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Postzygotic single-nucleotide mutations (pSNMs) have been studied in cancer and a few other overgrowth human 
disorders at whole-genome scale and found to play critical roles. However, in clinically unremarkable individuals, 
pSNMs have never been identified at whole-genome scale largely due to technical difficulties and lack of matched 
control tissue samples, and thus the genome-wide characteristics of pSNMs remain unknown. We developed a new 
Bayesian-based mosaic genotyper and a series of effective error filters, using which we were able to identify 17 SNM 
sites from ~80× whole-genome sequencing of peripheral blood DNAs from three clinically unremarkable adults. The 
pSNMs were thoroughly validated using pyrosequencing, Sanger sequencing of individual cloned fragments, and 
multiplex ligation-dependent probe amplification. The mutant allele fraction ranged from 5%-31%. We found that 
C→T and C→A were the predominant types of postzygotic mutations, similar to the somatic mutation profile in 
tumor tissues. Simulation data showed that the overall mutation rate was an order of magnitude lower than that in 
cancer. We detected varied allele fractions of the pSNMs among multiple samples obtained from the same individu-
als, including blood, saliva, hair follicle, buccal mucosa, urine, and semen samples, indicating that pSNMs could af-
fect multiple sources of somatic cells as well as germ cells. Two of the adults have children who were diagnosed with 
Dravet syndrome. We identified two non-synonymous pSNMs in SCN1A, a causal gene for Dravet syndrome, from 
these two unrelated adults and found that the mutant alleles were transmitted to their children, highlighting the clin-
ical importance of detecting pSNMs in genetic counseling.
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Introduction

Genomic mosaicism is a biological phenomenon in 
which genetic alterations occurring during development 
or aging give rise to two or more cell populations with 

distinct genome sequences within one individual [1, 
2]. The DNA alterations in a fraction of somatic and/or 
germ cells can occur at different genomic scales, vary-
ing from chromosomal abnormalities and copy number 
variations (CNVs) to small indels and single-nucleotide 
substitutions [1, 3]. Comparisons of the whole-genome 
or whole-exome sequencing data from affected vs nor-
mal control tissues in the same person have discovered 
the role of mosaicism in multiple types of cancer [4-6] as 
well as several overgrowth disorders including Proteus 
syndrome [7], Ollier disease and Maffucci syndrome [8], 
CLOVES syndrome [9], Schimmelpenning syndrome 
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[10], Sturge-Weber syndrome [11], and several types of 
brain malformations [12-14].

In theory every person is a mosaic. Indeed, many spo-
radic cases of mosaicism have been reported in clinically 
unremarkable persons [15], sometimes parents of children 
with a genetic disease, highlighting the clinical impor-
tance of mosaicism in genetic counseling. Unfortunately, 
at the whole-genome scale, only relatively large mosa-
icisms have been identified in clinically unremarkable 
individuals [16]. These include structural variations and 
CNVs by analyses of array comparative genomic hybrid-
ization or SNP microarray [17-20] and neuronal somatic 
retrotransposition events using transposon-specific tar-
geted sequencing [21, 22].

The mosaicism caused by postzygotic single-nucle-
otide mutations (pSNMs), on the other hand, have not 
been identified in clinically unremarkable persons at ge-
nome scale. Existing algorithms for identifying pSNMs 
from whole-genome or targeted resequencing data re-
quire a matched control sample, such as JointSNVMix 
[23], Varscan 2 [24], Strelka [25], EBCall [26], muTect 
[27], Mutascope [28], and LoFreq [29]. As a result, 
fundamental patterns of the pSNMs in whole genomes 
of clinically unremarkable individuals remain largely 
unknown, such as the prevalence, allele fractions, muta-
tion characteristics, tissue variations, and transmissions 
to offspring. The study of these patterns is the goal of 
our research, starting with the development of a new de-
tection method based on next-generation sequencing, a 
Bayesian genotyper, and stringent error filters.

Results

A Bayesian model and error filters for the detection of 
pSNM

We detected the mosaic sites led by pSNMs and quan-
tified their allele fractions in the peripheral blood of three 
clinically unremarkable adults using whole-genome se-
quences produced by Illumina Hiseq platform. Pre-pro-
cessing of reads was done with standard protocols (see 
Materials and Methods). As we focused only on pSNMs 
here, we used CNVnator [30] and GATK [31] to mask 
CNVs and indels, respectively. The challenges of de-
tecting pSNMs in non-overgrowth individuals without 
matched control samples involve distinguishing true 
mosaic sites from germline heterozygous and homozy-
gous sites, and base-calling and alignment errors [32]. 
To address these challenges, we developed a new Bayes-
ian-based genotyper and a series of stringent error filters, 
summarized in Figure 1A and below and detailed in Ma-
terials and Methods.

Bayesian probabilistic models are commonly used to 

distinguish three germline genotypes: homozygous for 
the reference allele (ref-hom), heterozygous, and homo-
zygous for the alternative allele (alt-hom) [33]. To distin-
guish the mosaic sites from germline sites, we introduced 
a new genotype state, named “mosaic”, into the Bayesian 
model. Our new model aimed at identifying and measur-
ing the departure of observed allele fractions from germ-
line expectations (0, 0.5 and 1), which we formulated as:

This model was able to incorporate known population 
genetics information and sequencing data characteristics 
to aid mosaic detection (Figure 1B). Specifically, Data 
was the bases, base qualities, and total sequencing depth 
from the aligned sequencing reads at a position. P(Gi) 
was the prior probability of each genotype, estimated us-
ing population genetic data from dbSNP and theoretically 
estimated somatic mutation rate [34]. Non-pseudoautoso-
mal regions of sex chromosomes in males were modeled 
as a haploid. P(Data|Gi) captures sequencing data charac-
teristics such as base-calling errors and read depth biases 
with a likelihood estimation based on Bernoulli sampling 
and binomial distribution. Sites where the posterior prob-
ability of mosaic genotype was greater than 0.05 were 
considered candidate sites for the next step. As shown in 
Figure 1C, our genotyper was able to detect a mosaic site 
whose alternative allele fraction was around 0.05-0.35 
and 0.65-0.95 when the sequencing depth reached 80. 
Increasing sequencing depth could improve the power 
to distinguish between mosaic and heterozygous sites, 
whereas increasing base quality could be helpful in dis-
tinguishing between mosaic and homozygous sites.

However, the Bayesian probabilistic model could not 
remove the large number of false positives caused by 
systematic errors in read alignment and base calling. We 
implemented a series of empirical error filters (Table 1). 
Genomic regions known to cause frequent errors were re-
moved, including repetitive regions and homopolymers. 
Abnormal patterns of alignment were filtered out, such 
as extremely high or low read depth, high percentage 
of misaligned reads, high strand bias of the alternative 
allele, and skewed alignment position of the alternative 
allele. Abnormal local patterns were filtered out includ-
ing clustered sites which were most likely to be within 
heterochromatin or missed CNV regions (see Materials 
and Methods), and sites with complete linkage with an 
adjacent polymorphic site which were most likely due to 
misalignment of paralogous regions. Finally, we filtered 
out sites whose allele fractions showed large deviations 
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Figure 1 A new computational pipeline for genome-wide identification of pSNMs without matched control tissue samples. (A) 
Overall framework of the pipeline including read pre-processing, genotyping and filtering. The processes of mosaic identifica-
tion and filtering were implemented in our scripts. (B) The Bayesian-based genotyper demonstrated as a probabilistic graph-
ical model. Four genotypes were defined: ref-hom for “homozygous for the reference allele”, het for “heterozygous”, alt-hom 
for “homozygous for the alternative allele”, and mosaic for “mosaic”. The posterior probabilities were inferred from prior and 
conditional probabilities that were calculated or simulated from known population genetics data and next-generation sequenc-
ing data (see Materials and Methods). (C) Simulated behavior of the Bayesian genotyper when the sequencing depth and 
base quality varied. The X axis denotes the alternative allele fraction. The Y axis denotes the posterior probability of the four 
genotypes. Columns 1 to 4 represent sequencing depths of 20, 40, 80, and 160, respectively, and rows 1 to 3 represent base 
qualities of 10, 20, and 30, respectively. It showed that increasing sequencing depth could improve the power to distinguish 
between mosaic and heterozygous sites, whereas increasing base quality could be helpful in distinguishing between mosaic 
and homozygous sites. (D) The power to distinguish mosaic sites from the simulated ~20 000 homozygous and ~20 000 het-
erozygous sites by sequentially applying the Bayesian genotyper and each of the ten error filters. This result demonstrates 
the high specificity of our pipeline in excluding germline sites and the relative contribution of the genotyper and filters.



1314
Genome-wide identification of postzygotic mosaicismsnpg

Cell Research | Vol 24 No 11 | November 2014

from germline expectations in two or more individuals 
because the likelihood of hotspot pSNMs in healthy individu-
als was presumed to be orders of magnitude smaller than 
the likelihood of recurrent systematic sequencing bias. 

We demonstrated that applying the filters could dra-
matically decrease the discrepancies between the ob-
served and expected distributions of allele fractions, sug-
gesting that the filters successfully removed the majority 
of technical artifacts (Supplementary information, Figure 
S1). To further evaluate the efficacy of the error filters, 
we generated a benchmark dataset of simulated homozy-
gous and heterozygous sites by in silico mixing of actual 
Hiseq sequencing reads from two well-genotyped indi-
viduals (see Materials and Methods). Figure 1D showed 
the effectiveness of the filters in removing false positives. 
Only 1 of 15 842 simulated heterozygous sites and none 

of 19 624 simulated homozygous sites were misclassified 
as mosaic.

In cases where matched control tissues are available, 
utilizing data from the matched controls may increase 
detection accuracy for pSNMs. We implemented a 
paired-sample mode of our pipeline to utilize sequencing 
information in control sample (see Materials and Meth-
ods). We used two sets of simulation data to evaluate the 
specificity and precision, and compared the performance 
of the single-sample mode and paired-sample mode of 
our pipeline against Varscan 2 [24] and muTect [27]. 
Both the single-sample mode and the paired-sample 
mode of our pipeline achieved higher specificity than 
Varscan 2 and muTect in true reference sites (Figure 2A) 
and true non-reference sites (Figure 2B), suggesting that 
our pipeline can effectively remove false positives. As 

Table 1 Error filters used in the computational pipeline
Filter name Definition
Repetitive regions We rejected nucleotide positions (“sites”) located in annotated repetitive DNA elements and self-align
 ment regions with similarity score > 80.
Homopolymers We rejected sites located in or near homopolymers which were defined as four or more continuous  
 identical nucleotides, and their flanking regions which were defined as 2 bp from homopolymers   
 shorter than 6 nt or 3 bp from longer homopolymers.
Base-calling error We rejected sites for which the minor allele could be explained by random base-calling errors 
 according to LoFreq [29].
Extreme depth We rejected sites with sequencing depth that was either too low (< 25) or too high (> 150), compared  
 to the average sequencing depth of ~80.
Misaligned reads We rejected sites where > 50% of the reads supporting the major or minor alleles had high risk of 
 being misaligned, defined as when the BWA and BLAT alignments were inconsistent or when the site  
 fell within 15 bp of the start or end of the aligned read or within 5 bp from a gap in the alignment.
Strand bias We rejected sites where the majority of reads supporting the alternative allele were found in only one  
 strand direction. The Fisher’s exact test was performed to compare the ratio of the reads supporting   
 the reference and alternative alleles between two strand directions, and sites with a P-value < 0.05 
 were rejected.
Clustered sites We rejected sites located in or within 20 kb from the genomic regions clustered with three or more   
 sites with minor allele fractions between 10% and 35% and maximal distance between two adjacent 
 sites < 10 kb.
Complete linkage We rejected sites for which one allele showed complete coincidence with an adjacent polymorphic site
  within the same read-pair. The Fisher’s exact test was performed by counting the number of read-pairs  
 supporting the four types of allele combinations, and sites with a P-value < 0.01 and no more than one  
 disagreeing read-pair were filtered.
Within-read position We rejected sites where the majority of sites supporting the alternative alleles were clustered at one end  
 of the reads. The Wilcoxon rank-sum test was performed to compare the positions of the site along the  
 reads between those supporting the reference and alternative alleles, and sites with a P-value < 0.05  
 were rejected.
Observed in common We rejected sites whose allele fractions showed large deviations from germline expectations in two or  
 more individuals.
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Figure 2 Specificity and precision of identifying pSNMs using our pipeline, Varscan 2, and muTect. (A-B) False positive rate 
for true reference sites (A) and true non-reference sites (B). Error bars: 95% confidence intervals. (C) Proportion of true 
pSNMs among all identified sites. The postzygotic mutation rate was set to 4.4 × 10−7 per base, based on estimates in this 
study. The X axis denotes the minor allele fraction of the pSNM sites.

shown in Figure 2C, without the need of matched control 
sample, the precision of the single-sample mode of our 
pipeline was above 50% to identify pSNMs in healthy 
individuals when the allele fractions were 0.1-0.3. With 
matched control sample, the paired-sample mode of our 
pipeline achieved over 90% precision for all the pSNMs 
whose allele fraction were greater than 0.1, and outper-
formed both Varscan 2 and muTect (Figure 2C).

pSNMs in the peripheral blood of three clinically unre-
markable individuals

We sequenced the whole genomes of the unampli-
fied peripheral blood DNA samples from three unrelat-
ed adults, ACC1-II-1, DS1-II-2 and DS2-I-1, with an 
average sequencing depth of 76-90× (Supplementary 
information, Table S1). ACC1-II-1 and DS2-I-1 had no 
diagnosable symptoms at present and no clinical history. 

DS1-II-2 had two episodes of mild seizures at age 4-5 
but had been subsequently seizure-free with normal cog-
nitive function and no diagnosable symptoms at present. 
DS1-II-2 and DS2-I-1 were the mother and the father of 
two unrelated children diagnosed with Dravet syndrome 
(Figure 3A-3C). Applying our Bayesian model and error 
filters, we identified 38 candidate pSNMs in the three in-
dividuals (Supplementary information, Table S2). These 
sites showed a distinguishable pattern of allele fractions 
from the backgrounds of germline polymorphic sites 
(Figure 3D-3F).

Validation of the candidate pSNMs were performed by 
pyrosequencing, Sanger sequencing of individual cloned 
fragments, and multiplex ligation-dependent probe am-
plification (MLPA). The validated pSNMs were listed in 
Table 2.

First, eighteen of the 38 sites were confirmed by py-
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Figure 3 Identification and validation of pSNMs in the whole-genome sequences from peripheral blood samples of three in-
dividuals. (A-C) Pedigree structures of the three participating families. Red arrows point to the three individuals selected for 
whole-genome sequencing. (D-F) Alternative allele fractions and sequencing depth of the pSNMs identified in the individuals 
ACC1-II-1 (D), DS1-II-2 (E), and DS2-I-1 (F) using our pipeline. The candidate pSNM sites are shown in red along with the 
germline sites shown in gray. The sites with extreme depth or allele fraction are not shown. Different shades of red represent 
mosaic posterior probabilities. (G) Validation by pyrosequencing. The X axis shows the pSNMs identified and validated in 
the three individuals. pSNM site IDs correspond to Table 2. The Y axis shows the alternative allele fractions of the pSNM 
sites in the case, unrelated control, and parents, detected by pyrosequencing. The dashed line represents allele fraction of 
0.05, which is the detection threshold of pyrosequencing. (H) Copy number abnormalities are ruled out for all but two of the 
pSNM sites using MLPA. Seventeen sites showed normal copy numbers with normalized signal ratios between 0.7 and 1.3. 
Two sites with extra DNA copies are marked by asterisks. Error bars represent the SD of three replications of MLPA. (I) Cor-
relation of the minor allele fractions estimated by whole-genome sequencing and pyrosequencing of the validated sites. The 
sequencing depth is represented by the size of the dots.
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rosequencing above the allele fraction threshold of 5% 
which was the detection threshold of the pyrosequencing 
technology [35, 36]. The alternative alleles were present 
in the corresponding sample, and absent in the control 
sample obtained from an unrelated individual (Figure 
3G). In addition, two pSNMs whose alternative allele 
fractions did not exceed 5% by pyrosequencing showed 
a statistically significant difference between the case and 
three negative control samples (one-tailed Z-test, P-value 
< 2.2 × 10−16), and were thus also included in subsequent 
validation.

Second, for these 20 sites, we further confirmed the 
presence (not the allele fraction) of the alternative al-
lele by Sanger sequencing of individual clones after 
TA-cloning the amplicons. The presence of reference and 
alternative alleles was confirmed for 19 sites with at least 
two, and in most cases three or more, independent clones 
(Table 2 and Supplementary information, Table S3). 

Third, as CNVnator may have missed some DNA 
copy number alterations which could cause abnormal 
allele fraction [37], we further performed MLPA on the 
19 pSNMs which were validated by both pyrosequencing 
and clonal Sanger sequencing. DNA copy number gain 
was detected for two sites in DS2-I-1. These two sites 
had alternative allele fractions of ~1/3 in both whole-ge-
nome sequencing and pyrosequencing data (Figure 3G), 
consistent with the expected allele fraction when three 
copies of DNA were present. The other 17 candidate 

pSNMs showed normal copy numbers (Figure 3H). 
These 17 pSNMs were validated by all three technolo-
gies and considered bona fide pSNMs.

In summary, we identified 17 pSNMs from the pe-
ripheral blood samples of three clinically unremarkable 
individuals and validated them using pyrosequencing 
(to validate the presence and fraction of the mosaic mu-
tant allele), clonal Sanger sequencing (to validate the 
presence of the mosaic mutant allele), and MLPA (to 
rule out copy number alterations). Because the vast ma-
jority of genomic positions were not mosaic, some false 
positives were inevitable despite our stringent pipeline. 
The current validation rate was 45% (17/38). It could be 
increased to 70% (14/20) if we increased the Bayesian 
posterior probability threshold from 0.05 to 0.5.

By counting the allele numbers in the whole-genome 
sequencing data, we calculated the alternative allele frac-
tions of the validated pSNMs, which range from 5% to 
31% (Table 2). The quantification accuracy was justified 
by the significant correlation between the allele fractions 
estimated by whole-genome sequencing and pyrose-
quencing (Pearson’s r = 0.79 and P-value = 0.0001, Fig-
ure 3I).

For ACC1-II-1 and DS1-II-2 whose parents’ blood 
samples were available, pyrosequencing confirmed the 
absence of the alternative alleles in their parents (Figure 
3G), which suggested postzygotic but not inherited ori-
gin of the mutant pSNM alleles. We also tried to assess 

Table 2 Validated pSNMs in the three individuals
Individual ID               Position        Ref base  Alt base  Whole-genome sequencing       Pyrosequencing        Sanger sequening
              Ref read # (%)  Alt read # (%)   Ref %    Alt %  Ref clone #  Alt clone #
ACC1-II-1 B1 15:80878576 C T 118 (93%) 9 (7%) 91% 9% 41 4
ACC1-II-1 B2 4:165099831 C T 73 (89%) 9 (11%) 90% 10% 105 5
ACC1-II-1 B3 6:85605629 A T 86 (87%) 13 (13%) 90% 10% 75 11
ACC1-II-1 B5 6:154692299 G C 104 (95%) 6 (5%) 87% 13% 91 8
ACC1-II-1 B13 18:70512197 T G 67 (69%) 30 (31%) 64% 36% 29 15
DS1-II-2 F1 17:52287119 G T 89 (88%) 12 (12%) 91% 9% 33 3
DS1-II-2 F2 19:55529705 C T 93 (93%) 7 (7%) 93% 7% 167 2
DS1-II-2 F3 19:56343191 T C 86 (92%) 7 (8%) 96% 4% 82 4
DS1-II-2 F6 14:71380614 T G 73 (92%) 6 (8%) 92% 8% 113 3
DS1-II-2 F7 16:84073033 A C 44 (83%) 9 (17%) 88% 12% 36 4
DS1-II-2 F9 13:79932615 C A 51 (73%) 19 (27%) 77% 23% 25 9
DS1-II-2 F10 2:166848782 G C 38 (76%) 12 (24%) 73% 27% 19 3
DS2-I-1 X1 1:72008400 A G 93 (90%) 10 (10%) 77% 23% 20 3
DS2-I-1 X2 16:64312186 C T 76 (92%) 7 (8%) 88% 12% 24 5
DS2-I-1 X3 X:68611473 C A 47 (90%) 5 (10%) 94% 6% 166 3
DS2-I-1 X6 2:166854673 G T 58 (78%) 16 (22%) 78% 22% 30 8
DS2-I-1 X8 13:89662020 A C 53 (77%) 16 (23%) 82% 18% 45 9
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the candidate pSNMs by direct Sanger sequencing of the 
PCR products, but found that mosaic could be unequivo-
cally detected in only eight sites (Supplementary informa-
tion, Table S3), which gave a warning that direct Sanger 
sequencing had low sensitivity in mosaic detection.

Characteristics of pSNMs in healthy individuals
The validated pSNMs enabled us to take a first look 

at the mutational spectrum of pSNMs in healthy individ-
uals. Because it was unlikely that postzygotic mutations 
affected both alleles at a single genomic position, the 
allele generated by postzygotic mutation was expected 
to be the minor allele in pSNM and, therefore, distin-
guished from the ancestral allele. Among the validated 
sites, C→T and C→A were the two most common mu-
tation types at 24% each (Figure 4A), followed by T→G 
and T→C mutations. These two predominant mutation 
types were also reported in previous cancer studies [4], 
suggesting possible shared mechanisms of somatic muta-
tion between cancer and non-cancer samples.

A question of interest was, “what would be the al-
lele fraction of the pSNMs in other samples collected 
non-invasively from the same healthy individuals?” In 
addition to the peripheral blood samples, we were able 
to collect saliva, hair follicle, buccal mucosa, and urine 
samples from ACC1-II-1 and DS1-II-2, as well as semen 
sample from ACC1-II-1. We performed pyrosequencing 
of the validated pSNMs in these samples. As shown in 
Figure 4B, for a few pSNMs, the mutant alleles were 
not detected in some samples, indicating the presence of 
lineage-specific pSNMs where the postzygotic mutation 
might have occurred after the differentiation of specific 
cell lineages. Most of the pSNMs, however, could be de-
tected in multiple samples. Of particular interest, in three 
of the five pSNMs of ACC1-II-1, the mutant alleles were 
observed in both the blood and semen samples, suggest-
ing that postzygotic mutations could affect both the so-
matic and germ cells (Figure 4B).

The inter-sample variations in allele fractions differed 
widely among the pSNM sites, with the coefficients of 

Figure 4 Characteristics of the validated pSNMs. (A) The mutation spectrum of validated pSNMs. The C→T and C→A muta-
tions accounted for half of the mutations identified at the mosaic sites. (B) Allele fractions of the pSNM sites in different sam-
ples within the same individuals. Three pSNMs were detected in both somatic and semen samples. (C) Similarity of the allele 
fractions of the pSNMs between different samples. The blood and saliva samples showed the highest similarities in the six 
samples.
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variation ranging from 25%-137%. We further demon-
strated that the inter-sample variation was not caused by 
technical variation of DNA extraction and pyrosequenc-
ing: we extracted the genomic DNA from the blood sam-
ple of ACC1-II-1 three times, and each DNA sample was 
pyrosequenced three times. Among five mosaic sites, the 
inter-sample coefficients of variation (25%-137%) was 
an order of magnitude higher than the average coeffi-
cients of variation between different pyrosequencing runs 
(4.6%) and between different DNA extractions (5.2%) 
(Supplementary information, Figure S2). Hierarchical 
clustering of the minor allele fractions in the six types 
of samples showed that the peripheral blood and saliva 
samples were the most similar, followed by the buccal 
mucosa and semen samples (Figure 4C). This finding 
was consistent with previous reports that 74% of the 
DNA extracted from saliva samples and 21% from the 
buccal swab samples were from leukocytes [38]. In ad-
dition, our results showed that the hair follicle and urine 
samples were the least similar to the other samples, in-
dicating that these samples consisted of cell populations 
with more distant lineages compared to blood samples.

We showed that our detection pipeline had good 
specificity and was able to detect the small number of 
pSNMs among millions of germline polymorphic sites 
and sequencing errors. To estimate the sensitivity of the 
detection pipeline and infer the total number of pSNMs 
in clinically unremarkable individuals, we performed a 
computer simulation to generate ~20 000 simulated mo-
saic sites each at varied minor allele fractions by mixing 
the real sequencing data (see Materials and Methods). 
The sensitivity of pSNM detection in non-repetitive ge-
nomic regions depended on the alternative allele fraction. 
The estimated sensitivity ranged from as high as 30% for 
pSNMs with alternative allele fraction 0.2 to as low as 
1% for pSNMs with alternative allele fraction 0.4 (Sup-
plementary information, Figure S3). Because we detect-
ed an average of 5.7 validated pSNMs in each individual, 
we propose that, based on the estimated sensitivity, a clin-
ically unremarkable person might harbor ~19-570 pSNMs 
in non-repetitive regions with minor allele fractions from 
5%-40%, which corresponded to ~1.5 × 10−8-4.4 × 10−7 
per nucleotide per individual. This was significantly 
lower than the somatic mutation rate in tumors, where 
non-silent somatic mutation rate had been estimated to be 
varied between 1 × 10−7 and 1 × 10−4 across different can-
cer types, with an average of 4 × 10−6 [4].

Clinical implications of detecting pSNMs
We found a non-synonymous c.5003C→G pSNM 

with 27% allele fraction and a non-synonymous 
c.4351C→A pSNM with 22% allele fraction in the SC-

N1A gene of DS1-II-2 and DS2-I-1, respectively. DS1-
II-2 and DS2-I-1 each had a son with Dravet syndrome 
(DS1-III-1 and DS2-II-2). DS1-III-1 was heterozygous 
with c.5003C→G, and DS2-II-2 was heterozygous with 
c.4351C→A, in the SCN1A gene. Dravet syndrome is 
a rare and catastrophic form of intractable epilepsy that 
begins in infancy, and SCN1A is well established as the 
major causal gene for this disease [39, 40]. We ruled out 
other possible causal mutations by sequencing all the ex-
ons of SCN1A and five other rare causal genes including 
PCDH19 [41], GABRG2 [42], SCN1B [43], GABRA1 
[44], and STXBP1 [44] in these two boys. After filtering 
out the silent and common variants present in dbSNP, 
only one SCN1A non-synonymous mutation remained in 
each boy, which was exactly the same alternative allele 
at exactly the same positions as the two pSNMs identi-
fied in their respective parents. Among all the identified 
pSNMs sites in their parents, these two sites in SCN1A 
were the only sites where the mutant alleles were in-
herited. The two non-synonymous sites were located in 
the third and fourth domains of SCN1A, respectively, 
adjacent to previously identified pathogenic mutations of 
Dravet syndrome (Figure 5A). They were predicted to be 
deleterious by PolyPhen2 (score = 0.793 and 0.679) [45], 
SIFT (score = 0.001 and 0.000) [46], and SAPRED (like-
lihood = 0.878 and 0.867) [47]. Using both pyrosequenc-
ing and Sanger sequencing, we confirmed that the two 
boys’ other parents, DS1-II-1 and DS2-I-2, did not carry 
the mutant allele, and thus the causal SCN1A variants 
were inherited from the mosaic parents (Supplementary 
information, Table S4).

Our results highlighted the importance of accurate 
detection of pSNMs in genetic counseling. Consistent 
with previous studies [48, 49], our results showed that a 
clinically unremarkable carrier of a deleterious postzy-
gotic mutation might transmit it to offspring and generate 
a heterozygous genotype that may cause serious genetic 
diseases (Figure 5B). Considering cell proliferation in 
embryogenesis, an pSNM with relatively higher mu-
tant allele fraction might be more likely generated by 
postzygotic mutations at the early developmental stage 
and, therefore, be more likely shared between somatic 
and germ cells. As our results showed, simple Sanger 
sequencing was unable to detect more than half of the 
pSNMs. Furthermore, applying conventional genotyper 
GATK [31] to our dataset resulted in 35% of the validat-
ed pSNMs being mistakenly genotyped as homozygous 
for the reference allele. Thus, some of the pathogenic ge-
netic mutations currently believed to emerge de novo in 
affected children might be caused by transmitted parental 
mosaicism that were missed by Sanger sequencing or 
conventional genotypers [16, 50].
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Figure 5 pSNMs detected in DS1-II-2 and DS2-I-1 in the gene SCN1A and transmitted to their respective child with Dravet 
syndrome as a heterozygous mutation. (A) The two non-synonymous mutations are highlighted by red arrows on transmem-
brane structure of the sodium channel encoded by SCN1A. These mutations alter residues located at the ends of the loop 
structures in domains III and IV, adjacent to previously known pathogenic mutations in Dravet syndrome which are shown 
here as small circles with different colors representing different mutation type. (B) The parent-to-offspring transmission model 
is illustrated for c.5003C→G pSNM. In the mother, the mutant allele generated by postzygotic mutations is present in a pro-
portion of the cell population and identified by our pipeline as a pSNM. The mosaicism apparently affected germ cells, and 
thus the offspring had a chance to inherit the mutation during gametogenesis and fertilization, leading to the heterozygous 
genotype.

Discussion

Postzygotic single-nucleotide mutations had not been 

previously studied at genome scale in clinically unre-
markable individuals, largely due to technical challenges 
caused by sequencing errors and the lack of matched 
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control tissue. Our Bayesian model and error filters 
allowed us to detect pSNMs in all three clinically unre-
markable individuals and enabled us to take a first look 
at the characteristics of pSNMs. Many factors may be 
involved in the generation of mutations, including exter-
nal mutagens and spontaneous cellular processes [51]. 
Interestingly, we observed similar mutational spectra as 
in cancer samples, but at lower mutation rate. The higher 
mutation rate in cancer may result from the occurrence 
of accelerated mutagenesis after the dysfunction of the 
DNA replication and repair systems that is common in 
many types of cancer [51].

The parent-to-offspring transmission of mutant SC-
N1A alleles highlighted the clinical implications of ge-
nome-wide identification of pSNMs in genetic counsel-
ing. In addition, mosaicisms have also previously been 
reported to cause diseases, often with milder symptoms 
than homozygous or heterozygous mutations [3, 52]. 
DS1-II-2, who had a pSNM at SCN1A at allele fraction 
of 27% in her peripheral blood, had normal cognitive 
function and no diagnosable symptoms at present, but 
she had two episodes of mild seizure at four years old. 
In her whole genome sequence we identified non-syn-
onymous mutations in three other genes that were in the 
epilepsy gene database CarpeDB (http://www.carpedb.
ua.edu/), CASQ2, ALDH7A1, and CACNA1H, which 
were not present in the individuals of 1000 Genomes 
Project or dbSNP. Among them the mutation in ALD-
H7A1 was predicted to be damaging by PolyPhen2 [45], 
SIFT [46], and SAPRED [47]. It would be interesting to 
investigate whether this mutation or her pSNM at SCN1A 
was the cause of her childhood seizure, but that was be-
yond the scope of this study. 

Fetal cells had been found to remain in the circulatory 
system of some mothers long after birth and vice versa, 
a phenomenon called feto-maternal mosaicism [53]. This 
is unlikely to be the case with the pSNMs that we iden-
tified. First, the proportion of extrinsic cells in feto-ma-
ternal mosaicism is < 0.5% [54], which is at least one 
order of magnitude lower than what we observed for the 
validated pSNMs. Second, pyrosequencing of the moth-
ers of ACC1-II-1 and DS1-II-2 found no mutant alleles 
at the pSNM sites (Figure 3G). Finally, except for one 
site in SCN1A, the mutant alleles of all the other pSNMs 
identified in DS1-II-2 were found absent in her offspring. 
Therefore, the observed pSNMs were not likely to have 
resulted from feto-maternal mosaicism.

Clonal dominance led by proliferative or selection 
advantages was observed in peripheral blood cell pop-
ulation [55]. Although we cannot completely exclude 
the possibility that the identified pSNMs were subjected 
to proliferative or selection advantages in blood cells, 

several lines of evidence did not support this hypothesis. 
First, except two non-synonymous pSNMs in SCN1A, 
15 of the 17 pSNMs were located outside of the exonic 
regions and not likely to alter gene function. Second, 
SCN1A gene encodes a subunit of sodium channel which 
is critical for neuron functionality; however, there is no 
evidence about its roles in the proliferation of blood cell. 
Third, all the pSNMs present in blood samples were 
confirmed in the other non-blood samples from the same 
individuals, which suggested that the pSNMs are not 
limited to blood cells.

Single-cell sequencing is another possible approach 
to study pSNMs. However, because the mutant alleles 
of pSNMs are often present in only a small subpopula-
tion of cells, a large number of cells would need to be 
sequenced to identify them. Furthermore, even larger 
number of cells need to be sequenced to quantify the al-
lele fraction. In addition, the current whole-genome am-
plification step of single-cell sequencing might introduce 
unexpected locus or allele dropouts and thus cause false 
positives [56]. Thus, bulk sequencing of a population of 
cells is more effective and less expensive for identifying 
and quantifying pSNMs.

The short read length and high error rate of next-gen-
eration sequencing make it difficult to remove false 
positive artifacts due to genomic variations or technical 
errors [57]. Our pipeline implements a series of filters 
to reduce the false positives led by such artifacts, which 
might have potential values in other next-generation 
sequencing applications. Our current method could iden-
tify pSNMs with minor allele fraction of 5%-40% at se-
quencing depth of ~80×. In next-generation sequencing, 
the observed minor allele fractions in two-allele sites are 
influenced by the random variation of binomial sampling. 
Thus, increasing sequencing depth could improve the 
sensitivity to distinguish pSNMs from inherited homozy-
gous and heterozygous sites especially when their allele 
fractions are close to 0 and 0.5 (Figure 1C). Our simu-
lation demonstrated that increasing the depth to 200× or 
increasing the base quality to 60 enabled the detection 
of pSNMs with minor allele fractions as low as 1%-2% 
(Supplementary information, Figure S4). The Bayesian 
model of our mosaic genotyper provides the opportunity 
to integrate more prior knowledge for better detection of 
mosaic sites, such as the genotyping information of the 
parents and the site-specific mutation rate which might 
be correlated to mutational spectrum, mRNA expres-
sion and DNA replication [4, 58]. With next-generation 
sequencing technologies generating longer reads with 
higher sequencing depth and quality, the sensitivity and 
specificity of our pipeline will continue to be improved.

Previous cancer studies focused on postzygotic muta-



1322
Genome-wide identification of postzygotic mosaicismsnpg

Cell Research | Vol 24 No 11 | November 2014

tions that were restricted to be observed in only one tis-
sue or even one clonal cell population, which might orig-
inate during later development and aging [51, 59]. Our 
findings that most of the pSNMs that we identified were 
shared in multiple samples suggested the widespread na-
ture of postzygotic mutations during embryogenesis and 
early development. This highlighted the importance of a 
control-free method to identify pSNMs. Indeed, when we 
applied conventional somatic mutation callers, Varscan 2 
and muTect, to compare the whole-genome sequencing 
data of the blood (as case) and saliva (as control) samples 
of ACC1-II-1, none of the validated pSNMs in blood 
could be identified.

A recent paper reported that the number of substitution 
mutations per cell division in mouse small-bowel stem 
cells was estimated as ~1.1 using organoid technology 
[60]. The pSNMs might contribute to disease risks by 
either interrupting biological functions of the carriers or 
transmitting the mutant allele to the offspring [1, 16, 50]. 
The accurate identification of pSNMs will reveal new 
avenues for studies on the mechanisms and functional 
consequences of postzygotic mutations and provide new 
insights into this previously overlooked genetic factor 
in applications such as finding the “missing heritability” 
and genetic counseling.

Materials and Methods

Sample collection and DNA processing
This study was officially approved by the Institutional Review 

Boards of Peking University, and informed consent was obtained 
from all participants or legal guardians. Blood and other samples 
were obtained from ACC1-II-1, DS1-II-2, and DS2-I-1 and their 
families whose pedigree structures were illustrated in Figure 3A-
3C. ACC1-II-1 was a healthy adult with no clinical symptoms at 
present and no clinical history. DS1-II-2 had two episodes of mild 
seizures between the ages of 4 and 5 years but was subsequently 
seizure-free with normal cognitive function and no other symp-
toms. DS2-I-1 was a healthy adult with no clinical symptoms at 
present and no clinical history. In particular he had no seizures or 
epilepsy. DS1-II-2 and DS2-I-1 each had a child diagnosed with 
Dravet syndrome (DS1-III-1 and DS2-II-2). DS2-II-2 suffered 
sudden unexpected death at five years old. DS2-I-2 had several ep-
isodes of FS and DS2-II-1 had FS at an early stage and died of pu-
rulent meningitis eight months after birth. The clinical histories of 
all three families showed no symptoms of cancer or other known 
overgrowth disorders.

The genomic DNA from peripheral blood lymphocytes was 
extracted by the QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, 
Germany) for family ACC1 and by a salting-out procedure [61] 
for family DS1 and DS2. The TIANamp Micro DNA Kit (Tian-
gen Biotech, Beijing, China) was used to isolate genomic DNA 
from the hair follicle, buccal mucosa, urine, and semen samples, 
whereas the genomic DNA of the saliva samples was isolated 
using the Oragene DNA Kit (OG-500; DNA Genotek, Kanata, 
Canada), according to the manufacturer’s instructions. Each sam-

ple of genomic DNA was divided into two parts with one part for 
whole-genome sequencing and the other part for low-throughput 
validations.

To screen for pathogenic variations in SCN1A in DS1-III-1 and 
DS2-II-2, 26 exons were PCR amplified and Sanger sequenced 
using primers as previously described [62]. In addition, the canon-
ical exons of five other rare causal genes of Dravet syndrome in-
cluding PCDH19 [41], GABRG2 [42], SCN1B [43], GABRA1 [44], 
and STXBP1 [44] were also screened by Sanger sequencing. The 
exonic variations that were synonymous or present in dbSNP with 
minor allele fraction ≥ 5% were filtered out. Information about 
known SCN1A variants associated with Dravet syndrome was ex-
tracted from the SCN1A Variant Database [63].

Whole-genome sequencing and data analysis
Genomic DNA extracted from the peripheral blood samples of 

ACC1-II-1, DS1-II-2 and DS2-I-1 was selected for whole-genome 
sequencing. Sequencing libraries were constructed according to 
the manufacturer’s protocol (Illumina, San Diego, CA, USA), with 
an average insert size of 400-500 bp. The libraries were sequenced 
by the Illumina HiSeq2000 platform using 100-bp paired-end 
reads. The reads were aligned against the GRCh37 human refer-
ence genome by BWA (version 0.6.1) [64] in a paired-end mode, 
allowing for a maximum edit distance of four. The duplicate reads 
were then removed using Picard (http://picard.sourceforge.net/). 
To exclude ambiguous alignments, the reads flagged as improperly 
paired or those mapping to multiple positions were filtered out. In 
addition, we removed the reads with more than three mismatches, 
which were potentially error-prone in base calling or mapping. 
The remaining reads were processed by GATK (version 1.6-9) 
[31] for indel realignment and base quality score recalibration, and 
piled-up by SAMtools [65]. The average depth of the clean reads 
was ~80× for the three peripheral blood samples (Supplementary 
information, Table S1). To further reduce errors in base calling 
and alignment, all the bases with base quality or mapping quality 
less than 20 were excluded from subsequent analyses. CNVs and 
indels were identified by CNVnator [30] and GATK [31], respec-
tively. The bin size of CNVnator was set to 100 bp, and the candi-
date lists of CNVs and indels were further filtered according to the 
developers’ guidelines.

A new Bayesian genotyper for identifying pSNMs
We developed a new Bayesian-based genotyper, illustrated as a 

probabilistic graphical model in Figure 1B.
Four genotype states were considered in the probabilistic mod-

el: ref-hom, heterozygous, alt-hom, and mosaic. For each genomic 
position i, the genotype Gi was inferred under Bayes’ rule as de-
scribed below:

                     (1)

where the priors of each genotype, P(Gi), were estimated based 
on population genetics information, and the sequencing profiles 
incorporating read depth, allele counts and base qualities were 
modeled using the likelihood P(Data|Gi).

To generate the genotype priors, Gi was considered as a random 
variable taken from a multinomial distribution with parameter πi, 
where πi was determined by the probability of observing a germ-
line alternative allele at a given site, pi, and the probability of a 
site becoming mosaic by postzygotic mutation, pm. We assumed 
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the Hardy-Weinberg equilibrium in calculating the genotypic prior 
probabilities of ref-hom, heterozygous and alt-hom according to pi. 
For the haploid regions, only the ref-hom and alt-hom genotypes 
were considered, and their prior probabilities were set to pi and 1−
pi, respectively. To obtain the prior estimation of pi, the annotations 
from dbSNP v137 were extracted, and pi was set to be the allele 
frequency of the corresponding substitution. For the substitutions 
present in dbSNP that lacked allele frequency, pi was set to be 0.002, 
because the allele frequencies were estimated from 692 individu-
als (http://www.ncbi.nlm.nih.gov/projects/SNP/). If a substitution 
was completely unannotated in dbSNP, we set pi = 1/10 000, a 
relatively small probability of missing such a polymorphism in the 
existing data. We further set pm = 10−7, according to the estimated 
somatic mutation rate [34].

 Conditional probability distributions in this model were shown 
as follows:

At each position, we observed a pile of bases oi with base 
qualities qi and a total sequencing depth di from the alignments of 
sequencing data. Because sequencing errors may have occurred, 
we set ri to be a vector of the real base states, showing whether a 
base is the reference or alternative, which could not be directly ob-
served. ri was regarded as a series of independent random variables 
sampled from identical Bernoulli distributions with parameter θi, 
where θi is a determined variable depending only on the genotype 
state Gi. Therefore, the calculation of the likelihood P(Data|Gi) 
could be separated into two parts as follows:

            (2)

Because the relationship between Gi and θi was determined by 
definition, we expected θi = 0, 0.5, and 1 when Gi is ref-hom, hetero-
zygous and alt-hom, respectively. P(ri|Gi, di) was calculated based 
on the Bernoulli trial series ri with the success (alternative base 
state) count ri and probability θi, which can be shown as follows:

(3)
where,
                      
 

Specifically, the parameter θi was considered to be a uniform 
random variable between 0 and 1 when Gi is mosaic, because we 
assumed no special distribution of allele fractions in mosaic sites. 
The corresponding likelihood was computed by a beta function 
according to equation (4):

 
 
 
        

                                                                                            (4)

where,  when  
The second part P(oi|ri, qi) would be very easy to calculate if 

the real states ri were known. However, because ri was unknown, 
we traversed every possible Boolean vector ri, multiplied it by the 
corresponding first part P(ri|Gi, di), and added the values to obtain 
the final likelihood P(Data|Gi). Because P(ri|Gi, di) is constant 
when the success count ri is fixed, the calculation of P(Data|Gi) in 
equation (2) can be further simplified as follows:

 
                        (5)

                                                                            

where, P(oi|ri, qi) denotes the sum of the probabilities P(oi|ri, qi) 
for all Boolean vectors ri with the same ri, as shown in equation (6):

             (6)

To compute P(oi|ri, qi), an iterative algorithm traveling over 
every base state was used. Each base state rij in the Boolean vector 
ri was assumed to be independent of the others, with a sequencing 
error probability perror derived from its Phred-scaled quality score 
qij. Therefore,

 
 
 
 
 
 

  
 
 
   
 
 
First, the initial P(oi1|ri1, qi1) for ri1 = 0 or 1 was set using the 

corresponding perror or 1-perror, according to the match between the 
observed and read base states, oi1 and ri1, respectively. Then, the 
iterative formula was employed according to equation (7) to calcu-
late P(oi|ri, qi) by traversing all di bases:

                                    (7)
where P(oi,1..k|ri,1..k, qi,1..k) is the summed probability for the first 

k bases, as summarized in the count ri,1..k = x, which can be taken 
from 0 to k.

As a result, the P(Data|Gi) could be easily calculated according 
to equation (5), and then P(Gi|Data) for each genotype state was 
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calculated by further multiplying P(Gi) as shown in equation (1) 
and normalized to set the summed probability equal to 1. The sites 
with < 3 reads, or < 5% reads supporting the minor allele were 
skipped for quality control. To achieve a high sensitivity of pSNM 
detection at this genotyping step, a relatively low threshold (Pmosaic 

> 0.05) was applied for the posterior probability of the mosaic 
genotype. As expected, the specificity could be improved when the 
threshold was increased (Pmosaic > 0.5) (Supplementary informa-
tion, Table S2). To avoid potential computational underflow, our 
calculations were generally performed in the log-probability space.

Filtering of candidate pSNMs
There were artifacts caused by systematic errors in sequencing, 

base calling, and read alignment that the probabilistic model could 
not remove. We developed a series of error filters and integrated 
them into the identification pipeline. The descriptions of the filters 
that we implemented were summarized in Table 1.

First, we excluded the sites that were located near repetitive 
DNA elements and homopolymers which were known to be prone 
to errors from existing experimental methods [57]. The anno-
tations of repetitive regions were downloaded from the UCSC 
genome browser [66], including transposons, microsatellites, sim-
ple tandem repeats, interrupted repeats, segmental duplications, 
self-alignment regions with similarity score > 80, and other repeats 
masked by RepeatMasker (http://www.repeatmasker.org). Sites 
within 2 bp from homopolymers of 4-6 nt or within 3 bp from 
longer homopolymers were also filtered out. Theoretically pSNMs 
should be scattered, rather than clustered, along the chromosomes. 
We found that clustered sites were enriched in heterochromatic re-
gions, including the centromeres and telomeres, and regions with 
copy number alterations (Supplementary information, Figure S5). 
Thus we filtered out clustered sites with abnormal allele fractions.

Next, we implemented several filters to remove artifacts caused 
by alignment errors. Reads with discordant alignment between 
BWA [64] and BLAT [67] were removed. All contigs in the hg19 
assembly were added to the GRCh37 human genome sequence and 
applied as the reference genome in BLAT to minimize potential 
misalignment due to the incompleteness of the human reference 
genome. The sites meeting either of the following criteria were 
also excluded: (1) predominantly supported by alignment near the 
ends of reads or near gaps which were known to be error-prone; 
(2) one allele showing complete co-occurrence with an adjacent 
polymorphic site within the same sequencing read-pair. To further 
exclude the reads that were misaligned due to unexpected struc-
tural variations, we rejected the sites with significant bias in strand 
distribution of the reads or sites with skewed within-read position 
between the reference and alternative alleles. These criteria are 
known to be efficient for removing misalignment artifacts [27, 31].

To exclude the artifacts caused by base-calling errors, a statisti-
cal test was performed for each site following the algorithm devel-
oped in LoFreq [29] to distinguish the true alternative allele from 
sequencing errors, and the sites with P-value > 0.05 after Bon-
ferroni correction were filtered out. The sites with extreme depth 
(< 25 or > 150, the 10th and 90th percentile among all genomic 
positions) were also excluded because they were often caused by 
sequencing gaps, CNVs or alignment errors.

Simulating benchmark datasets to estimate sensitivity and 
specificity

To evaluate the performance of our pipeline, we generated a 
benchmark data set of simulated mosaic and polymorphic sites in 
silico by mixing the whole-genome sequencing data from two in-
dividuals (the “in silico mixture dataset”), according to Cibulskis 
et al. [27]. We selected two individuals, NA12878 and NA12891, 
for whom the sequencing depth was similar to our samples. The 
source of the sequence data and high-quality genotyping files were 
shown in Supplementary information, Table S5. By comparing the 
genotypes of the two individuals, we identified positions that were 
heterozygous in NA12878 and homozygous for the reference al-
lele in NA12891. Because the genders of NA12878 and NA12891 
were different, the sites located in X and Y chromosomes were 
excluded. For each position with enough depth to be sampled, the 
paired-end reads overlapping with the candidate site were extract-
ed for both individuals. Then some of the NA12891 reads were 
randomly replaced with the corresponding reads of NA12891 fol-
lowing a binomial sampling with given alternative allele fraction 
and read depth. We generated ~20 000 simulated sites for each of 
seven expected alternative allele fractions, or more specifically, 
19 989, 19 986, 19 985, 19 968, 19 883, 19 365, and 16 224 sites 
with expected allele fractions of 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, 
respectively. Supplementary information, Figure S6 showed that 
the distributions of the simulated polymorphic sites mimicked the 
distributions of stochastic sampling of real sequenced reads at the 
polymorphic sites.

Sites with alternative allele fractions 0 and 0.5 were considered 
homozygous for the reference allele and heterozygous, respective-
ly. Specificity of our pipeline was calculated as the proportion of 
reference-homozygous and heterozygous sites, respectively, that 
were correctly rejected as “not mosaic”. Sensitivity was calculated 
as the proportion of simulated pSNMs correctly identified as “mo-
saic” for each of the alternative allele fractions ranging from 0.05, 
0.1, 0.2, 0.3, to 0.4 in non-repetitive regions.

The performance of our pSNM identification pipeline was com-
pared against two conventional somatic mutation callers, Varscan 
2 [24] and muTect [27]. The latest versions of Varscan 2 (version 
2.2.11) and muTect (version 1.1.4) were run under their default 
parameters, and the candidate lists were filtered following their 
instructions. Since the sequencing data from the matched control 
samples were required for both of the tools, we implemented a 
paired-sample mode of our pipeline: we extracted the candidate 
sites which were predicted as not homozygous for the reference 
allele in the case sample (Pref-hom < 0.05) and homozygous for the 
reference allele in the corresponding control sample (Pref-hom > 0.5) 
by our Bayesian genotyper, and our error filters were then applied 
for the candidates in the case sample. The reads of libraries Sol-
exa-18483 and Solexa-18484 of the same individual, NA12878, 
were treated as the case and control datasets, respectively, follow-
ing the strategy described in [27]. All the identified postzygotic 
mutations were considered as false positives and the false positive 
rates were reported. The depth-dependent specificities were calcu-
lated and subsequently used.

We next estimated the identification precision from paired sam-
ples. We used the original NA12891 sequencing data as the control 
to compare against the in silico mixture data set described above, 
and calculated sensitivity as the fraction of identified simulated 
sites in non-repetitive regions. Precision was calculated from this 
sensitivity and the depth-dependent specificities. The proportions 
of reference sites and non-reference sites were set based on es-
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timates from previous population-based study [67], which were 
several orders of magnitude larger than the mosaic mutation rate 
estimated in this work.

In addition, we compared the performance between our pipe-
line and the pooled-sample model of GATK when the matched 
control tissue was unavailable. We set the haplotype number to 
be 20 for practical reasons. Because GATK pooled-sample model 
only estimated the proportion of haplotypes carrying the alterna-
tive allele without reporting the genotype of each position, all the 
sites with alternative allele proportions differing from 0 and 0.5 
were reported as mosaic. Only about 1 out of 10 000 candidate 
mosaic sites reported by the GATK pooled-sample model were 
expected to be real, whereas our pipeline achieved order of mag-
nitude higher specificity (Supplementary information, Figure S7). 
We further showed here that all the false positives in homozygous 
sites identified by GATK pooled-sample model could be filtered 
by our stringent filters, which suggested the power of our filters to 
remove technical artifacts, but a large number of false positives in 
heterozygous sites still remained even after we combined GATK 
pooled-sample model with our filters (Supplementary information, 
Figure S7).

Validation of pSNMs by pyrosequencing
To validate the presence and allele fraction of the candidate 

pSNMs detected by our pipeline, pyrosequencing was performed 
on the genomic DNA obtained from all available samples and 
family members. The PCR and sequencing primers were designed 
using PyroMark Assay Design (2.0; Qiagen, Venlo, the Nether-
lands) and listed in Supplementary information, Table S6. The 
PCR amplification, product processing and pyrosequencing were 
performed using the PyroMark Q96 ID System (Qiagen) with the 
corresponding reagents. The raw data were analyzed using the 
PyroMark Q96 ID Software (Qiagen) for allele quantification. Py-
rosequencing has a detection limit of 5% allele fraction [35, 36], 
and any sites with an alternative signal < 5% were usually con-
sidered technical noise. The differences in allele fraction between 
different samples within the same individuals were assessed using 
the Euclidean distance of the minor allele fractions for all the 
validated sites, and the six samples were further clustered using 
Ward’s method.

Validation of pSNMs by Sanger sequencing of TA clones
To further confirm the presence of the alternative alleles in 

pSNMs by another independent validation platform, all the py-
rosequencing-validated sites were Sanger sequenced in individual 
clones selected from TA-cloned PCR amplicons. The genomic 
DNA was amplified using primers flanking these sites (Sup-
plementary information, Table S7) and the PCR products were 
purified. The amplicons were cloned into the Trans1-T1 phage 
resistant chemically competent cells using the pEASY-T1 Simple 
Cloning Kit (Transgen Biotech, Beijing, China). The DNA from 
the positive colonies was PCR amplified using the M13 universal 
primers, and then the purified products were sequenced using the 
Applied Biosystems 3730 DNA Analyzer (Life Technologies, 
Carlsbad, CA, USA). All the pSNMs were confirmed by the in-
dependent validation of at least two reference and mutation calls 
each by Sanger sequencing. We also sequenced the original PCR 
amplicons in both directions in the Applied Biosystems 3730 DNA 
Analyzer (Life Technologies).

MLPA
To rule out potential copy number abnormalities at the candi-

date pSNM sites, MLPA was performed on the case sample and 
a reference control sample obtained from an unrelated individual 
in whom no mosaicism was observed at the corresponding site. A 
pair of custom synthetic probes was designed for each validated 
pSNM to target its flanking regions; the distance to the pSNMs 
varied from 5 to 1 267 bp (Supplementary information, Table S8). 
The steps of probe preparation, ligation, and PCR amplification 
were performed using the EK1-FAM Probe Kit and the P300-
100R Reference Probemix (MRC-Holland, Amsterdam, the Neth-
erlands), following the manufacturer’s protocol. The PCR products 
were analyzed on the Applied Biosystems 3730 DNA Analyzer 
(Life Technologies), and the signal processing, normalization 
and comparison were performed using Coffalyser.NET software 
(MRC-Holland). Each MLPA experiment on the reference sample 
was repeated three times. The genomic copy number analysis was 
reported as normal when the ratio of the normalized peak areas be-
tween the case and reference samples was 0.7-1.3, which were the 
default parameters on Coffalyser.NET.

Data availability
The raw whole-genome sequencing data from this study have 

been deposited in the Short Reads Archive of NCBI (http://www.
ncbi.nlm.nih.gov/sra/) under accession number SRP028833.

We made the scripts which implemented the Bayesian-based 
mosaic genotyper and error filters publicly available at https://
github.com/AugustHuang/MosaicHunter. The users can change the 
running order and the parameters of running the genotyper and the 
filters.
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