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ABSTRACT
Background and Objectives: Symptom-based subtyping for functional gastrointestinal 
disorders (FGIDs) has limited value in identifying underlying mechanisms and guiding 
therapeutic strategies. Small intestinal dysbiosis is implicated in the development of FGIDs. 
We tested if machine learning (ML) algorithms utilizing both gastrointestinal (GI) symptom 
characteristics and lactulose breath tests could provide distinct clusters. Materials and 
Methods: This was a prospective cohort study. We performed lactulose hydrogen methane 
breath tests and hydrogen sulfide breath tests in 508 patients with GI symptoms. An 
unsupervised ML algorithm was used to categorize subjects by integrating GI symptoms and 
breath gas characteristics. Generalized Estimating Equation (GEE) models were used to 
examine the longitudinal associations between cluster patterns and breath gas time profiles. 
An ML-based prediction model for identifying excessive gas production in FGIDs patients 
was developed and internal validation was performed. Results: FGIDs were confirmed in 
300 patients. K-means clustering identified 4 distinct clusters. Cluster 2, 3, and 4 showed 
enrichments for abdominal distention and diarrhea with a high proportion of excessive gas 
production, whereas Cluster 1 was characterized by moderate lower abdominal discomforts 
with the most psychological complaints and the lowest proportion of excessive gas production. 
GEE models showed that breath gas concentrations varied among different clusters over 
time. We further sought to develop an ML-based prediction model to determine excessive 
gas production. The model exhibited good predictive capabilities. Conclusion: ML-based 
phenogroups and prediction model approaches could provide distinct FGIDs subsets and 
efficiently determine FGIDs subsets with greater gas production, thereby facilitating clinical 
decision-making and guiding treatment.
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INTRODUCTION

Functional gastrointestinal disorders 
(FGIDs) are highly prevalent and remain 
the most common cause of  gastrointestinal 
(GI) complaints.[1,2] However, FGIDs 
often overlap, and the limited link between 
the current classifications and putative 
pathophysiology remains poorly translated 

into efficacious treatment options.[3] 

Machine learning (ML) methods have 
been employed to classify individuals with 
FGIDs to discover novel subcategories.[4] 
Supervised ML utilizes iterative processes 
to “learn” from a well-labeled training set 
for high diagnostic accuracy.[5] Whereas 
unsupervised methods classify patients into 
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clusters based on various attributes to examine how these 
attributes may be connected to treatment responses.[6] 

Several studies have applied unsupervised ML approaches 
utilizing GI and extra-GI symptoms to discover new 
phenogroups.[4,7,8] However, these studies have primarily 
utilized a single set of  clinical symptoms. Incorporating 
clinical manifestations and biomarkers that delineate the 
underlying mechanisms is imperative for distinguishing 
FGIDs from other conditions with similar or overlapping 
symptoms and guiding treatments. 

Imbalances in the small intestine microbiota are closely 
linked to FGIDs.[9–12] Small intestinal bacterial overgrowth 
is the most widely recognized type of  dysbiosis involving 
the small intestine, resulting in symptoms caused by 
carbohydrate fermentation, usually confirmed through 
a positive breath test.[13] Association studies between 
breath gas characteristics and symptoms following sugar 
provocation tests in FGIDs have shown that acute GI 
symptoms following sugar ingestion are associated with 
breath gas levels.[14,15] However, these examinations were 
conducted based on acute provocation tests, and abnormal 
gas production resulting from small intestinal dysbiosis as 
a persistent pathogenic element in FGIDs requires further 
investigation. 

Consequently, mechanisms underlying the association 
among GI symptoms, gas production, and small intestinal 
dysbiosis remain unclear. We hypothesized that ML 
algorithms utilizing both GI characteristics and lactulose 
breath tests could provide more well-separated clusters, 
and that identifying excessive gas production in FGIDs 
patients may allow a more targeted antibacterial or diet-
based approach to treatment. 

MATERIALS AND METHODS

Patients and data sources
This was a prospective cohort study. This study was 
approved by the ethics committee of  Peking University 
Third Hospital (2021-132-01) and was conducted in 
accordance with the ethical guidelines outlined in the 
Declaration of  Helsinki. Informed consent was obtained 
from the participants on an opt-out basis given the 
noninvasive nature of  the study. 

All patients with GI symptoms referred to the Outpatient 
Department of  Gastroenterology at Peking University 
Third Hospital from December 2021 to November 
2023 were eligible for inclusion in this study. FGIDs 
were established according to Rome IV criteria. The 
exclusion criteria were described in Supplementary 
Method 1. All medical history-taking was conducted by 

skilled gastroenterologists (Supplementary Method 2). 
Standardized questionnaires were used to classify GI 
symptoms into FGIDs according to the Rome IV criteria, 
and contained questionnaires assessing the severity of  
anxiety, depression, and sleep quality (Supplementary Table 
1). The intensity of  GI symptoms was assessed using a 
4-point Likert scale ranging from 0 (none) to 3 (severe). 

Breath tests
All patients underwent standardized lactulose hydrogen 
methane breath tests (LHMBT) and hydrogen sulfide breath 
tests performed by the same technician (Supplementary 
Method 3). Excessive gas production was defined as 
a positive LHMBT according to the North American 
Consensus, with an increase of  hydrogen (H2) ≥20 parts 
per million (ppm) or methane (CH4) levels reaching ≥10 
ppm within 90 min.[16] 

Unsupervised machine learning
Forty-three baseline variables, including clinical 
characteristics, H2 peak, excessive H2 production, CH4 
peak, excessive CH4 production, hydrogen sulfide (H2S) 
peak, time to H2S peak, and the area under the curve 
(AUC) of  H2S, were identified and utilized as input for 
the unsupervised ML algorithm (Supplementary Method 
4). The dataset was supplemented using the multiple 
imputation method to fill in missing data representing 
less than 40% of  the total data. Twenty complete datasets 
were imputed. The variation analyses of  the 20 imputation 
datasets were provided (Supplementary Table 2). 

Individuals were grouped and different categories 
of  FGIDs were identified based on their phenotypic 
characteristics using the K-means algorithm. Each imputed 
dataset was individually processed using the prescribed 
steps for the clustering algorithm.[17] The clustering 
algorithm was executed with a range of  predefined group 
numbers, starting from 2 and increasing to 9. The elbow 
method was used to determine the optimal number of  
clusters (Supplementary Figure 1). Principal components 
analysis (PCA) was used to visualize and investigate the 
clustering of  our data (Supplementary Figure 2). 

Supervised machine learning
Variables associated with excessive gas production were 
included as candidate variables based on a literature review, 
expert opinions, and the results of  univariate analyses. 
Multicollinearity between variables was analyzed using 
Spearman correlation analysis and collinearity diagnostics 
(Supplementary Method 5). Least absolute shrinkage and 
selection operator (Lasso) regression was employed on all 
20 imputed datasets to assess the importance of  potential 
variables. To create a robust and dependable model, we 
chose the top seven characteristics for constructing the 
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Table 1: Demographic and clinical characteristics of patients with functional gastrointestinal disorders grouped by cluster

Characteristics Overall (n = 300) Cluster 1 (n = 59) Cluster 2 (n = 139) Cluster 3 (n = 64) Cluster 4 (n = 38) P value

Sex, female (%) 153 (51.0) 31 (52.5) 56 (40.3) 41 (64.1) 25 (65.8) 0.003

Age (years, median [IQR]) 29.0 (25.0, 37.0) 29.0 (25.0, 38.0) 31.0 (25.0, 39.0) 25.5 (23.0, 33.5) 29.0 (25.3, 32.8) 0.011

Age 0.135

  ≤ 30 years (%) 171 (57.0) 32 (54.2) 68 (48.9) 46 (71.9) 25 (65.8) 

  31–40 years (%) 83 (27.7) 18 (30.5) 45 (32.4) 10 (15.6) 10 (26.3) 

  41–50 years (%) 28 (9.3) 4 (6.8) 16 (11.5) 6 (9.4) 2 (5.3) 

  ≥ 51 years (%) 18 (6.0) 5 (8.5) 10 (7.2) 2 (3.1) 1 (2.6) 

BMI (kg/m2, median [IQR]) 22.0 (20.0, 24.8) 21.5 (20.0, 24.8) 23.0 (20.6, 25.5) 21.2 (19.1, 23.1) 21.6 (20.2, 22.9) 0.010

BMI grade 0.212

  <18.5 kg/m2 (%) 32 (10.7) 6 (10.2) 14 (10.1) 9 (14.1) 3 (7.9) 

  18.5–23.9 kg/m2 (%) 177 (59.0) 36 (61.0) 71 (51.1) 43 (67.2) 27 (71.1) 

  24.0–27.9 kg/m2 (%) 74 (24.7) 14 (23.7) 45 (32.4) 9 (14.1) 6 (15.8) 

  ≥28 kg/m2 (%) 17 (5.7) 3 (5.1) 9 (6.5) 3 (4.7) 2 (5.3) 

Duration (months, median 
[IQR]) 44.0 (18.5, 87.0) 44.5 (21.8, 95.5) 53.5 (20.0, 116.5) 28.0 (15.0, 55.0) 52.0 (20.0, 99.0) 0.007

Smoking history (%) 24 (8.1) 5 (8.6) 14 (10.3) 3 (4.8) 2 (5.3) 0.523

Drinking history (%) 43 (14.6) 10 (17.2) 22 (16.2) 6 (9.5) 5 (13.2) 0.580

History of allergy (%) 48 (17.6) 14 (29.2) 19 (15.0) 8 (12.7) 7 (20.0) 0.101

Allergic diseases (%) 116 (42.5) 21 (43.8) 53 (41.7) 25 (39.7) 17 (48.6) 0.851

Heart disease (%) 4 (1.4) 1 (1.7) 2 (1.5) 1 (1.6) 0 (0.0) 0.893

Respiratory disease (%) 6 (2.0) 0 (0.0) 4 (2.9) 2 (3.1) 0 (0.0) 0.402

Endocrine disorders (%) 14 (4.7) 4 (6.9) 4 (2.9) 2 (3.1) 4 (10.5) 0.186

Hematologic disorders (%) 2 (0.7) 1 (1.7) 0 (0.0) 1 (1.6) 0 (0.0) 0.407

Autoimmune disease (%) 3 (1.0) 1 (1.7) 0 (0.0) 2 (3.1) 0 (0.0) 0.176

Gastroenteritis (%) 111 (46.4) 31 (58.5) 50 (45.1) 18 (38.3) 12 (42.9) 0.205

Infection history of H. pylori 
(%) 55 (21.8) 22 (39.3) 21 (20.0) 7 (11.5) 5 (16.7) 0.002

PPI prescription (%) 83 (38.4) 23 (46.0) 31 (32.3) 22 (46.8) 7 (30.4) 0.191

Antibiotic prescription (%) 113 (58.3) 30 (61.2) 57 (58.8) 15 (57.7) 11 (50.0) 0.848

Infection history of COVID-19 
(%) 115 (63.9) 40 (93.0) 40 (45.5) 18 (85.7) 17 (60.7) <0.001

Oral ulcers (%) 44 (21.9) 22 (41.5) 15 (22.7) 3 (5.2) 4 (16.7) <0.001

Type of BSF (%) <0.001

  Constipation 18 (6.0) 3 (5.1) 8 (5.8) 5 (7.8) 2 (5.3) 

  Diarrhea 134 (44.7) 21 (35.6) 77 (55.4) 16 (25.0) 20 (52.6) 

  Mixed 3 (1.0) 3 (5.1) 0 (0.0) 0 (0.0) 0 (0.0) 

  Normal 145 (48.3) 32 (54.2) 54 (38.9) 43 (67.2) 16 (42.1) 

IBS (%) 128 (42.7) 22 (37.3) 86 (61.9) 2 (3.1) 18 (47.4) <0.001

IBS subtype (%) <0.001

  IBS-C 3 (1.0) 0 (0.0) 2 (1.4) 0 (0.0) 1 (2.6) 

  IBS-D 73 (24.3) 11 (18.6) 53 (38.1) 0 (0.0) 9 (23.7) 

  IBS-M 1 (0.3) 1 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 

  IBS-U 51 (17.0) 10 (17.0) 31 (22.3) 2 (3.1) 8 (21.1) 

FD (%) 135 (45.0) 42 (71.2) 15 (10.8) 64 (100.0) 14 (36.8) <0.001

EPS (%) 62 (20.7) 19 (32.2) 3 (2.2) 31 (48.4) 9 (23.7) <0.001

PDS (%) 122 (40.7) 42 (71.2) 15 (10.8) 52 (81.3) 13 (34.2) <0.001

The overlap of EPS and PDS 
(%) 49 (16.3) 19 (32.2) 3 (2.2) 19 (29.7) 8 (21.1) <0.001

Other FGIDs (%) 0.222

  U-FBD 8 (2.7) 0 (0.0) 4 (2.9) 2 (3.1) 2 (5.3) 

  FC 12 (4.0) 1 (1.7) 7 (5.0) 4 (6.3) 0 (0.0) 

(To be continued)
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  Functional diarrhea 68 (22.7) 14 (23.7) 25 (18.0) 17 (26.6) 12 (31.6) 

  Functional bloating 16 (5.3) 5 (8.5) 10 (7.2) 0 (0.0) 1 (2.6) 

Belching (%) 72 (24.0) 35 (59.3) 17 (12.2) 8 (12.5) 12 (31.6) <0.001

Overlapping of FGID 
syndromes 115 (38.3) 47 (79.7) 23 (16.6) 29 (45.3) 16 (42.1) <0.001

The count of overlap 
syndromes <0.001

  2 92 (30.7) 35 (59.3) 21 (15.1) 25 (39.1) 11 (29.0) 

  3 23 (7.7) 12 (20.3) 2 (1.4) 4 (6.3) 5 (13.2) 

Nausea (median [IQR]) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 1.0 (0.0, 1.0) 0.0 (0.0, 1.0) <0.001

Upper abdominal pain (median 
[IQR]) 0.0 (0.0, 1.0) 1.0 (0.0, 1.0) 0.0 (0.0, 0.0) 1.0 (1.0, 2.0) 0.0 (0.0, 1.0) <0.001

Stomach fullness (median 
[IQR]) 1.0 (0.0, 2.0) 2.0 (1.0, 3.0) 0.0 (0.0, 0.0) 1.0 (1.0, 2.0) 0.0 (0.0, 1.0) <0.001

Upper abdominal discomfort 
(median [IQR]) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (0.0, 2.0) 0.0 (0.0, 0.0) <0.001

Bloating (median [IQR]) 0.0 (0.0, 1.0) 1.0 (1.0, 2.0) 0.0 (0.0, 0.0) 1.0 (1.0, 2.0) 0.0 (0.0, 1.0) <0.001

Vomiting (median [IQR]) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.815

Early satiety (median [IQR]) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 1.0 (0.0, 1.0) 0.0 (0.0, 0.0) <0.001

Fullness after meals (median 
[IQR]) 1.00 (0.0, 2.0) 2.0 (1.0, 2.0) 0.0 (0.0, 1.0) 2.0 (1.0, 2.0) 0.0 (0.0, 1.8) <0.001

Abdominal pain (median 
[IQR]) 1.0 (0.0, 1.0) 1.0 (0.0, 2.0) 1.0 (0.0, 1.0) 0.0 (0.0, 0.0) 0.5 (0.0, 1.0) <0.001

Heartburn (median [IQR]) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.004

Reflux (median [IQR]) 0.0 (0.0, 1.0) 1.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.005

Borborygmus (median [IQR]) 1.0 (0.0, 1.0) 1.0 (1.0, 2.0) 1.0 (0.0, 1.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.8) <0.001

Eructation (median [IQR]) 1.0 (0.0, 2.0) 2.0 (1.0, 2.5) 1.0 (0.0, 1.0) 1.0 (0.0, 1.0) 1.0 (1.0, 2.0) <0.001

Abdominal distention (median 
[IQR]) 1.0 (0.0, 2.0) 2.0 (1.5, 3.0) 1.0 (0.0, 2.0) 0.0 (0.0, 0.0) 1.0 (0.0, 2.0) <0.001

Increased flatus (median 
[IQR]) 1.0 (0.0, 2.0) 2.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.0 (0.0, 0.0) 2.0 (1.0, 2.0) <0.001

Increased defecation (median 
[IQR]) 1.0 (0.0, 2.0) 1.0 (0.0, 2.0) 1.0 (1.0, 2.0) 0.0 (0.0, 0.0) 1.0 (1.0, 2.0) <0.001

Reduced defecation (median 
[IQR]) 0.0 (0.0, 1.0) 1.0 (0.0, 2.0) 0.0 (0.0, 0.5) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) <0.001

Loose stools (median [IQR]) 1.0 (0.0, 2.0) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.0 (0.0, 1.0) 1.0 (0.0, 2.0) <0.001

Hard stools (median [IQR]) 0.0 (0.0, 1.0) 1.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.8) <0.001

Urgent need for defecation 
(median [IQR]) 1.0 (0.0, 2.0) 1.0 (0.0, 1.0) 1.0 (0.0, 2.0) 0.0 (0.0, 0.0) 1.0 (0.0, 2.0) <0.001

Feeling of incomplete 
evacuation (median [IQR]) 1.0 (0.0, 1.3) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.0 (0.0, 0.0) 1.0 (0.0, 1.0) <0.001

Anxiety (%) 79 (38.5) 33 (62.3) 23 (33.8) 18 (28.6) 5 (23.8) <0.001

HAMA score (median [IQR]) 6.0 (3.0, 8.0) 8.0 (5.0, 12.0) 5.0 (3.0, 8.0) 5.0 (2.5, 7.0) 4.0 (2.0, 6.0) 0.001

HAMA grade (%) 0.006

  Mild 65 (31.7) 24 (45.3) 21 (30.9) 16 (25.4) 4 (19.1) 

  Moderate 10 (4.9) 7 (13.2) 2 (2.9) 1 (1.6) 0 (0.0) 

  Severe 1 (0.5) 1 (1.9) 0 (0.0) 0 (0.0) 0 (0.0) 

  Very severe 3 (1.5) 1 (1.9) 0 (0.0) 1 (1.6) 1 (4.8) 

Depression (%) 52 (25.4) 25 (47.2) 9 (13.2) 13 (20.6) 5 (23.8) <0.001

HAMD score (median [IQR]) 4.0 (2.0, 7.0) 6.0 (3.0, 10.0) 3.0 (2.0, 5.0) 4.0 (1.5, 6.0) 3.0 (2.0, 5.0) 0.001

HAMD grade (%) 0.003

  Mild 50 (24.4) 24 (45.3) 9 (13.2) 12 (19.1) 5 (23.8) 

  Moderate 2 (1.0) 1 (1.9) 0 (0.0) 1 (1.6) 0 (0.0) 

Decreased sleep quality (%) 137 (62.8) 47 (81.0) 44 (57.9) 33 (52.4) 13 (61.9) 0.007

PSQI (median [IQR]) 6.00 (5.0, 8.0) 8.0 (6.0, 11.0) 6.0 (4.0, 8.0) 6.0 (5.0, 8.0) 7.0 (5.0, 7.0) <0.001

(To be continued)

(Continued)



Zhu et al.: ML to identify FGIDs subsets

359JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JUL-AUG 2024 / VOL 12 | ISSUE 4

model based on a majority vote. 

Internal validation was performed using a bootstrap 
method. Six classical ML models, namely logistic regression 
(LR), linear discriminant analysis (LDA), k-nearest neighbor 
(KNN), naive Bayes (NB), support vector machine 
(SVM), and random forest (RF), were developed to 
predict excessive gas production. The performance of  the 
model was evaluated by examining the receiver operating 
characteristic (ROC) and calibration curves. Furthermore, 
we used decision curve analysis (DCA) to visually evaluate 
the net benefits of  each model. The SHapley Additive 
exPlanations (SHAP) method was employed to visualize 
the importance of  characteristics selected in the model. 
A dynamic nomogram was constructed for clinical 
application. 

Statistical analysis
Categorical variables were presented as percentages 
and were analyzed using the Chi-squared test. Variables 

displaying a non-normal distribution were presented as 
medians along with their interquartile ranges and analyzed 
using the Mann-Whitney U-test. Multiple comparisons of  
breath gas features were analyzed using the Kruskal-Wallis 
test with Bonferroni post hoc correction, and repeated 
measurements of  gas concentrations were analyzed 
using generalized estimating equation (GEE) models in 
R 4.3.0 (R Foundation for Statistical Computing, Vienna, 
Austria). The ML algorithm was executed using Python 
3.11.5 (Python Software Foundation, Wilmington, USA) 
and Project Jupyter 6.5.4 (Anaconda, Inc., Austin, USA). 
Statistical significance was determined for all two-sided P 
values < 0.05. 

RESULTS

Patient baseline characteristics categorized by 
phenogroups
FGIDs were confirmed in 300 of  the 508 patients. A 
flowchart of  the patients involved in this study was 

PSQI grade (%) 0.001

  Mild 110 (50.5) 30 (51.7) 39 (51.3) 28 (44.4) 13 (61.9) 

  Moderate 23 (10.6) 14 (24.1) 5 (6.6) 4 (6.4) 0 (0.0) 

  Severe 4 (1.8) 3 (5.2) 0 (0.0) 1 (1.6) 0 (0.0) 

Positive LHMBT (%) 183 (61.0) 21 (35.6) 91 (65.5) 33 (51.6) 38 (100.0) <0.001

Positive HBT (%) 183 (61.0) 21 (35.6) 91 (65.5) 33 (51.6) 38 (100.0) <0.001

Positive MBT (%) 39 (13.0) 1 (1.7) 0 (0.0) 0 (0.0) 38 (100.0) <0.001

#Data are presented as median (IQR) for continuous variables and number (frequency, %) for categorical variables. FGIDs: functional 
gastrointestinal disorders, IQR: interquartile ranges, BMI: Body Mass Index, PPI: proton pump inhibitor, COVID-19: coronavirus disease 2019, 
BSF: Bristol stool form, IBS: irritable bowel syndrome, IBS-C: IBS with predominant constipation, IBS-D: IBS with predominant diarrhea, 
IBS-M: IBS with mixed bowel habits, IBS-U: unclassified IBS, FD: functional dyspepsia, EPS: epigastric pain syndrome, PDS: postprandial 
distress syndrome, U-FBD: unspecified functional bowel disorders, FC: functional constipation, HAMA: Hamilton Anxiety Scale, HAMD: 
Hamilton Depression Scale, PSQI: Pittsburgh sleep quality index, LHMBT: lactulose hydrogen methane breath tests, HBT: hydrogen methane 
breath tests, MBT: methane breath tests. 

(Continued)

Table 2: Gas results for patients with functional gastrointestinal disorders according to clusters during lactulose breath testing

Variablesa Cluster 1 Cluster 2 Cluster 3 Cluster 4 P valueb

H2-peak, PPM 26.0 (16.0, 50.0) 41.0 (24.0, 60.0) 35.5 (20.5, 54.0) 89.5 (77.0, 107.0) < 0.001***

H2-time to peak, min 90.0 (45.0, 90.0) 90.0 (75.0, 90.0) 90.0 (45.0, 90.0) 90.0 (75.0, 90.0) 0.405

H2-AUC 21.4 (15.4, 39.4) 30.8 (17.0, 43.4) 26.8 (18.2, 39.0) 63.6 (51.8, 78.8) < 0.001***

CH4-peak, PPM 1.0 (1.0, 3.0) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 19.0 (14.0, 27.3) < 0.001***

CH4-time-to-peak, min 0.0 (0.0, 45.0) 0.0 (0.0, 30.0) 0.0 (0.0, 0.0) 90.0 (75.0, 90.0) < 0.001*** 

CH4-AUC 1.5 (1.5, 2.8) 1.5 (1.5, 1.8) 1.5 (1.5, 1.8) 9.5 (5.6, 15.1) < 0.001*** 

H2S-peak, PPB 87.0 (58.0, 135.0) 94.0 (56.0, 121.0) 65.5 (34.3, 114.0) 148.0 (120.3, 177.3) < 0.001*** 

H2S-time-to-peak, min 90.0 (60.0, 90.0) 90.0 (60.0, 90.0) 75.0 (33.3, 90.0) 90.0 (75.0, 90.0) 0.021*

H2S-AUC 90.5 (54.6, 138.6) 94.0 (57.5, 127.4) 64.5 (36.5, 105.8) 128.2 (79.7, 165.2) < 0.001***

aData are presented as median (IQR) for continuous variables. bStatistical significance after Bonferroni adjustment for multiple comparisons. 
*P < 0.05, ***P < 0.001. H2: hydrogen, PPM: parts per million, AUC: area under the curve, CH4: methane, H2S: hydrogen sulfide, PPB: parts 
per billion, IQR: interquartile ranges. 
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shown in Figure 1. Using the Rome IV criteria, functional 
dyspepsia (FD) was the most common FGID (45.0%), 
followed by irritable bowel syndrome (IBS; 42.7%, n = 128; 
Table 1, Supplementary Figure 3 and 4A). Overlapping of  
FGIDs were seen in 115 (38.3%) patients (Table 1). 

Excessive gas production was observed in 183 patients 
(61.0%, Table 1), with IBS representing the largest 
proportion (42.6%, n = 78), followed by FD (39.9%, n = 
73; Supplementary Table 3 and Supplementary Figure 4B). 

The K-means algorithm was used to integrate clinical 
symptoms and breath gas characteristics for phenogrouping. 
The most statistically significant clustering solution divided 
the entire patient population into four clusters using the 
elbow method based on a majority vote. 

Cluster 1: Lower abdominal discomfort with the 
highest proportion of psychological burden
The cluster comprised 19.7% (n = 59) of  the total participants 
and was characterized by higher-than-average scores for 
psychiatric scales (Table 1, all P < 0.05). Those patients 
presented more severe complaints of  lower abdominal 
discomfort (P < 0.001) compared with the other three clusters, 
and many of  them overlapped with other GI symptoms. The 
cluster had a higher proportion of  extraintestinal symptoms 
such as oral ulcers. This cluster had the lowest proportion of  
excessive gas production (P < 0.001). 

Cluster 2: Diarrhea predominance with a high 
prevalence of excessive gas production
This cluster consisted of  46.3% (n = 139) of  the cohort 
(Table 1, Figure 2). The duration of  this cluster was longer 
(P = 0.007). Most reported type 6/7 in the Bristol stool 
form (BSF). Many patients have reported experiencing 
abdominal pain and symptoms associated with gas 
production, such as borborygmus and increased flatus. 

This cluster had an above-average proportion of  excessive 
gas production. 

Cluster 3: Upper abdominal discomfort with a 
high prevalence of excessive gas production
This cluster comprised 21.3% (n = 64) of  the total cohort 
(Table 1, Figure 2). The patients in this cluster were 
significantly younger, had a lower body mass index (BMI), 
and had a relatively short disease duration (all P < 0.05). 
This cluster was distinguished by a higher percentage of  
individuals experiencing upper abdominal discomfort 
(Supplementary Figure 5). This cluster had a relatively high 
proportion of  excessive gas production, and most met the 
diagnosis of  FD. 

Cluster 4: Diarrhea predominance combined with 
postprandial symptoms presenting the highest 
prevalence of excessive gas production
This cluster comprised 12.7% (n = 38) of  the cohort. 
Many of  these patients had a history of  allergic diseases. 
Similar to Cluster 2, patients in this cluster presented with 
loose stools and moderate lower GI symptoms. Many of  
them had postprandial symptoms. The cluster had the 
highest proportion of  excessive gas production (100%, P 
< 0.001). The lowest scores were noted for the anxiety and 
depression scales (P = 0.001). 

Gas time profiles after lactulose ingestion
The gas time profiles of  the different clusters were shown 

Figure 1: Flow diagram of patient cohort. FGIDs: functional gastrointestinal 
disorders. 

Figure 2: Description of clinical characteristics among clusters using a single 
spider plot superimposing the signature of each cluster. The values depicted 
were normalized to the entire population. Green, yellow, red, and deep purple 
indicate Clusters 1, 2, 3, and 4, respectively. MBT: methane breath tests, HBT: 
hydrogen methane breath tests, LHMBT: lactulose hydrogen methane breath 
tests, PSQI: Pittsburgh sleep quality index, HAMD: Hamilton Depression Scale, 
HAMA: Hamilton Anxiety Scale, BSF: Bristol stool form, PPI: proton pump 
inhibitor, BMI: body mass index. 
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in Figure 3. Temporal trends and variations in breath 
gas following lactulose ingestion in different clusters of  
patients with FGIDs were analyzed using a generalized 
estimation equation (Supplementary Table 4 and 5). The 
levels of  exhaled H2, CH4, and H2S showed significant 
variations following ingestion of  lactulose (all P < 0.001, 
Supplementary Table 4). 

The increasing trends of  exhaled H2 concentrations were 
similar among the four clusters (Figure 3A). However, 

significant differences were observed in both the H2 peak 
and H2 AUC among the four clusters (all P < 0.001, Table 
2). Compared to Cluster 1 and Cluster 3, Cluster 2 and 
Cluster 4 had higher H2 peaks and AUCs, especially in 
Cluster 4 (all P < 0.001, Table 2). Further analysis using 
GEEs showed that H2 concentrations were significantly 
elevated at multiple time points in Cluster 4 (all P < 0.001, 
Supplementary Table 5). 

The temporal trends of  exhaled CH4 concentration were 

Figure 3: Gas time profiles in patients with FGIDs (n = 300). (A) Breath hydrogen concentration-time profiles grouped by clusters following lactulose ingestion. 
(B) Breath methane concentration-time profiles grouped by clusters following lactulose ingestion. (C) Breath hydrogen sulfide concentration-time profiles grouped 
by clusters following lactulose ingestion. (D) Gas time profiles in Cluster 1. (E) Gas time profiles in Cluster 2. (F) Gas time profiles in different Cluster 3. (G) Gas 
time profiles in Cluster 4. Data were mean ± SD. The differences of gas production between these clusters were examined by GEEs with time, group (Cluster 
1, Cluster 2, Cluster 3 and Cluster 4), and group-by-time interaction as the covariates. Pairwise comparisons were performed with Bonferroni corrections. 
**Cluster 1 vs. Cluster 4, P < 0.01; ***Cluster 1 vs. Cluster 4, P < 0.001; ^Cluster 2 vs. Cluster 4, P < 0.05; ^^Cluster 2 vs. Cluster 4, P < 0.01; ^^^Cluster 2 vs. 
Cluster 4, P < 0.001; #Cluster 3 vs. Cluster 4, P < 0.05; ###Cluster 3 vs. Cluster 4, P < 0.001. FGIDs: functional gastrointestinal disorders, ppm: parts per million, 
ppb: parts per billion, H2: hydrogen, CH4: methane, H2S: hydrogen sulfide, SD: standard deviation. 
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relatively flat among Cluster 1, 2, and 3, whereas CH4 
concentration showed a significant elevation at 75–90-min 
time points in Cluster 4 (P < 0.001, Figure 3B, Table2). Similar 
results were obtained using GEEs (Supplementary Table 5). 

Re-increasing trends in H2S were observed in all four 
clusters after a short period of  decrease (Figure 3C). The 
change in H2S concentration over time was distinct among 
the four clusters. Both multiple comparisons among clusters 
and the results of  GEEs found that the H2S concentration 
was significantly higher in Cluster 4 vs. the other clusters 
at multiple time points (P < 0.05, Supplementary Table 
5). Notably, the total concentration of  H2S was not high 

in Cluster 3, but H2S peaked earlier (P = 0.021, Table 2). 

A supervised machine learning approach to 
predict excessive gas production
The FGIDs cohort was split into two sets: training with 300 
patients and internal validation using bootstrap method. In 
the training dataset, 183 patients (61%) were identified as 
having excessive gas production, as defined by a positive 
LHMBT. Detailed clinical characteristics were provided in 
Supplementary Table 3. 

Features selection
Based on literature reviews, expert opinions, and univariate 

Figure 4: Performance evaluation of ML models for predicting excessive gas production in FGIDs. (A) ROC curves of different models adopted for predicting 
excessive gas production in the FGIDs cohort training dataset. (B) ROC curves of different models adopted for predicting excessive gas production in the FGIDs 
cohort internal validation dataset. (C) Calibration plot of different models for predicting excessive gas production in patients with FGIDs. The model-predicted 
probability of excessive gas production was plotted on the x-axis and the actual proportion of excessive gas production was plotted on the y-axis. An ideal 
calibration plot is indicated by a 45-diagonal line. (D) Decision curve analysis of the model. The x-axis indicates the threshold probability of the excessive gas 
production. The threshold probability is the level of certainty above which a patient or physician would choose to intervene. The y-axis indicates the net benefit, 
which is calculated as true positive rate − (false positive rate × weighting factor). ML: machine learning, FGIDs: functional gastrointestinal disorders, ROC: 
receiver operating characteristic curve, LR: logistic regression, LDA: linear discriminant analysis, KNN: k-nearest neighbor, NB: naive Bayes, SVM: support 
vector machine, RF: Random Forest, AUC: area under the curve, CI: confidence interval. 
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comparisons between positive and negative LHMBT 
results in the training dataset, 36 features related to 
excessive gas production were identified. After adjusting for 
multicollinearity between variables, LASSO regression was 
utilized to pinpoint seven features for model construction: 
sex, BMI grade, drinking history, early satiety, fullness 
after meals, borborygmus, and abdominal distension. The 
predictors were utilized in the following modeling procedures 
(Supplementary Figure 6 and Supplementary Table 6). 

Performance of the ML models in predicting 
excessive gas production
We conducted an analysis of  the predictive performance of  
various ML models, as illustrated in Figure 4. The models 
exhibited varied capabilities for predicting excessive gas 
production, as defined by the positive LHMBT (Figure 
4A). Among the six classification algorithms, KNN 
demonstrated superior performance, achieving an AUC 
of  0.85 for the cohort, demonstrating good discrimination 
ability (Figure 4A). The ML models exhibited robust 
performance in discriminating excessive gas production 
within the internal validation cohort, as evidenced by an 
AUC ranging from 0.71 to 0.74 (Figure 4B). 

Furthermore, the calibration plots verified the agreement 
between the predicted excessive gas production from 
the ML models and actual observations (Figure 4C). 
Additionally, DCA revealed that by setting a probability 
threshold for excessive gas production occurrence within 
the range of  38.1% and 79.9%, utilizing the model yielded 
significantly superior net benefits compared to both 
strategies of  “treating none” and “treating all” (Figure 4D). 
These findings highlighted substantial clinical applicability 
of  our prediction model. 

Interpreting models using the SHAP approach
We conducted a comprehensive investigation of  the 
fundamental workings of  our ML model using the SHAP 
method (Figure 5). The SHAP summary plot revealed 
that female individuals with a history of  drinking, low 
BMI, moderate abdominal distention and postprandial 
symptoms, and exaggerated bowel sounds were more likely 
to be identified as having excessive gas production. 

Finally, we successfully developed a user-friendly and 
easily accessible web-based nomogram for predicting 
excessive gas production (https://jxl-xs.shinyapps.io/
DynNomapp/). 

DISCUSSION

In this study, we demonstrated that the application of  ML 
enabled novel integration of  clinical parameters and gas 
production features to phenotype patients with FGIDs. 
These findings offer novel insights into FGID symptom 
experience that goes beyond the classification based on 
the Rome criteria. 

We divided the entire patient population into four clusters 
using an unsupervised ML method. Cluster 2, 3, and 4 
showed enrichments for abdominal distention and diarrhea, 
which were accompanied by a significant prevalence of  
small intestinal bacterial dysbiosis. Symptoms may be 
relieved by microbiota-targeted therapy, such as rifaximin, 
aimed at improving the imbalance in small intestinal 
flora.[18] Additionally, reducing the intake of  fermented 
carbohydrates through a low fermentable oligo-, di-, 
mono-saccharides and polyols (FODMAP) diet may also 
provide relief  from abdominal distention.[18] Cluster 1 was 
characterized by moderate lower abdominal discomfort 

Figure 5: SHAP summary plot for the predictors contributing to the ML model prediction of excessive gas production. The organization of variables in the 
plot showcased their significance, with color coding showing the size and direction of impacts. A higher likelihood of having excessive gas production was 
represented by SHAP values exhibiting positive magnitudes. SHAP: SHapley Additive explanation, ML: machine learning. 
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with the most psychological complaints and the lowest 
proportion of  excessive gas production, which may benefit 
from targeted interventions with neuromodulators or 
psychotherapy. We further used a generalized estimation 
equation to analyze the gas concentration trends over 
time and variations between clusters. Compared to the 
other clusters, Cluster 4 showed higher H2 and CH4 
concentrations at multiple time points and had a longer 
duration of  excessive gas production. It is believed that 
the moment when gas levels peak aligns with when the 
main substance interacts with the majority of  fermenting 
microorganisms.[14] This strongly suggests that small 
intestinal microbial overloads in Cluster 4 may lead to 
higher gut permeability and mild inflammation, leading to 
symptoms like diarrhea and bloating. 

Furthermore, we investigated how breath H2S levels 
were altered in the different clusters. H2S is produced by 
both endogenous and exogenous pathways.[19] At low 
concentrations, endogenous basal H2S production has 
beneficial effects such as reducing oxidative stress-related 
tissue injury.[20] Exogenous H2S is usually produced by gut 
microbes,[19] which may drive the production of  H2S to high 
concentrations and exert a pro-inflammatory role.[21,22] In our 
study, we observed that H2S levels were markedly elevated in 
Cluster 4, which was characterized by diarrhea and postprandial 
GI symptoms, suggesting that H2S could be a biomarker for 
small intestinal dysbiosis in IBS.[23,24] Interestingly, we also 
observed that Cluster 3, which met the diagnosis of  FD based 
on traditional classifications, reached the H2S-peak earlier. In 
previous studies, H2S-generating enzymes expressed in the 
enteric nervous system produced endogenous H2S involved 
in gastric accommodation and induced a stimulatory effect on 
duodenal motility in animal models.[25,26] Excessive exogenous 
H2S from sulfate-reducing bacteria could play an inhibitory 
role in regulating gastric and duodenal motility. 

Because breath gas production was significantly associated 
with FGID symptoms and different clusters, we established 
a specific model to accurately predict excessive gas 
production. Sex, BMI grade, drinking history, early 
satiety, fullness after meals, borborygmus, and abdominal 
distension were identified as predictors in the models. The 
identified symptoms were good predictors of  excessive 
gas production, aligning with the fact that moderate 
GI dysfunction with gas-related symptoms such as 
borborygmus is a cardinal symptom of  small intestinal 
dysbiosis. Sex was identified as an influential factor in 
determining model output and is potentially associated 
with variations in estrogen levels that affect gastric acid 
secretion and motility in animals.[27] BMI was also an 
influential factor. This is justifiable because dysbiosis in 
the small intestine leads to poor carbohydrate absorption 
owing to microbial competition with the host for essential 

nutrients.[28] The consumption of  alcohol in moderation 
significantly increases the likelihood of  developing small 
intestinal dysbiosis through direct toxic damage to the 
intestinal epithelium.[29] 

Although ML has garnered significant interest for clustering 
and accurate prediction, its “black-box” nature often 
yields outcomes that are difficult to interpret. Therefore, 
we chose unsupervised ML to offer a more significant 
explanation and differentiation of  patient categories 
associated with small intestinal dysbiosis. Subsequently, we 
developed a predictive model for excessive gas production 
using supervised ML. We employed the SHAP method to 
elucidate the decision-making process of  our prediction 
model, enabling clinicians to gain comprehensive insights 
into the roles of  different variables and establish informed 
decisions for their patients. Finally, a feasible nomogram for 
predicting excessive gas production was developed, which 
can be externally validated. 

Our study had some limitations. Long-term follow-up of  
the effectiveness of  personalized treatment in different 
clusters of  FGIDs patients is needed to further understand 
and optimize management strategies for these conditions. 
Lastly, the prediction model should be validated externally 
to test its generalizability. 

CONCLUSION

We demonstrated that the application of  unsupervised ML 
can yield comprehensive, comprehensible, and medically 
significant categorization of  diverse groups of  patients with 
FGIDs. All four clusters revealed considerable differences 
in clinical features and gas time profiles, suggesting that 
evaluation of  gas production could be valuable in guiding 
therapeutic decisions. Given the strong association between 
gas production and FGID symptoms, we developed and 
optimized a predictive model that exhibited favorable 
performance for excessive gas production. Our new 
clustering and predictive models using ML hold promise 
for effectively exploring subsets of  FGIDs associated with 
gas production, thus facilitating clinical decision-making 
and providing improved treatment guidance. 
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