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Abstract

Ovarian cancer is one of the most common causes of morbidity related to gynecologic malignancies. Possible risk
factors are including hereditary ovarian cancer, obesity, diabetes mellitus, alcohol consumption, aging, and smoking.
Various molecular signaling pathways including inflammation, oxidative stress, apoptosis and angiogenesis are
involved in this progression of ovarian cancer. Standard treatments for recently diagnosed patients are Surgery and
chemotherapy such as co-treatment with other drugs such that the exploitation of neoadjuvant chemotherapy is
expanding. Melatonin (N-acetyl-5-methoxy-tryptamine), an endogenous agent secreted from the pineal gland, has
anti-carcinogenic features, such as regulation of estradiol production, cell cycle modulation, stimulation of apoptosis
as well as anti-angiogenetic properties, anti-inflammatory activities, significant antioxidant effects and modulation of
various immune system cells and cytokines. Multiple studies have shown the significant beneficial roles of melatonin in
various types of cancers including ovarian cancer. This paper aims to shed light on the roles of melatonin in ovarian
cancer treatment from the standpoint of the molecular aspects.
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Introduction
Ovarian cancer is one of the most common causes of
morbidity related to gynecologic malignancies [1]. This
illness is frequently diagnosed in advanced stages [2] and
can be divided into at least five histological types that
are characterized by recognizable risk factors, molecular
manifestations and clinical properties [3]. Ovarian tu-
mors are graded into 3 types including benign, border-
line malignant or malignant [4]. Possible risk factors are
including hereditary [5], obesity [6], diabetes mellitus
[7], alcohol consumption [8], aging [9], and smoking
[10]. Due to absence of noticeable early symptoms in
this cancer such as lack of special pelvic or gastrointes-
tinal symptoms [11] its morbidity is high [12]. Standard
treatments for recently diagnosed patients are surgery
and chemotherapy such as co-treatment with carbopla-
tin and paclitaxel. Although the exploitation of neoadju-
vant chemotherapy is expanding [13], treatment in
high-grade serous ovarian carcinoma remains a clinical
challenge [14].

Melatonin (N-acetyl-5-methoxy-tryptamine), an en-
dogenous agent secreted from the pineal gland [15], trans-
fers information about period of darkness to all cells [16]
which its peak is at highest level among 2AM and 5AM
[17]. Melatonin has a critical role in determining homeo-
stasis, neurohumoral stableness and circadian rhythms
through synergetic activities with other hormones and
neuropeptides [18]. Melatonin is classified as an autocoid,
a chronobiotic, a sleep-inducing agent, an immune modu-
lator and a biological adjusting agent. In addition, mela-
tonin has anti-carcinogenic features, such as regulation of
estradiol production, cell cycle modulation, upgrading
apoptosis [19] as well as anti-angiogenetic properties [20],
significant antioxidant effects [21] and modulation of vari-
ous immune system cells and cytokines [22]. There is con-
siderable evidence of its ability in prevention and
treatment of cancers [23]. Multiple studies have shown
significant beneficial roles of melatonin in various cancers
types such as breast cancer [24] pancreatic cancer [25]
lung cancer [26] and ovarian cancer [27]. A retrospective
study showed that melanin levels are lower in women with
ovarian cancer compared with healthy ones (41.8 versus
82.4 pg/mL) [28]. Even though there is no significant rela-
tionship between urinary melatonin levels and ovarian
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cancer risk in women, several evidence shows that mela-
tonin have potential therapeutic properties against this
cancer. A recent in vivo study reported that melatonin
treatment for 60 days potentially decreased ovarian cancer
mass without any peritoneal adhesions and tumor inci-
dence including high-grade serous papillary, sarcoma and
undifferentiated carcinoma [29]. In addition, an in vitro
study observed that response to melatonin in various
types of ovarian cancer cells was different. In fact, there
was a non-heterogeneous response to melatonin as one of
the cell lines inhibited by 90% while another one inhibited
by 30% [30]. This report sheds the new light on the roles
of melatonin in prevention, treatment and chemotherape-
tic interplay in ovarian carcinoma as identified in recent
studies and clinical trials.

Ovarian cancer pathogenesis
Although some causes of ovarian cancer remain unclear,
several hypothesizes have been advanced. One is the in-
cessant ovulation hypothesis which proposes the forma-
tion and progression of ovarian cancer throughout
cyclical ovulatory processes. This hypothesis suggests
that replicative DNA mistakes are increased in ovarian
epithelial cells during follicular growth and ovulation
[31]. Another hypothesis is the gonadotrophin theory
suggesting that gonadotrophins lead to excessive prolif-
eration of ovarian epithelial cells which result in tumor
formation [32]. Hormonal influences are the third
hypothesis which suggests the effects of hormones such
as androgen and progesterone on proliferation of the
ovarian epithelial cells and therefore ovarian cancer
formation [33]. The surface of the ovarian epithelium is
part of the peritoneal lining and, therefore, is exposed to
substances which exist in the peritoneal cavity. Most of
these substances have inflammatory features. A primary
physiological role of the ovary is ovulation, which has
pro-inflammatory properties [34]. During the ovulatory
processes followed by immediate ovum release, a large
number of molecules are generated including cytokines
and chemokines, prostaglandins, plasminogen activators,
bioactive eicosanoids, interleukins, collagenases, tumor
necrosis factors, several growth factors and also various
immune cells which all activate a pro-inflammatory cas-
cade. Some of these pro-inflammatory molecules includ-
ing CCL2/MCP-1, CCL5/RANTES and IL-8 are
activated during cyclical ovulation; thus, the incessant
ovulation theory suggests that inflammation along with
other physiological conditions enhances the progression
of ovarian cancer [35]. Conversely, as suggested by the
gonadotrophin and hormonal hypothesizes, increased es-
trogens and androgens recruit several pro-inflammatory
cells and molecular stimulators leading to immune acti-
vation [36]. Collectively, these hypothesizes indicate the
influences of ovulation, gonadotrophin and hormonal

changes on formation and progression of ovarian cancer
which are all related to activation of inflammatory medi-
ators as well as persistent creation of genomic damages.

Melatonin and ovarian cancer; molecular
mechanisms
Treatment by melatonin leads to a reduction in various
proteins involved in ovarian cancer signaling pathways in-
cluding oxidative stress, inflammation, apoptosis, cell
cycle and proliferation. One of these molecules is
E-cadherin which is a tumor suppressor and a key mol-
ecule for sustaining adherent junctions in cell surface [37].
Up-regulation of E-cadherin expression in ovarian cancer
tissues has prognostic value to distinguish tumors in late
and early stages [38]. Melatonin increases E-cadherin in
ovarian cancer cells [39]. Another factor modulated by
melatonin is the estrogen receptor α (ERα). This molecule
is one a member of nuclear receptor super family and
modulates cell multiplication, homeostasis, and differenti-
ation in multiple tissues. Sustained exposure to estrogen/
estradiol (E2) up-regulates the growth of ovarian cancers
[40]. Melatonin is a special ERα suppressor [41] and plays
an anti-carcinogenic role through the estrogen receptor
(ER) pathway in tumor cells [42].

Antioxidant effects of melatonin
There is agreement that melatonin is an important en-
dogenous free-radical scavenger [43] and possesses several
antioxidant roles by influencing the electron transfer chain,
preventing peroxynitrite levels via regulation of nitric oxide
synthases (iNOS, nNOS) and thereby reducing NO levels.
Melatonin enhances the intra-mitochondrial anti-oxidative
potential by improving glutathione levels and promoting
glutathione peroxidase, manganese-superoxide dismutase
(Mn-SOD) in the matrix and copper, zinc (Cu, Zn-SOD) in
the inter-membrane space [44]. Melatonin treatment leads
to ROS reduction and activation of several anti-oxidant
enzymes such as superoxide dismutase, catalase and gluta-
thione [45]; melatonin also acts as a pro-oxidant in different
cancers [46]. In pre-ovulatory follicular fluid, melatonin al-
leviates the carcinogenic effect of ROS in follicular fluid
[47]. Some studies revealed that cyclooxygenase-2 (COX2)
is over-expressed in tumor cells. Melatonin suppresses
COX2 activity [48] leading to prevention of DNA damage
[49].

Melatonin and apoptosis
Apoptosis, a type of programmed cell death, has both
specific morphological features and biochemical mecha-
nisms. Melatonin regulates apoptosis in several types of
cancers by multiple mechanisms. Caspases are
interleukin-1beta-converting enzyme family members
which are also aspartate-specific cysteine proteases [50]
and have pivotal roles in regulation of the initiation,
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transduction and promotion of apoptotic signals. In
ovarian cancer the expression of cleaved caspase-3 is
increased [51] while melatonin reduces the
over-expression and activation of this molecule [52].
Thus melatonin administration enhances apoptosis in
ovarian cancer cells [53].
Evidences suggest that treatment with melatonin en-

hances apoptosis by increasing the expression of p53, a
tumor suppressor, in ovarian cancer cells [53]. P53
signaling pathway in various carcinoma cell lines acts
significantly as a transcription factor, resulting in arrest
cell cycle or apoptosis [54] by inhibition of the cell cycle
in the G2-phase [55]. Accumulated p53 significantly in-
teracts with proteins which are important in tumor cell
maintenance and thereby neutralizes them [56]. Mela-
tonin increases [57] and activates p53 and therefore in-
creases apoptosis in several cancers such as the colon
[58] and the uterus [59]. Two important members of
apoptosis-related genes are Bcl-2 and BAX [60].
Melatonin motivates BAX gene expression, and down
regulates the expression of anti-apoptotic gene BCL-2
[61, 62]; thus, melatonin regulates the Bax/Bcl-2 ratio
[63]. A recent study suggested the role of melatonin in
induction of apoptosis in ovarian cancer cells by increas-
ing BAX expression and reducing in Bcl-2 levels [53].

Melatonin as an anti-inflammatory agent
In addition to its anti-oxidant effects melatonin’s
anti-inflammatory and immune regulatory properties are
well documented. Melatonin induces the release of
interleukin-2, interleukin-10 and interferon-γ which leads
to the enhancement of T-helper cells which respond to
these substances. T-helper cells have a significant
anti-cancer role. Nuclear factor-kappa B (NF-kappa B) en-
hances ROS generation leading to DNA damage [64, 65].
In the etiology of the ovarian cancer, NF-kB is a significant
marker of inflammation [66]. Melatonin suppresses the
NF-kB phospho-activation [67]. Furthermore, melatonin
decreases H2O2-induced oxidative stress by regulation of
Erk/Akt/NFkB pathway [68]. Melatonin therapy
down-regulates the mRNA expression of NFκB1, NFκB2
in mice [69]. This indolamine also inhibits the expression
of TNF-α which is an important member of TNF/TNFR
cytokine super-family; via these mechanisms melatonin
acts as an anti-inflammatory agent [70]. TNF-α is a
pro-inflammatory agent which causes pathological pro-
cesses such as chronic inflammation and malignancy [71].
In ovarian cancer cells the expression of TNF-α is elevated
[72]. Melatonin administration importantly inhibits this
increase in ovarian cancer cells. HER-2 is another factor
involved in the initiation and maintenance of inflamma-
tion and tumorogenesis in cancer cells. HER2 initiates a
feed-forward activation circle of IL-1α and IL-6 that in-
duces NF-κB and STAT3 pathways for induction and

preservation of cancer cells [73]. Her2 stimulates kinases
and transcript agents which support cancer medicine re-
sistance and metastasis. Melatonin critically suppresses
this invasive/metastatic aspect; the mechanism involves
the repression of mesenchymal-to-epithelial transition,
either by helping mesenchymal-to-epithelial conversion,
and/or by obstructing important signaling pathways impli-
cated in later stages of metastasis [74]. Melatonin also reg-
ulates Her-2 system in invasive tumors by decreasing the
Her-2 expression [75]. Signaling pathways of transforming
growth factor-β (TGF-β) have significant roles in ovarian
cancer [76]. TGF-β may enhance cell survival by positive
modulation of the cell cycle as well as by preventing apop-
tosis [77]. The expression of TGF-ß1 and its receptors
may play an important role in promotion and proliferation
of tumor cells [78]. Melatonin prevents [79] and decreases
the expression of TGF-β1 in epithelial ovarian cancer [80].
Collectively, the findings indicate that melatonin adminis-
tration significantly regulates signaling pathways in ovar-
ian cancer [81].

Melatonin and its ani-angigenesis effects
One of important aspects of metastatic spread and pro-
liferation of cancer cells is presence of necessary nutri-
ents and oxygen and also should be removed waste
products [82, 83]. In this regards, vascular network and
new growth of vessels are known as well players for
these actions. New lymphatic and blood and vessels
form via processes which are known as lymphangiogen-
esis and angiogenesis respectively [84]. Multiple lines
evidence revealed that angiogenesis could be modulated
by both inhibitor and activator molecules. Several pro-
teins have been observed as angiogenic inhibitors and
activators. Despite many efforts, antiangiogeic inhibitors
have not documented useful in terms of long-term sur-
vival. Therefore, there is a serious require for finding,
and developing new effect therapeutic platforms com-
bining anti-angiogenic therapies along with conventional
cytoreductive treatments in the management of different
cancers [83]. Vascular endothelial growth factor (VEGF)
is significantly over-expresses in cancer patients [85, 86]
VEGF inhibits apoptosis, protects tumor and vascular
growth, and enhances proliferation and inflammation
leading to carcinogenesis [87]. Melatonin decreases
VEGF secretion resulting in inhibition of angiogenesis in
tumors [88]. Melatonin also was shown to inhibit angio-
genesis by decreasing angiopoietins and VEGF in an ani-
mal model of ovarian cancer [89].
Besides different factors which are associated to over

expression and activation of pro-angiogenic growth fac-
tors and their receptors, hypoxia has been emerged as
key factor. Given that cells employed a variety of genes
to adapt to hypoxia in low-oxygen positions. Among of
these genes, HIF-1 is major and primary players in
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hypoxic conditions [90, 91]. HIF-1α and HIF-1β are
well-known subunits of HIF-1. These subunits are
known as a basic helix-loop-helix (bHLH) transcription
factor family. It has been showed that HIF-1α/HIF-1β
dimer has various targets such as VEGF. Hence, this
protein is related to increasing of angiogenesis. Along to
different signaling pathways involved in angiogenesis,
STAT3 is another angiogenesis factor which is able to
elevate the expression of VEGF and stimulate HIF-1α
stability. Increasing evidence indicated, when STAT3
and HIF-1α link to CBP/p300 (is known as a
co-activator in the VEGF promoter); there were normal
activation of VEGF transcription [88]. The activated
STAT3 is associated with initiation and progression of
several malignancies such as ovarian cancer, and melan-
oma. It has a crucial role in different biological processes
including survival, proliferation of cells, migration,
invasion, and angiogenesis [92]. As mentioned above,
melatonin shows anti-cancer activities such as
anti-angiogenesis property. In this regards, given that
melatonin enables to effect on angiogenesis thought tar-
geting HIF-1α under hypoxic conditions [46, 93]. In a
study, Park et al. [94] revealed that there is a decrease
for HIF-1α and pVHL binding during hypoxic condi-
tions in colon cancer cell lines. While the presence of
melatonin is able to recover PHD activity in the treat-
ment group and then elevated the binding of HIF-1α
and pVHL. In another study, Zhang et al. [95] docu-
mented melatonin increases binding of pVHL and
HIF-1α during hypoxia in glioblastoma cells. Taken
together, expression levels of angiogenic factors are asso-
ciated with the tumor cells aggressiveness. Thus, identi-
fication of new angiogenic inhibitors (e.g., melatonin)
could contribute to decrease both mortality and morbid-
ity from carcinomas.

Melatonin and metabolic alterations in ovarian
cancer
Alteration in cancer cell metabolism is one of the im-
portant events occurred during tumorogenesis and
cancer progression. Cancer cells need to be able to
proliferate and growth in a hypoxic and nutrient-poor
microenvironment which require a reprogramming of
metabolism in these cells, especially the key metabolic
substrates such as glucose, lipid and etc. in this way,
mitochondria gets more functional changes among
other organelles. Despite of the high glycolytic rate in
cancer cells, the produced pyruvate is not used in
Krebs cycle and it is transformed into lactate inde-
pendently from oxygen availability in the so-called
Warburg effect [96]. In addition, many clinical studies
reported that plasma glucose levels in cancer patients
is highly elevated and may be a significant prognostic
indicator for cancer. Besides, some recent studies

demonstrated that the expression of glucose trans-
porter protein 1 (GLUT1) increased in ovarian cancer
cells leading to elevation of glucose uptake in these
cells [97]. Recently, new beneficial therapeutic targets
which involve in cellular pathways responsible for en-
ergy generation required to control cancer cell growth
are emerging. Several studies showed that melatonin,
at both physiological and pharmacological concentra-
tions, is able to regulate cellular metabolism through
different mechanisms [98]. It has been proved that
melatonin crosses cell membranes via glucose trans-
porters which may lead to reduction of glucose up-
take in cancer cells [99]. In addition, melatonin is
able to decrease the production of lactate, but the
certain mechanism which in how melatonin affects
glycolysis is not clear yet [100]. Moreover, melatonin
influences insulin secretion from pancreas by its MT1
and MT2 receptors leading to reduction in blood glu-
cose and elevation in fatty acids [101]. Recent find-
ings showed that melatonin reduced proteins related
to metabolic systems including production of several
metabolites and energy, endoplasmic reticulum stress
related pathways, cancer-associated proteoglycan,
HIF-1 signaling and antigen processing in ovarian
cancer. Indeed, melatonin down-regulates several pro-
teins related to metabolism including
glyceraldehydes-3- phosphate dehydrogenase, pyruvate
kinase isozymes M1/M2, fructose-bisphosphate, aldol-
ase A, lactate dehydrogenase A chain, creatine kinase
B, protein disulfide isomerase A3 and A6, subunit α
of ATP synthase, 78-kDa glucose-regulated protein
and peptidyl-prolyl cis-trans isomerase A. these alter-
ations in metabolism may significantly influence aer-
obic glycolysis leading to reduction in proliferation
and metastasis in ovarian cancer cells. Besides, mela-
tonin overexpressed some molecules including subunit
β of ATP synthase, fatty acid binding protein and
10-kDa heat chock protein in ovarian cancer cells
[81].

Melatonin as an adjuvant therapy in ovarian
cancer treatment
Recent investigations have described the role of mela-
tonin in combination with radio- or chemotherapy in
several cancers including ovarian cancer [102]. These
studies also showed that the optimal dose of mela-
tonin is safe and effective in enhancing radiotherapy
ratio therapeutic effects as well as providing radiopro-
tection [103]. Melatonin up regulates the tolerance of
normal tissues to toxic effects of ionizing radiation in
patients who undergo radiotherapy by enhancing
DNA damage responses and reducing the risk of in-
stability. Melatonin plays synergistic roles in radio-
therapy and chemotherapy as an antioxidant which
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relieving the side effects of these destructive treat-
ments [104].
In ovarian cancer this powerful antioxidant potentially

supports the ovaries against damage induced by
cisplatin; this is the main chemotherapeutic agent for
this cancer [105]. Recently it has been shown that mela-
tonin improved fertility in ovarian cancer [106] via the
promotion of ERK/p90RSK/HSP27 cascade in SK-OV-3
cells. Moreover, melatonin and cisplatin
co-administration promoted apoptosis induced by cis-
platin. It was also demonstrated that melatonin im-
proved cis-diamminedichloroplatinum sensitivity in
HTOA and OVCAR-3 cells; both these lines are ovarian
cancer cells [107]. Other investigations also showed that
melatonin co-administration potentially boosted laser ef-
fectiveness by induction of apoptosis in ovarian tumor
cells leading to significant improvement of apoptosis/ne-
crosis ratio, and also increasing the expression of heat
shock protein 70 compared to administration each factor
alone [108]. Thus, melatonin acts as a powerful synergis-
tic agent with cisplatin therapy [109] and can be applied
as an adjuvant in ovarian cancer treatment.

Conclusions
Ovarian cancer is a gynecologic malignancy with a high
morbidity rate. The pathogenesis of this cancer is

complex from its molecular aspects. Several factors and
various molecular signaling pathways such as inflamma-
tion, oxidative stress, apoptosis and angiogenesis are in-
volved in its progression. There is a large amount of
evidence that documents the potential beneficial effects
of melatonin in inhibition of development and progres-
sion of ovarian cancer via its multiple potential features
including antioxidant, anti-inflammatory, metabolic ef-
fects and apoptosis induction activities in these tumor
cells (Fig. 1). Also melatonin has beneficial effects with
several anti-cancer drugs such as cisplatin. Thus, it is
suggested that melatonin can be co-administrated as a
potent adjuvant agent in combination with other chemo-
therapeutic drugs in ovarian cancer treatment. Current
therapeutic strategies for ovarian cancer are often lim-
ited and evidence has shown that chemotherapy alone is
not completely efficient to reduce tumor cells. Thus,
finding new therapeutic options with low adverse effects
is considerable. Melatonin is endogenously produced
and its pharmacological doses are available with no tox-
icity. Although these potential roles have long been
known, it has not been fully exploited in clinical trials.
Melatonin as a natural molecule with its potential
anti-cancer properties and its efficiency in decreasing
side effects of current treatments may be an appropriate
option in the treatment of ovarian cancer.

Fig. 1 Schematic representation in targeting different signaling pathways using melatonin as a novel therapeutic strategy in the treatment of
ovarian cancer
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