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Abstract: Annexin A1l (ANXA1) has long been classed as an anti-inflammatory protein due to its
control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has
widespread effects beyond the immune system with implications in maintaining the homeostatic
environment within the entire body due to its ability to affect cellular signalling, hormonal secretion,
foetal development, the aging process and development of disease. In this review, we aim to provide
a global overview of the role of ANXALI covering aspects of peripheral and central inflammation,
immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic
potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
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1. Introduction

Annexin Al (ANXA1), a 37-kDa protein, belongs to the annexin superfamily of calcium-dependent
phospholipid-binding proteins [1]. The molecule is regulated by glucocorticoids and inhibits the action
of cytosolic phospholipase A2 (PLA2), subsequently blocking the release of arachidonic acid and
in turn preventing synthesis of eicosanoids (e.g., prostaglandins, thromboxanes, prostacyclins and
leukotrienes) [2-6]. The protein mediates its pharmacological effects through binding to G-protein
coupled receptor (GPCR) formyl peptide receptor 2 (FPR2), and /or by binding to the phospholipid
bilayer of cell membranes [7-10]. Notably, it is not only the full-length ANXA1 molecule which has
the ability to mediate its widespread effects. ANXA1’s N-terminal-derived peptides Ac2-26, Ac2-12
and Ac2-6 have also been reported to induce activation of FPR1 and FPR2 [11-13].

Since its discovery, ANXA1l has proven to be responsible for controlling more than
the activation of PLA2, with evidence to support the protein’s role in blocking leukocyte
extravasation, inducing apoptosis and modulating cytokine synthesis [14], as well as controlling
hypothalamic-pituitary—adrenal (HPA) axis physiology [15] and regulating the tightness of the
blood-brain barrier (BBB) [16]. In fact, the role of ANXA1 has been investigated in a variety of
different fields including cardiology, neurology, endocrinology and oncology. This review aims to
recapitulate the last 30 years of research surrounding ANXA1’s multiple pathophysiological roles as
well as its potential to act as a therapeutic and diagnostic agent.

2. Annexin A1l and Inflammation

Annexin Al, formerly renocortin, macrocortin or lipocortin-1, was first identified in the 1980s by
Francoise Russo Marie and Rod Flower, as a factor regulated by dexamethasone with the potential to
inhibit cPLA2 [17,18]. ANXA1 gene structure presents a non-translated first exon, a long intron and
four repeats (highly similar among the annexins) suggesting a gene duplication theory [19,20].
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Clear evidence of ANXA1’s role in inhibiting cPLA2 was provided through the generation of
mice lacking the ANXAT gene, in which levels of cPLA2 mRNA and protein were elevated compared
to wild-type mice [21], supporting earlier in vitro studies conducted using U937 cells [22].

The initial identification of ANXA1 as an anti-phospholipase protein paved the way for this molecule
to be investigated as an anti-inflammatory agent. As such, ANXA1 was shown to control the release of
nitric oxide, as seen in macrophages treated with dexamethasone in conditions such as sepsis or under
LPS stimulation, resulting in the inhibition of inducible nitric oxide synthase (iNOS) and simultaneously
up-regulating production of potent anti-inflammatory cytokine IL-10 [23]. It is widely established that
IL-10 production can be increased by the ERK signalling pathway that is activated upon ANXA1 binding
to its FPR thereby suggesting the presence of a looping mechanism to control both IL-10 and nitric oxide
release [24]. Interestingly, ANXAL1 also inhibits cyclo-oxygenase-2 (COX-2) expression, hence, controlling
pro-inflammatory mediator release; a phenomenon unique to microglial cells [25].

2.1. Transcriptional and Translational Control of ANXA1

The role of glucocorticoids in controlling ANXA1 mRNA transcription has been observed in vitro,
in vivo and ex vivo. In an in vivo model using Wistar rats treated with either Methylprednisolone
or a 21-aminosteroid, there was upregulated ANXAI expression in all areas of the brain compared
to non-treated controls. Ex vivo analysis of alveolar macrophages, obtained by broncho-alveolar
lavage, from patients with inflammatory lung disease (i.e., bronchial asthma) undergoing treatment
with glucocorticoids also showed higher ANXA1 expression [26]. Similarly, in vitro studies conducted
using a human lung epithelial cell line A549 showed upregulation of ANXA1 expression when treated
with phorbol-myristate (PMA) and interleukin 6 (IL-6) which was mediated by the activation of the
transcription factor NF-IL-6 (C/EBP $3) [6,27,28]. Aside from transcription, IL-6 and dexamethasone cause
ANXA1 translocation to the cell surface and secretion which has important implications in controlling
the binding and attachment of leukocytes onto endothelial cell surfaces [29-31]. Co-localization studies
of ANXA1 with the ABCAL1 transporter in follicular stellate cells of the pituitary is another example of
ANXALI secretion, although in this specific case, it is restricted to the pituitary gland [32].

Moreover, post-translational modifications of ANXA1 are important in allowing its translocation to
the cell surface for further secretion which is independent of the classical ER/Golgi exocytosis pathway [29]
as it does not contain a signal sequence to enter into these sub-cellular compartments [33]. Serine-27
phosphorylation along with lipidation [30] induces ANXAT1 translocation onto the membrane via MAPK,
PI3K and PKC-dependent signalling cascades [31]. In contrast, the phosphorylation on tyrosine 21
mediated by EGF signalling would localize the protein at a cytoplasmic level [34]. Involvement of these
signalling pathways is critical as they activate a number of secondary messengers including ERK, JNK,
p38 and Akt; these are crucial in regulating many cellular processes such as stress responses, metabolism,
cell cycle events and apoptosis [35-37]. The pathway-dependent translocation of ANXAL to the cell
surface for binding to its GPCR therefore represents a paracrine mechanism used to control, dampen and
limit the immune response, underlining the potential of ANXA1 to be used as a therapeutic.

2.2. Annexin Al in the Innate Immune System

A key anti-inflammatory property of ANXA1, and perhaps the most documented, is the ability of
the protein to inhibit leukocyte (neutrophil and monocyte) transmigration. Initially, this was discovered
through the administration of dexamethasone to mice with zymosan peritonitis, subsequently
inhibiting leukocyte accumulation; an effect reversed with immunisation against recombinant
ANXAL1 [38]. Using a similar model, Lim et al. showed detachment of neutrophils from the vascular
endothelium wall of mesenteric post-capillary venules in mice treated intravenously with ANXA1 with
a marked reduction in the number of cells migrating through the tissues [39]. In tandem, upregulated
ANXAL levels in circulating leukocytes, following glucocorticoid treatment, were reported to be
responsible for prolonging diapedesis time of leukocytes compared to controls [40]. Mechanistically,
the above-described effects are correlated to ANXA1’s ability to modulate adhesion molecule-based
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leukocyte-endothelium interactions. Studies in the monocytic U937 cell line observed ANXAL to
co-localise with a431 integrin on leukocytes to prevent interaction of «4(31 with vascular cell adhesion
molecule (VCAM)-1 and/or to cause L-selectin shedding from leukocytes in a calcium-dependent
manner thereby preventing the tethering, rolling and firm adhesion of leukocytes to the endothelium
for transmigration [10,41]. Leukocytes, upon cellular activation by chemokines, mobilise their
endogenous ANXAL1 to the plasma membrane [42] and this secreted ANXA1 serves to promote
leukocyte detachment from endothelial cells, thus serving as a negative regulator of the transmigratory
process. Indeed, in human neutrophils >60% of cytoplasmic ANXAL1 is stored in gelatinase granules
for rapid mobilisation/secretion [43].

Another major involvement of ANXAT1 in resolution of inflammation is through accelerating
apoptosis. Transfection of monocytic U937 cells with full length recombinant ANXA1 constitutively
activates caspase-3 activity [44]. Moreover ANXAT1 stimulates an intracellular increase in cytosolic
calcium resulting in the dephosphorylation of the Bcl-2-associated death promoter (Bad), thus,
activating the apoptotic effector machinery [45,46]. Alongside initiating apoptosis, ANXAI also serves
as a regulator of apoptotic cell removal. Engulfment of apoptotic cells requires presentation of ligands
to act as signalling molecules to phagocytes. ANXAL is recruited to the cell surface of apoptotic cells in
a caspase-and calcium-dependent manner to co-localise with ‘eat-me’ signal phosphatidylserine [47]
implying that ANXA1 may serve as a safety measure to ensure dead cells are removed effectively and
efficiently without causing inflammation. This concept was further supported through a study by
Scannell et al., who showed that pre-conditioned medium from pro-apoptotic neutrophils released
pro-phagocytic factors for promotion of removal by macrophages, in which ANXA1 and its peptide
derivatives were abundant [48].

Crucially, the above mentioned anti-inflammatory effects can occur by both the full length ANXA1
protein or by the protein’s cleaved N-terminal peptides. Confirmation of these results is provided
through investigations in ANXA1~/~ mice that exhibit enhanced migratory properties of leukocytes,
upregulated L-selectin expression and abnormal phagocytosis by macrophages [21,49].

2.3. Annexin Al in Adaptive Immunity

Over the years, research has shown that ANXAL1 is also involved in adaptive immunity, although
notably the expression of ANXA1 in T-cells is approximately 100-fold lower than in neutrophils and
macrophages [50]. Addition of human recombinant ANXA1 (hrANXA1) to T-cells stimulated with CD3
and CD28 increases T-cell proliferation and activation [51] leading to increased cell surface expression
of the FPR1 on T-cells in parallel with mobilisation of ANXAT1. The overall combination of these events
causes prolonged stimulation of AKT and ERK pathways thereby controlling T-cell proliferation through
modulation of T-cell receptor signal strength [52]. In addition, the AP-1, NFAT and NF-«B pathways are
also initiated [51]; the activation of all three suggests that ANXAT has the ability to control multiple aspects
of cell activation making it an even more attractive therapeutic molecule in modulating inflammatory
responses [53]. ANXA1~/~ T-cells lack the ability to engage these signalling pathways [54].

Remarkably, one particular study has suggested the potential of ANXA1 in modulating the
differentiation of naive T-cells into T-helper cells (Tyj). D’Acquisto et al., found ANXA1 to promote
the development of Ti1 cells (IFN-y, TNF-« & IL-2 producing) and to suppress development of Ty2
cells (IL-4, IL-5, IL-6, IL-10 & IL-13 producing) [51]. In another study, it was seen that ANXA1-derived
peptide Ac2-26 inhibited the proliferation and cytokine production of both Tyl and Ty2 cells by
interfering with T-cell activation mechanisms dependent on antigen presentation [55]. Of note, no
further studies to date have been able to show ANXA1’s involvement in Ty-cell differentiation,
in contrast ANXA1 deficiency has been shown to cause proliferation and activation of Ty17 cells
correlated with autoimmune pathology of the retina. In humans, ANXA1 deficiency can be associated
with the autoimmune disease, uveitis. In a mouse model, hrANXA1 administration rescued the
severity of the disease through restricting Tyy17 development and thus pro-inflammatory cytokine
secretion via regulation of SOCS3/STATS3 signalling [56].
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Without a doubt, further research is necessary to understand the effect of ANXA1 on CD4" vs
CD8* cells, differentiation of T-regulatory cells, Th17 cells and B-cell development. An overview of the
anti-inflammatory mechanism of ANXA1 on the immune system is provided in Figure 1.
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Figure 1. Summary of the role ANXA1 in controlling inflammation through its effect on immune cells.

3. Annexin Al and Immune Repair

Recent work has focused on the role played by ANXAL1 and its peptides specifically in immune
repair. Particular focus has been placed on macrophages as it was noticed, in biopsies from patients with
inflammatory bowel disease (IBD), that ANXA1 localisation is higher in macrophages during disease
resolution compared to active disease where instead ANXA1 expression is greater in neutrophils [57].
ANXAL1 from apoptotic neutrophils acts as a chemoattractant to recruit monocytes for differentiation
into macrophages for the detection, removal and presentation of foreign antigens thereby playing a
key role in the resolution phase of inflammatory responses [58]. ANXA1 increases efferocytosis and
absence of ANXAL1 has been correlated with reduced phagocytosis of bacterial and fungal particles [59].
In Mycobacterium tuberculosis, ANXAT1 is essential to provide immunity as it assists in dendritic cell
antigen-presentation for CD8* T-cell stimulation. Absence of ANXA1 results in an impaired CD8"
T-cell response alongside reduced dendritic cell-mediated efferocytosis [60].

Macrophages can be differentiated into either a pro-inflammatory M1 phenotype or
anti-inflammatory M2 phenotype. In ischemia-reperfusion induced acute kidney injury of mice,
inflammatory M1 macrophages are present immediately after injury followed by the accumulation of
tissue-repair M2 macrophages; suggesting the role of these cells in resolving inflammation [61]. In presence
of ANXAL, liver macrophages are induced towards a M2 phenotype expressing high IL-10 and low
IL-12p35 [62] and inhibiting expression of pro-inflammatory cytokines IL-1f3, IL-6, IL-23 and TNF-a.
The dampening down of the pro-inflammatory macrophage phenotype has also been demonstrated
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ex vivo using non-alcoholic steatohepatitis livers isolated from mice treated with recombinant ANXA1,
triggering suppression of M1 macrophages concurrent with an increase in IL-10 mRNA [63].

Furthermore, the stimulation of the P2X7 receptor on macrophages, independent of polarisation
state, results in the release of ANXA1. In M1 macrophages, the P2X7 receptor activated the NLRP3
inflammasome, which is uncoupled on the M2 macrophages [64]. Interestingly, the expression of the
receptor is higher in M2 macrophages and does not result in production of reactive oxygen species
(ROS), suggesting an alternative mechanism to the pro-resolving mechanism of ANXA1 [65].

The majority of work investigating the ability of ANXA1 to participate in immune repair has
been carried out in IBDs in which the epithelial barrier is disrupted resulting in chronic inflammation
and mucosal wounds [66]. Severe IBDs such as Ulcerative Colitis (UC) or Crohn’s can be treated
using anti-TNF-« therapies in order to control the inflammatory response. Evaluation of biopsies
from patients under anti-TNF-« therapy for UC show increased ANXA1 expression in the mucosal
crypts and epithelium. In contrast, patients receiving no treatment who experienced a flare of UC
did not express ANXAL1 in the intestinal epithelium [57]. In an animal model of colitis, induced by
either dextran sodium sulphate or 2,4,5-trinitro benzene sulfonic acid and treated with ANXA1 peptide
MC-12, colonic inflammation was reduced as measured by NF-«B activation, myeloperoxidase, PGE,,
COX-2 and pro-inflammatory cytokine (TNF-«, IFN-y, IL-1§3 and IL-6) levels [67].

Wound healing is an essential component of immune repair and activation of the FPR1 receptor
has been shown to induce intestinal epithelial cell migration and wound closure. Stimulation of the
FPR1 receptor by both ANXA1 and its peptide Ac2-26 generates superoxide species via NADPH
oxidase 1 (NOX1), causing phosphorylation and activation of focal adhesion kinase (FAK) which is
involved in cell migration and proliferation. Mice lacking NOX1 present with defects in intestinal
wound repair following injury, which is rescued by administration of ANXA1 [68]. More recently
a study by Alam et al., uncovered the ability of specific gut microbiota species to activate the FPR1
receptor and induce cell migration through ROS generation from NOX1 [69].

Another manner in which ANXA1 provides repair is through positive alteration of the fibrotic
response. In a bleomycin-induced pulmonary fibrosis model, ANXA1 absence led to a more severe
fibrosis phenotype with increased lethality that was rescued upon Ac2-26 peptide treatment [66].
Similarly, mice with silicosis present with improved lung function and pathology measured by reduced
leukocyte infiltration, collagen deposition, granuloma formation and fibroblast activation when treated
with ANXA1 mimetic peptide [67]. Treatment with ANXA1 could hold therapeutic potential in
other fibrosis-driven diseases such as kidney disease, whereby ANXA1 in renal fibroblasts reduces
«-SMA and collagen A1l gene expression due to inhibition of TGF-f3 induced signalling and cytokine
production [68]. Likewise, ANXA1 treatment in RA patients reduces scar formation through increasing
MMP-1 presence for the degradation of extracellular matrix components [69].

Targeting ANXA1 in Extracellular Vesicles

ANXAL is often found in the extracellular matrix and its presence can be accounted for by the
release of the protein by extracellular vesicles (EVs), including larger microparticles (100-1000nm) and
smaller exosomes (40-100nm) in which ANXAT1 is localised [70]. The growing interest of nanoparticles
as a therapeutic delivery strategy, has implicated the potential to exploit and harness ANXA1 in EVs
as a method of promoting inflammation resolution.

ANXA1l-containing EVs are released endogenously from intestinal epithelial cells upon raised
pro-inflammatory cytokines and help to promote wound repair; this resolution ability is lost in EVs
derived from ANXA~/~ mice. Delivery of nanoparticles containing ANXA1 mimetic peptide Ac2-26
in both a murine model of colitis and colonic-induced wounds, show enhanced wound healing and
recovery following a single intramuscular injection [71]. Moreover, as ANXAl-contaning EVs are
elevated in patients with IBD, these EVs could serve as a biomarker of inflammation.

The prospect of ANXA1-containing nanoparticles to deliver therapeutic benefit has also been
investigated in RA and atherosclerosis. As cartilage is impenetrable to the passage of cells, neutrophils
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secrete microvesicles containing ANXAI1 to enter the cartilage. In RA patients, neutrophil-derived
microvesicles overexpressing ANXA1 are increased in concentration within the synovial fluid
compared to plasma. These microvesicles have the ability to prevent loss of proteoglycans in order to
maintain cartilage [72].

Previous work by Dreschler et al., implicated the role of ANXA1 and its peptide Ac2-26
in inhibiting integrin activation and myeloid cell accumulation to arterial walls by chemokines
CCL5, CCL2 and CXCL1 [73]. In Apoe ™/~ mice fed a high fat-diet, repeated intravenous
administration of Ac2-26 reduced atherosclerotic lesion size and lesional macrophage accumulation.
Therefore, the therapeutic potential of collagen IV-targeted nanoparticles containing Ac2-26 was
evaluated in a separate study using fat-fed Ldlr—/~ mice. It was seen that; the release of Ac2-26,
from the nanoparticles accumulated at the vessel lesions, induced plaque stability and reduced
atherogenesis [74]. Furthermore Apoe~/~ mice lacking the FPR2 receptor, showed significantly
increased lesion size, pinpointing the ANXA1-FPR2 interaction as an important repair mechanism in
atherogenesis [73].

4. Annexin A1 and Cancer

Dysregulation of ANXA1 levels and alterations to its sub-cellular localization have been associated
with the development and progression of a large number of cancers.

Elevated levels of ANXA1 have been detected in lung cancer [75,76], colorectal cancer [77-79],
hepatocellular carcinoma [80], pancreatic cancer [81] and in melanomas [82]. In these particular
forms of cancers, high expression of ANXAL1 is positively correlated with disease severity and
increasing tumour stage. In fact, in an antithrombin III SV40 T large antigen (ASV) transgenic mouse
model that constitutively develops hepatocellular carcinoma, high ANXA1 levels precede tumour
development [34]. In the same manner, higher expression levels of ANXA1 were detected in sera
obtained from patients with lung-cancer compared with matched high-risk controls, who did not go
on to develop lung cancer [83], thus suggesting the potential for ANXAI to act as a biomarker for
cancer diagnosis and prognosis.

Additionally, up-regulated ANXA1 promoted tumour invasion and metastasis as seen in colorectal
cancer whereby ANXAL levels were raised in sentinel lymph nodes compared to normal lymph
nodes [84]. Similarly, in a murine model of melanoma ANXA1 levels increased by 2.5-fold in
B16B16 metastatic cells versus non-metastatic B16F10 cells. An siRNA knock-down of ANXA1 in
the B16B16 cells reduced their invasive capability giving rise to idea that ANXA1 could also be a
potential therapeutic target for metastatic cancers [82]. This has been analysed in hepatocellular
carcinoma, colorectal carcinoma and lung cancer whereby treatment to respective cell lines of HepG2
by Sorafenib [80], HCT116 by Indomethacin [85] and A549 cells by Eurycomanone [86] resulted in
significant down-regulation of ANXA1 protein expression. Further studies are required to evaluate
the effectiveness of targeting ANXA1 for cancer therapies.

Conversely, particular cancers are more prone to develop in downregulated states of
ANXAL1 expression including cancers such as prostate [87-89], cervical [90-92], lymphoma [93],
oesophageal [90-92], larynx [94], nasopharyngeal [95] and oral squamous cell carcinoma [96,97].
Interestingly, in oesophageal cancer, ANXA1 levels were reportedly lower in moderately and poorly
differentiated tumours in comparison to well-differentiated types and levels were downregulated
particularly at the transitional switch between dysplastic to invasive tumours suggesting that ANXA1
could act as an early indicator for cancer progression [90,98]. A similar phenotype was seen in
nasopharyngeal cancers in which primary tumours had lower ANXA1 expression when compared to
lymph node metastasised tumours [95].

In prostate cancer, reduced ANXA1 expression has been linked to prostate acinar morphogenesis
due to increased IL-6 presence [99] suggesting the importance of ANXAI in mediating cytokine
expression. Re-introduction of ANXA1 into prostate cancer cells induces a pro-apoptotic effect
through blocking EGF-mediated proliferation and activation of p38 and JNK pathways [100]. Other
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studies in prostate cancer have also found a link between histone deacetylase inhibition, ANXA1 and
apoptosis [101].

The multiple effects induced by ANXA1 serve to indicate its potential as a pharmacological agent,
however, further studies are required to understand the exact mechanisms of ANXA1-mediated cellular
activation. This is particularly important in cancers such as breast, bladder, gastric and leukaemia,
whereby it has been discovered that ANXA1 can behave as both a tumour suppressor and oncogene
(reviewed in [102,103]), with differentiated levels of expression dependent on tissue and cell type,
emphasising the need for personalised medicine in the future.

Localization of ANXA1 and Its Effect on Tumorigenesis

ANXAL1 is known to have three distinct sub-cellular locations; the cytoplasm (ANXA1 contributes
to 2%—4% of cytoplasmic protein), the nucleus and the plasma membrane [104]. Annexins do not
contain a nuclear targeting sequence, nonetheless its presence in the nucleus may be related to certain
conditions. For example, investigations into oesophageal squamous cell carcinoma have shown ANXA1
to be highly expressed on the nuclear membrane, which is absent in normal oesophageal epithelial cells.
Moreover the nuclear expression patterns of ANXAT1 are significantly associated with pathological
type, histological grade and prognosis [105,106]. ANXA1 nuclear translocation has also been
negatively associated with the survival of patients with oral squamous cell carcinoma [107] and gastric
adenocarcinoma [108]. The significance of ANXA1 in the nucleus is its ability to exert helicase activity,
once sumoylated, leading to DNA replication [109]. ANXA1 can then be mono-ubiquinated and in the
presence of carcinogenic heavy metals such as AS** and Cr®*, in place of Ca?*, trans-lesion synthesis
and mutagenesis occur leading to tumourigenesis [110]. It is thought that the initial translocation of
ANXALI into the nucleus, however, requires mitogenic, proliferative and DNA-damaging stimuli such
as EGF, heat, hydrogen peroxide or phorbol 12-myristate 13-acetate [111,112]; all known processes to
induce oncogenesis.

5. Annexin Al in the Endocrine System

The HPA axis is a major neuro-endocrine organ which regulates many body processes including
immune response, mood, digestion, energy storage/expenditure and stress. Glucocorticoids are
important in regulating the magnitude and duration of these responses, specifically by controlling the
release and gene expression of corticotrophin (ACTH) and corticotrophin-releasing hormone/arginine
vasopressin (CRH/AVP) [113]. Not only does ANXA1 mimic the glucocorticoid-induced secretion of
these hormones [114] but use of neutralizing anti-ANXA1 sera or antisense oligodeoxynucleotides
(ODNSs) directed specifically against ANXAL1 reverses the glucocorticoid-mediated effects [114,115];
revealing an ANXAl-dependent mechanism of HPA axis regulator. In fact ANXAL1 also controls
the actions of glucocorticoids on other pituitary hormones including prolactin [116], luteinising
hormone [117] and thyrotropin (TSH), particularly in response to pro-inflammatory cytokines [118].

Gonadal function relies on the levels of glucocorticoids; in prolonged levels of stress the HPA
axis is altered leading to disruption in glucocorticoid production and release which can therefore
affect fertility. ANXA1 mimics the inhibitory effect of glucocorticoids on testosterone secretion, and
may be a contributor to stress-induced infertility [119]. However, this same mechanism of steroid
inhibition can be beneficial during pregnancy and lactation whereby ANXA1 and oestrogen interaction
leads to reduced stress and incidence of autoimmune inflammatory diseases by lowering levels of
ACTH and CRH secretion [120-122]. In fact female ANXAT~/~ mice examined during pregnancy
show altered oestrogen cycles, exacerbated inflammatory reaction and enhanced plasma progesterone
at the start of the pregnancy resulting in fewer births [123] implicating the importance of ANXA1
interaction with endogenous steroid production and regulation. Certainly, ANXA1 expression is
increased in the placenta at term of normal pregnancies [121] whereas lower levels of ANXA1 are
present in the placentas from Gestational Diabetes Mellitus pregnancies that have a high level of
inflammatory cytokines [124]. In fact a number of studies report an association of oestrogen-mediated
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protective effects through ANXA1 pathway activation in lymphocytes in both systemic and cerebral
inflammation [125-129].

Early studies by Melki et al. found ANXALI to attenuate the insulin response through inhibiting
the activity of the insulin receptor kinase [130]; notably the insulin receptor was purified from a human
placenta. On the other hand studies conducted in rat pancreatic cells and MIN6N8a cells (an insulin
secreting cell line) found ANXAL1 to increase insulin secretion through cell-surface binding [131,132].
Furthermore, insulin secretion was synchronous with phosphorylated ANXA1 upon exposure to
high glucose levels and results found ANXA1 to be localized within the insulin-containing vesicles
suggesting an autocrine-mechanism of action [133]. Evidence suggests that ANXA1 expression may
vary in different tissues and thus may account for contrasting results. However, the importance of
ANXAL1 to be a regulator of insulin action should not be dismissed, as this could have far-stretching
effects on the role of the protein in conditions of obesity and metabolic syndrome where insulin
resistance is a key contributor to disease progression. Insulin receptor engagement activates the Akt
pathway, which plays a central role in regulating cellular metabolism [134]. Indeed, ANXA1 attenuates
microvascular complications (nephropathy and cardiomyopathy) through restoration of Akt signalling
in a murine model of Type I Diabetes Mellitus (T1IDM) [135].

6. Annexin Al in the Central Nervous System

In the last couple of decades, research into ANXAT1 has implicated a strong and important role of
the protein in the brain, where it provides neuroprotective and repair functions. ANXA1 is expressed in
a number of cells of the neurovascular unit including brain endothelial cells, microglial cells, astrocytes,
pericytes and neurons.

6.1. Blood—Brain Barrier (BBB)

The BBB is a physiologically active barrier that is present in the brain microvasculature to protect
the central nervous system (CNS) against damage from invasion of toxins, pathogens and peripheral
inflammation. It is composed of brain endothelial cells (linked by tight junctions and adherens
junctions), pericytes, astrocytes and the basal lamina; to give rise to an effective barrier with low
paracellular permeability to the movement of molecules, ions and immune cells [136,137]. ANXA1
has a key involvement in maintaining BBB integrity, achieved through co-localisation with actin
microfilaments present at the tight junctions between cells. ANXAT1 is seen to be highly concentrated
at the site of cell-cell contact with ANXAT~/~ mice exhibiting loss of tight and adherens junction
proteins occludin and VE-cadherin respectively [16,138]. The disruption to junctional proteins and
actin microfilaments results in the loss of cell polarity, which has important implications for the
localization and distribution of transporters present on brain endothelial cells. This has downstream
effects on the supply of essential nutrients and ions to meet the metabolic demand of the brain.

Importantly, the brain endothelial cells express the FPR2 receptor and it has been demonstrated
by Cristante and colleagues that ANXA1 signalling inhibits the activity of small GTPase RhoA. RhoA
itself causes the destabilization of the actin cytoskeleton, further implicating ANXA1 involvement
in BBB maintenance. In fact, ANXA1~/~ mice showed constitutively elevated BBB permeability
compared to wild-type mice as measured by MRI, trans-endothelial transport of Evans blue and
extravasation of serum IgG [16]. Loss of BBB permeability has been proposed as an effect of aging.
Since ANXA1 is an essential component of the BBB tightness and it expression declines with aging in
fibroblasts [139] [139] and leukocytes [140] we may speculate that ANXA1 downregulation at the BBB
is responsible for BBB leaking. This has important implications for the development and progression
of age-related neurodegenerative disorders such as Alzheimer’s disease, as well as accounting for
overall susceptibility to infections with increasing age.

Of note, ANXA1 presence can be traced to pre-natal brain development [121], with expression of
ANXAL1 detected in the BBB endothelial cells and microglial-like cells during foetal development [138].
Moreover the protein is involved in the morphogenesis of organs including the kidney, lung, salivary
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glands, placenta and inner ear [121] suggesting that ANXA1 mediates downstream effects that are
crucial for maintaining body homeostasis in all stages of life.

In Multiple Sclerosis, the loss of ANXA1 expression has been identified at brain parenchymal
capillaries of patients [16]. The loss of expression occurred at sites distant from the active lesion
suggesting that the disruption of BBB is required for enhanced leukocyte extravasation leading to the
damage of myelin sheaths seen on neurons. A vital role of ANXAL is in limiting leukocyte extravasation
through preventing a41 integrin-VCAMI interaction. In fact, one of the key treatments for Multiple
Sclerosis—Natalizumab is a humanized monoclonal antibody against «431 integrin with the aim
to prevent T-cell infiltration into the brain parenchyma thus suggesting the potential for exploiting
ANXAL as a therapeutic particularly as Natalizumab carries the risk of developing progressive
multifocal leukoencephalopathy (PML) as a side effect [141]. PML is a rare viral disease of the brain,
normally kept under control by the immune system however a dampened immune system in conditions
such as MS allow for the viral disease to be activated resulting in fatal inflammation. As ANXA1 is
an endogenous protein it is likely to have a lower potency of inducing severe immunosuppression,
however this remains to be investigated. Moreover, ANXAL1 deficiency has been linked to the severity
of other autoimmune diseases including Uveitis [56] and T1DM [135] and interestingly hrANXA1
treatment can reduce the severity of such autoimmune diseases. It would be interesting to understand
if there is a particular immune cell signature that underlies the development and progression of
these diseases.

ANXAI1 may also confer a therapeutic potential in protecting against stroke, as seen using a
murine-model of stroke induced by mid-cerebral artery occlusion. Treatment with ANXA1 Ac2-26
peptide provided cerebro-protection, via FPR2, by reducing infarct volume, leukocyte adherence and
markers of inflammation whilst improving neurological scores compared to non-treated mice [142].
A similar effect was also seen when using an alternative ANXA1 analogue 1-188 [143].

6.2. Annexin Al and Brain Immunity

Microglia are the brain tissue-resident macrophages sensing infectious and metabolic disturbances
and consequently aid in maintaining brain homeostasis. In events of neurological disease or brain
injury, microglial cells are activated [144,145]. In the peripheral system, macrophages are involved in
phagocytosis and ANXA1 is known to encourage the removal of apoptotic cells in order to resolve
inflammation. In a similar manner, it was first shown that microglia-derived ANXA1 is required for the
efficient removal of apoptotic neurons by co-localising with the phosphatidylserine present on the cell
surface to serve as a phagocytosing signal to microglia via the FPR2 receptor in a autocrine-paracrine
fashion [146]. Critically, microglia become constitutively activated under inflammatory conditions for
example in Alzheimer’s disease in response to A3, and we have shown that ANXA1 treatment reduces
both in vitro and in vivo the levels of A by increasing its enzymatic degradation by neprelysin and
to stimulate Af3 phagocytosis by microglia [147].Pharmacological intervention through exogenous
ANXALI treatment restored microglial surveillance to ensure resolution and maintenance of brain
homeostasis; implicating the use of ANXALI in neurodegenerative disorders [146,147]. A similar
effect of ANXA1 peptide Ac2-26 was seen in ischemia-injury of neurons, whereby the peptide-FPR
engagement promoted the transition of activated microglia from an inflammatory M1 phenotype to
a resolving M2 phenotype as well as inducing the migration of these microglial cells [148]. These
studies implicate that ANXAL1 treatment in the brain provides neuroprotection. The upregulation of
ANXAT1 in microglia has also been detected in models of transmissible spongiform encephalopathies
and excitotoxic neuronal injury, specifically in the sites surrounding the lesions [149-151], suggesting a
compensatory mechanism responsible for the immune repair.

6.3. Peripheral Inflammation, Neuroinflammation and the Potential Role of ANXA1

As the BBB is the major site of communication between the peripheral system and the brain,
there is evidence to suggest that increased peripheral inflammation in conditions such as Type II
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Diabetes Mellitus (T2DM) have the ability to cause endothelial dysfunction at the level of the brain
microvasculature, leading to neuro-inflammatory disorders and cognitive decline.

Rodent models of obesity and diabetes show reduced numbers of pericytes and activation and
infiltration of microglia [152,153] with high-fat feeding (approximately 45% fat) leading to neuronal
losses [154,155], suggesting BBB disruption and induction of a local inflammatory response. Flow
cytometric analysis in diabetic mice revealed infiltration of macrophages into the perivascular space
and activation of microglial cells [155]. Post-mortem studies of patients with diabetes reveal reduced
grey and white matter in the hippocampus region [156-158] suggesting a connection between metabolic
disorders and brain deficit. Dementias are characterised by progressive memory loss and cognitive
decline, corresponding to the loss of neurons and brain matter in the hippocampus of diabetic
patients [159,160]. Aside from dementias, there is also strong evidence to suggest that T2DM increases
the risk and severity of stroke and cerebral ischemic [161-164].

Circulating levels of ANXA1 have been reported to be downregulated in T2DM [165] although it
is important to note that the cohort of this study was very limited and no patient clinical information
were reported. Given that ANXAL is involved in tight junction formation and inhibiting leukocyte
adherence, it is highly plausible that ANXA1 can provide protection against such inflammatory
disorders. Our preliminary data suggest that high-fat fed mice treated with ANXA1 show improved
BBB tightness, reduced leukocyte migration and improved metabolic activity of brain endothelial cells
further implicating the many aspects by which ANXA1 can provide improvement in heath state.

7. Conclusions

ANXAT1 has widespread effects across the body, ranging from early development through to
immune regulation and disease development, in this review we emphasize its potential as a therapeutic
target and/or biomarker in a number of diseases (Figure 2), further suggesting that its role to date
has yet to be fully unveiled. A vast amount of research, both non-translational and translational, is
further required to understand the exact implications of altering the expression levels of the protein in
a spatio-temporal manner; however, it is without doubt that ANXA1 functions as far more than just as
an anti-phospholipase protein.

Neurodegenerative disorders
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actin microfilaments

Loss implicated in multiple sclerosis
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linfarct volume, leukocyte adherence and
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closure through NOX1 generation and FAK activation

Figure 2. Summary of the involvement and therapeutic potential of ANXAL1 in various disease states
within the body.
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