed initiation of EVLP (D-EVLP)
period of prolonged standard hypothermic preservation
(12 hours) in Perfadex® solution (XVIVO Göteborg, Swe-
den) and subsequent EVLP.

The lungs of all swine were perfused ex vivo for a contin-
uous 4-hour period, during which the parameters of lung
function were assessed as described below.

2.3. Anesthesia and Surgical Procedure. All procedures were
performed under general anesthesia. Induction was per-
formed with tiletamine-zolazepam (4mg/kg, IM. Zoletil,
Virbac, Carros, France) and propofol (4mg/kg, IV. Recofol,
PISA, Guadalajara, JAL, Mexico), then maintained with iso-
flurane (Forane, Abbott Mexico S.A. de C.V., Mexico City,
Mexico) and fentanyl (0.1mg/kg, IV. Fentanest, Janssen-
Cilag, Puebla, Mexico) as analgesic. The animals were venti-
lated with pulmonary protection strategies. Subsequently,
cardiopulmonary block procurement was performed with
the technique described by Mariscal et al. [18].

2.4. Lung Preparation for EVLP. EVLP was performed as
described previously by Cypel et al. [19]. In brief, a funnel-
shaped cannula (Vitrolife, Göteborg, Sweden) was sewn to
the left atrial cuff, a cannula (Vitrolife, Göteborg, Sweden)
was secured into the pulmonary artery (PA), and a 7.0-8.0
endotracheal tube with the balloon removed was secured
into the trachea. The EVLP circuit consisted of extracorpo-
real circulation with a neonatal reservoir VHK 1100
(Maquet Getinge Group, Germany) and a neonatal oxygen-
ator Quadrox-i (Maquet Getinge Group, Germany) con-
nected to a pump CDL-10140 (Gambro, USA). The lungs
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were transferred to an XVIVO chamber (XVIVO Göteborg,
Sweden), and retrograde flow was initiated through the left
atrium to de-air the pulmonary vasculature and flush any
remaining clot. The PA cannula was then connected, and
antegrade flow was begun at 0.1 L/min. EVLP was performed
using acellular Steen solution (XVIVO Göteborg, Sweden), a
commercially available preservative solution designed for
ex vivo lung assessment, supplemented with 10,000 IU hep-
arin (APP Pharmaceuticals, Schaumburg, Ill, USA). The per-
fusate was slowly warmed to 37°C during 30 minutes as the
flow was titrated up to the target of 40% of the estimated car-
diac output (100mL/kg). When the perfusate reached 32°C,
ventilation was initiated with room air at a tidal volume of
6-8mL/kg, respiratory rate of 8 breaths/min, and positive
end-expiratory pressure (PEEP) of 5.0 cm H2O. Recruitment
maneuvers are performed every hour to a pulmonary artery
wedge pressure (PawP) of 25 cm H2O [18]. After initiation
of ventilation, a mixture of 6% oxygen, 8% carbon dioxide,
and 86% nitrogen were infused into the membrane oxygen-
ator to deoxygenate the PA perfusate and allow for accurate
measurement of lung oxygenation capability (Figure 1).
Every hour after EVLP initiation, PaO2 was evaluated with
fraction of inspired oxygen (FiO2) at 21%, and after, the
lungs were ventilated with (FiO2) at 100% for 10 minutes,
and another sample of the perfusate was taken from the left
atrial return for gas analysis [12, 19].

2.5. Lung Physiology Assessment. The study was conducted
for 4 hours. The hemodynamic, gasometric, and ventilation
mechanics parameters were assessed: cardiac output was
determined using the thermodilution method (Hemody-
namic Profile CARESCAPE B650 (General Electric Com-
pany©, Finland)), pulmonary vascular resistance (PVR),
partial pressure of oxygen (PaO2), and partial pressure of
carbon dioxide (PaCO2) were measured every hour (ABL
800 Flex Analyzer (Radiometer, Brønshøj, Denmark)); static
(Cstat) and dynamic (Cdyn) lung compliance, airway resis-
tance (Raw), and peak inspiratory pressure (PIP) were mea-
sured every hour (Avea™ VIASYSTM Healthcare, USA).

2.6. Histological Assessment of the Lungs. Open lung biopsy
(OLB) was performed to obtain pulmonary specimens suitable
for histologic analysis. Biopsies were taken at the beginning and
every hour during the EVLP; samples were obtained from right
lobes in all experiments with areas of the lung whose macro-
scopic appearance presented lesions, trying to cover the transi-

tion areas between sites with areas of normal appearance.
Biopsy samples were stained with hematoxylin and eosin
(H&E) and analyzed for pathological changes. The most prom-
inent features observed in the lungs were used to develop a scor-
ing system: evidence of cell infiltration into the lungs
(neutrophils, macrophages, and lymphocytes), presence of
edema, and formation of alveolar injury. The severity of the
findings was graded on a scale from 0 (absent) to 3 (severe) [20].

2.7. Radiography. Radiographic images of the lungs were
taken before and hourly during EVLP. All radiographs were
taken in the anterior-posterior plane in the supine position.
Opacity was quantified according to their extension and
reported on a scale of 0 to 4: no opacity (grade 0), opacity
up to 25% (grade 1), 26 to 50% (grade 2), 51 to 75% (grade
3), and 76 to 100% (grade 4). The score was determined in a
single-blind analysis [21].

2.8. Determination of Pulmonary Edema. Pulmonary edema
was quantified by gravimetric analysis. The lung tissues were
weighed and dried in an oven between 60 and 65°C up to
constant weight. Finally, the lung weight gain was calculated
with the following formula: ΔPP = ðPH − PSÞ/PS, where ΔPP
is lung weight gain, PH is final lung weight, and PS is initial
lung weight.

2.9. Cytokine and Oxidative Damage Levels. Cytokine and
oxidative damage levels were quantified in triplicate at the
beginning and the end of EVLP in bronchoalveolar lavage
(BAL). An enzyme-linked immunosorbent assay (ELISA)
was used to determine tumor necrosis factor alpha (TNF-
α) (Thermo Fisher Scientific KSC3011, Waltham, MA,
USA), IL-8 (Invitrogen™ KSC0081, Vienna, Austria), and
porcine protein carbonyl (E07P0048 CBP kit, CBP BlueGene
Biotech, CO, LTD Shanghai, China).

2.10. Western-Blot Analysis. Total protein concentrations in
tissue lysates were measured by Lowry assay. Samples of the
protein (150μg/ml) were then separated by using 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred onto nitrocellulose transfer membranes
(Bio-Rad Laboratories, Inc. USA). The membranes were
then probed by using antibodies against ECE-1 (Cat.
6855b, ABGENT, San Diego, CA, USA), dilution: 1 : 1000
in 0.1% BSA in PBS and VEGF (Cat. 115544, Biorbyt, Ger-
many; 1 : 500 in milk 4%). Immune complexes were detected
with goat anti-rabbit IgG HRP (Cat. HAF008, R&D Systems,

(a) (b)

Figure 1: (a) Ex vivo lung perfusion (EVLP). The EVLP system is composed of a pump, ventilator, heating unit, deoxygenator, perfusate
reservoir, and organ dome. (b) The cannulated pulmonary artery, left atrium, and intubated trachea in the organ dome.
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USA; 1 : 1000 BSA 4%). The blots were then visualized by
using chemiluminescence (ChemiDoc™ XRS+System, Bio-
Rad Laboratories, Inc. USA), and the signal intensity was
quantified by densitometry using Image Lab™ Software
(Bio-Rad Laboratories, Inc. USA).

2.11. Data Analysis. Statistical analysis of parametric data was
done with repeated measures (RM -ANOVA). Post hoc com-
parisons at specific time points were evaluated using the Bon-
ferroni significant differences test. The nonparametric Mann–
Whitney test or Wilcoxon signed-rank test was used to com-
pare statistical difference between two groups and Friedman’s
two-way analysis of variance by ranks of related samples. The
Shapiro Wilk for the sample distribution and Student’s T-test
for comparison of groupmeans were used. SPSS 19.0 statistical
software (SPSS Inc., Chicago, USA) was used, and p values of
p < 0:05 were considered significant.

3. Results

All blocks completed the four hours of ex vivo lung perfu-
sion. All parameters were within normal values for pigs.

3.1. Gas Exchange. PO2 remained above 80mmHg over time,
with FiO2 at 21% (p = 0:189). Oxygenation did not differ
between I-EVLP and delayed EVLP (D-EVLP) (p = 0:551)
(Figure 2(a)). PaCO2 I-EVLP (19:58 ± 6:99) and D-EVLP
(25:20 ± 5:58) levels did not vary over time (p = 0:964), nor
amongst groups (p = 0:551). Likewise, the PaO2/FiO2 ratio
(I-EVLP 390:06 ± 112:56, D-EVLP 407:77 ± 55:45) showed
no difference over time (p = 0:551) nor between groups
(p = 0:964) (Figure 2(b)).

3.2. Functional Outcomes. For immediate EVLP (I-EVLP),
PVR was increased at 2 hours and continued with that trend
until the end of EVLP, with significant difference over time
(p = 0:010) and when comparing between groups
(p = 0:007) (Figure 3(a)).

During EVLP, static (Cstat) and dynamic (Cdyn) compli-
ance changed over time, with a slight decrease at 4 hours for

the D-EVLP group and no significant differences between
groups at any other time point for both groups (Cstat
(p = 0:190) and Cdyn (p = 0:187)) (Figures 3(b) and 3(c)).

Airway resistance (Raw) was increased in both study
groups, but there was no difference between them within
any time point (p = 0:067) (Figure 3(d)). The PIP in both
study groups was maintained close to its basal levels, how-
ever, the comparison between groups I-EVLP (p = 0:000)
was significantly lower with differences between groups at
all-time points (p = 0:0001) (Figure 3(e)).

3.3. Radiologic Assessment. In both groups, slight edema was
present (p > 0:05 Mann–Whitney U-test); nevertheless,
there was a time frame in the I-EVLP group in the left lung
after two hours with moderate edema, while the other time
frame of the same group presents severe edema in both lungs
at the end of the study (p > 0:05 Friedman two-way). In con-
trast, one group of the D-EVLP during a time frame showed
moderate edema in both lungs in the basal radiography, after
one and two hours, it remained present only in the right
lung (p > 0:05 Friedman two-way).

3.4. Histologic Findings. Individual lung injury severity score
parameters showed a better assessment in the D-EVLP
group compared to the I-EVLP group (p > 0:05 Mann–
Whitney U) with lower presence of neutrophils, macro-
phages, and lymphocytes; the D-EVLP group also had less
alveolar edema, still, these variables did not reach statistical
significance (p > 0:05 Friedman’s two-way).

3.5. Gravimetric Findings. A trend towards lower levels of
wet-dry ratio in the D-EVLP group compared to the I-
EVLP group was observed after 4 h of EVLP, with no signif-
icant differences (p = 0:998).

3.6. Measured Cytokines. Both groups had significantly
higher levels of IL-18 in comparison with its baseline, I-
EVLP (p = 0:06) and D-EVLP (p = 0:10), and there were
no significant differences between groups (p = 0:97). How-
ever, I-EVLP levels were higher in the I-EVLP group
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Figure 2: PaO2 levels and PaO2/FiO2 ratio. Although there is a trend of higher values in the D-EVLP group, especially at 2 and 4 hours, no
significant differences are found. The lungs of the D-EVLP group mainly reached higher values at each time point and throughout the course
of EVLP than the lungs of the I-EVLP group. (Mean ± SD, p > 0:05 RM-ANOVA).
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(998:61 ± 293:60) compared with D-EVLP
(982:55 ± 301:53). Likewise, TNFα differed according to
its respective baseline values for D-EVLP (p = 0:043) and
I-EVLP (p = 0:043), with higher values for I-EVLP
(327:448 ± 107:94) and D-EVLP (272:08 ± 167:32), without
significant differences between groups (p = 0:548).

In the analysis of the protein carbonylation data, nor-
mality was found (p > 0:05 Shapiro-Wilk). In group, I-
EVLP had a slight increase at the end of the process

(p = 0:562) in contrast to group D-EVLP, which presented
a decrease (p = 0:844). When both groups were compared,
no significant difference was found (p = 0:772).

3.7. Western Blot Analysis. ECE-1 and VEGF levels were
similar in both groups. There was no significant difference
between groups, nor when comparing each time frame of
the study with its respective baseline (p = 0:444, p = 0:722)
for ECE-1 and VEGF, respectively (Figures 4(a) and 4(b)).
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Figure 3: Functional results of immediate (I-EVLP) and delayed (D-EVLP). Values are expressed as mean ± SD, RM-ANOVA Bonferroni.
(a) PVR towards higher values in the I-EVLP group; (b) and (c) dynamic compliance decreased over time and lowered in the D-EVLP
group; (d) and (e) both groups showed almost constant values for Raw and PIP, which were generally higher in the D-EVLP group
during the entire process (Φ p < 0:05 between groups, †p < 0:05 between groups at the same time, and Ω p < 0:05 compared with basal I-
EVLP).
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4. Discussion

Twelve hours of exposure before EVLP did not negatively
affect in a significant way neither the proteins ECE-1 and
VEGF nor pulmonary function. The evaluation of I-EVLP
and D-EVLP groups was similar; even though I-EVLP pre-
sented a rise in the wet-dry weight ratio and lightly aug-
mented histological findings, and oxygenation capacity
(partial oxygen pressure at FiO2 of 100%) in both groups
was maintained at above-expected values for EVLP lungs
[22, 23]. Our data matched other studies that found that
lungs with D-EVLPmaintain pulmonary function in a signif-
icant way [12] and showed in a porcine model that EVLP
with prior cold static preservation for nine hours is as safe
and effective as I-EVLP of donor’s lungs procurement [13].

In our study, both groups showed a hemodynamically sim-
ilar performance during the ex vivo evaluation, although the
PVR was higher for the I-EVLP group from the initial mea-
surement, suggesting the persistence of sparse microthrombi
that, despite the use of perfadex solution and heparin, caused
flow obstruction at the level of small arterioles; subsequently,
the trend of increasing PVR over time suggests endothelial dys-
function with inflammation of endothelial cells leading to
decreased capillary diameter probably due to injury by
ischemia-reperfusion (IR) [24, 25]. Accordingly, our histologi-
cal findings showed increasing numbers of inflammatory cells
in our I-EVLP group in comparison with the D-EVLP group.

Compliance of lung tissue was comparable in both
groups, but a trend to higher Cstat and Cdyn in the I-
EVLP group was observed. The slight compliance decrease
in D-EVLP may be due to longer hypothermia, which would
slow the process of reaching the same lung elasticity as in the
I-EVLP group [13]. The PIP remained at the same level in
both groups during EVLP, with higher values in D-EVLP;
however, in porcine models, PIP is higher compared to
human lungs [13], and although there was a significant dif-
ference between groups, the Δ peak-plateau was not greater

than 5 cm H2O. Airway and vascular pressures remained sta-
ble for 4 h. All other measured lung functional parameters,
in both groups, did not differ. Additionally, the water con-
tent of the lung tissue confirmed by a higher wet-dry ratio
and histology in group I-EVLP, it can be interpreted as dam-
age caused by a certain degree of damage to the alveolar-
capillary barrier due to thinning and rupture caused by lungs
ischemia [26]. IL-8 has been usually associated to acute lung
injury, as it can be a biomarker; for PGD cases, with values
significantly higher at both 1 and 4 hours of EVLP [4]. It also
been known that elevated IL-8 and mRNA before TNF-α
implantation correlates with mortality after 30 days of lung
transplant [27]. In our work, the increase of cytokines levels
is likely related to IR, as it is an inflammatory response that
involves injury/dysfunction of endothelium and epithelium,
with activation of molecular patterns associated with dam-
age. The ex vivo lung continues to be an important part of
generation of strong inflammatory response, as it harbors
leukocytes in its alveolar and interstitial compartments [5].

The lower levels of cytokine releases in the D-EVLP
group may be associated with hypothermic preservation-
induced-ischemia [25, 28], in agreement with those obtained
in lungs in hypothermic preservation for 4 h with retarded
EVLP [12, 13]. However, cytokine reduction in lung perfus-
ate did not affect oxygenation, PVR, or edema formation,
demonstrating that other factors play a significant role in
graft dysfunction [29].

The D-EVLP group showed decreased oxidative stress
that may be associated with hypothermic preservation [30].
Although protein carbonylation in porcine EVLP had not
been reported, the carbonyl content of BAL fluid proteins
has been found to increase in ARDS patients [31]. The rapid
formation of protein carbonyl groups during protein oxida-
tion may favor its use as biomarker, in a time-frame of hours
and days instead of minutes, as usual with lipid peroxidation
products that are degraded in minutes [32].
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Figure 4: Western blots of ECE and VEGF in the lungs of I-EVLP and D-EVLP. (a) Densitometry showing relative levels of ECE-1 and (b)
VEGF. Mean ± SD (p > 0:05).
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Even though increased levels of ET-1 are associated with
PGD, in approximately 30% of lung transplant cases [7, 8],
the role of ECE-1 and VEGF in conditions of prolonged
hypothermia and EVLP has not been previously described.
Thus, the results of this work may be clinically relevant,
and a positive stimulation of ECE-1 would lead to an
increase in ET-1. ECE-1 levels remain constant over time
in both study groups, in agreement with a clinical trial of
EVLP in which increased levels of ET-1 and Big ET-1 were
associated with lungs declined for transplantation and those
that developed PGD [8]. However, our data did not come
from brain (BDD) and cardiac (DCD) dead donor’s lungs,
which may represent differences in protocols [33, 34].

In this work, the VEGF protein levels decreased
throughout D-EVLP, in contrast with the I-EVLP group, in
which it increased at the end of EVLP. This can be explained
by VEGF overexpression in several cell types (such as acti-
vated alveolar epithelial type 2, endothelial cells), which
increases the vascular permeability. Also, VEGF increases
in response to oxygen radicals and cytokines, involved in
ischemia-induced lung injury [35]. Our results on the W/D
ratio in the D-EVLP group revealed less edema formation,
which is consistent with other works that found reduced
W/D ratio and pulmonary neutrophil infiltration in a VEGF
treatment group compared with a LPS group [36]. On the
other hand, upregulated expression of protein levels
VEGF-A and -C, but not -B, as well as increased tissue fluid
contents in donor grafts versus controls has been found, sug-
gesting that the molecular permeability pathway described
here for the VEGF family might be of benefit to selectively
counteract edema formation in lung grafts [35]. Moreover,
serum VEGF levels measured preoperatively after hospital
admission were higher in recipients who developed PGD
than in recipients who did not, suggesting that preexisting
vascular endothelial injury is a risk factor for development
of PGD [37].

One limitation of this work is the fact that the lungs were
not transplanted at this stage of the study, in addition to
having a small number of samples; additionally, the levels
of Big endothelin and ET were not determined. However,
both protocols indicate that after EVLP in the pretransplant
stage, the ECE-1 and VEGF expression levels had changes
that were not significantly affected. Likewise, comparable
values were achieved in the hemodynamic, gasometric,
mechanical ventilatory, and histological parameters with a
tendency to better results after 12 hours of hypothermic
preservation in the delayed infusion group.

Acronyms

Raw: Airway resistance
BDD: Brain-Dead Donors
BAL: Bronchoalveolar lavage
D-EVLP: Delayed initiation of EVLP
DCD: Donation after circulatory death
Cdyn: Dynamic lung compliance
ECE-1: Endothelin-converting enzyme
ELISA: Enzyme-linked immunosorbent assay
EVLP: Ex vivo lung perfusion

FiO2: Fraction of inspired oxygen
H&E: Hematoxylin and eosin
I-EVLP: Immediate EVLP
IR: Ischemia-reperfusion
LTx: Lung transplantation
OLB: Open lung biopsy
PaCO2: Partial pressure of carbon dioxide
PaO2: Partial pressure of oxygen
PIP: Peak inspiratory pressure
CBP: Porcine protein carbonyl
PEEP: Positive end-expiratory pressure
PGD: Primary graft dysfunction
PA: Pulmonary artery
PVR: Pulmonary vascular resistance
RM–ANOVA: Repeated measures
Cstat: Static lung compliance
TNF-α: Tumor necrosis factor alpha
VEGF: Vascular endothelial growth factor
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