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Abstract: Tungsten-copper (W–Cu) composites are widely used as electrical contact materials, resis-
tance welding, electrical discharge machining (EDM), and plasma electrode materials due to their
excellent arc erosion resistance, fusion welding resistance, high strength, and superior hardness.
However, the traditional preparation methods pay little attention to the compactness and microstruc-
tural uniformity of W–Cu composites. Herein, W–Cu composite coatings are prepared by pulse
electroplating using nano-W powder as raw material and the influence of forward-reverse duty cycle
of pulse current on the structure and mechanical properties is systematically investigated. Moreover,
the densification mechanism of the W–Cu composite coating is analyzed from the viewpoints of
forward-pulse plating and reverse-pulse plating. At the current density (J) of 2 A/dm2, frequency (f )
of 1500 Hz, forward duty cycle (df) of 40% and reverse duty cycle (dr) of 10%, the W–Cu composite
coating rendered a uniform microstructure and compact structure, resulting in a hardness of 127 HV
and electrical conductivity of 53.7 MS/m.

Keywords: W–Cu composite; electroplating; forward-reverse pulse current; duty cycle; microstruc-
tural uniformity; mechanical properties

1. Introduction

Tungsten-copper (W–Cu) composite is a pseudo-alloy, which is highly promising for a
wide array of applications, such as electrical contact materials, resistance welding, electrical
discharge machining (EDM), plasma electrode materials, electrothermal alloys, etc. Due to
its high melting point and hardness of W and high electrical and thermal conductivity of
Cu, W–Cu composites render excellent for erosion resistance, fusion welding resistance,
high strength, and high hardness [1–3].

However, W–Cu composites prepared by liquid-phase sintering or infiltration exhibit
inferior compositional uniformity and an undesirable contradiction between density and
grain size due to the significant difference in melting points of W and Cu [4,5]. It has been
reported that the reduction in the size of W particles or the addition of a small amount of
nano-W powder can improve the hardness and conductivity of W–Cu composites [6–8].
However, with the decrease of W grain size, it is difficult to balance densification and
microstructural uniformity. This results in inferior electrical and thermal conductivities. In
addition, the stringent requirements of the sintering process during the conventional prepa-
ration methods limit the large-scale applications. Therefore, electroplating is introduced to
prepare Cu-coated W powder, which is mixed sintering to obtain high-performance W–Cu
alloys. However, the direct current (DC) electroplating can only result in a mixture of Cu
and W, and the W–Cu composites cannot be directly prepared [1,9–11].

The utilization of pulsed current to electrodeposit metals and alloys can better control
the properties of electrodeposited layers. Furthermore, the performance of resulting metals
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and alloys can be improved by altering the microstructure, which is achieved by adjusting
the pulse parameters [12–14]. For instance, Thiemig et al. [15] have conducted extensive
research on pulse electroplating of metals and alloys and demonstrated that the selection of
pulse parameters renders a great influence on the composition of alloy coating. It has been
reported that the employment of pulse current can significantly reduce the internal stress of
electric casting compared with the conventional DC at the same average current density.
Recently, Li et al. [16] have studied the effect of pulse electroplating on the surface roughness
of electrodeposited nickel films. Marro et al. [17] also found the influence of pulse plating
process parameters on the morphology and stress state of Cu film. The results showed
when compared with DC electroplating, the electrodeposition of Cu by pulse electroplating
could lead to minimal porosity and superior strength. However, there are few reports on
the preparation of W–Cu composites by pulse plating, and the effects of pulse process
parameters (pulse frequency, current density, duty cycle) on the structure and properties
of W–Cu composites have not been studied [12,18,19]. Herein, we aim to directly prepare
W–Cu composites by a one-step electroplating method using nano-W powder.

In previous research, using the single positive pulse power supply to adjust the
pulse process parameters could not obtain a compact composite coating. By using double
positive and negative pulse power supplies, increasing the reverse current plating, and
adjusting the duty cycle of the positive and negative currents, a dense composite coating
was obtained. It shows that the reverse current and the duty cycle of the forward-reverse
current play an important role in the structure of the composite coating. Therefore, the
influence of the duty cycle of the forward-reverse currents on the microstructure and
properties of the W–Cu composite coating is discussed in detail in this article. Moreover,
the densification mechanism is also elaborated from the viewpoints of forward-pulse
plating and reverse-pulse plating.

2. Materials and Methods

In this study, the self-made W powder was used as a raw material prepared by
carbon-assisted hydrogen reduction method [20]. The purity of W powder is 99.98%. The
morphology (SEM, FEI, Hillsboro, OR, USA) of nano-W powder is shown in Figure 1,
consisting of regular spherical particles with uniform size distribution and an average
particle size of 200 nm.
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Figure 1. Scanning electron microscope (SEM) image of the nano-W powder. Figure 1. Scanning electron microscope (SEM) image of the nano-W powder.

The experimental device used to prepare W–Cu composites is shown in Figure 2. The
pulse rectifier (Yueyang, Ningbo, Zhejiang Province, China, Electric appliance, 60V/20A)
was used as a pulse power supply, and Cu plates (~99.99%, dimension 40 mm × 30 mm
× 0.5 mm, Jiangxi Copper Industry Group Co., Ltd., Nanchang, Jiangxi province, China)
were used as the cathode and anode. A temperature-controlled magnetic stirrer (Hangzhou
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Ruijia Precision Scientific Instrument Co., Ltd., Hangzhou, Zhejiang Province, China) was
used to maintain the temperature of the plating solution and to enhance the dispersion
of W particles by stirring the plating solution. During pulse electroplating, when the
current is turned from on-to-off in the forward direction, the pulse duration is called
the forward pulse width (TfON). During this time, the possible reactions and standard
electrode potentials ϕΘ are as follows [21]: Cu2+ + 2e− = Cu, ϕΘ = 0.340 V; Cu2+ + e− = Cu+,
ϕΘ = 0.158 V; Cu+ + e− = Cu, ϕΘ = 0.522 V; 2H+ + 2e− = H2, ϕΘ = 0.000 V. The larger the
electrode potential is, the easier the electrons are to be reduced. Therefore, Cu2+ ions are
reduced to Cu on the cathode Cu plate. The “off” duration is denoted as TfOFF and the ratio
of TfON/(TfON + TfOFF) is called the forward duty cycle, which is denoted as df. When the
current is reversed, the “on” duration is called reverse pulse width, which is recorded as
TrON. During this time, the Cu cathode is anodized and the Cu becomes Cu2+ ions, which
are dissolved in the electroplating solution. The “off” duration is denoted as TrOFF and
the ratio of TrON/(TrON + TrOFF) is called the reverse duty cycle (dr). The ON-time of the
forward and reverse current is collectively called TON, and the OFF-time is collectively
called TOFF. Herein, the modulated pulse current was used for electroplating (Figure 3).
According to the requirements of the pulse power supply, the forward current density is
denoted as jf and the reverse current density is denoted as jr. They are collectively referred
to as current density (J) and the pulse current density (J) was the average current density.
The relationship between peak current density (JP) and average current density (J) and
duty cycle (d) can be given as follows [22,23]:

Jp = J/d = J(TON + TOFF)/TON (1)
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Figure 2. The schematic illustration of the pulse plating device. Figure 2. The schematic illustration of the pulse plating device.

The composition of the plating solution was CuSO4·5H2O (125 g/L), H2SO4 (200 g/L),
NaCl (60 mg/L), polyethylene glycol (PEG, 0.2 g/L), and sodium dodecyl sulfate (SDS,
0.1 g/L). All chemical reagents are analytical reagents, provided by Sinopharm Chemical
Reagent Company (Shanghai, China). Then, nano-W powder (10 g/L) was added to the
plating solution for composite electroplating. The electroplating process parameters are
shown in Table 1. The samples under different conditions were prepared by changing the
forward and reverse duty cycle of the pulse current. Before electroplating, Cu plates were
polished with a series of silicon carbide sandpaper (STARCKE MATADOR, Melle, Germany)
in the order of 800, 1000, 1200, 1500 and 2000 mesh to prevent contaminations. Subsequently,
H2SO4 (5 vol.%, Sinopharm Chemical Reagent Company, Shanghai, China) and HCl
(10 vol.%, Sinopharm Chemical Reagent Company, Shanghai, China) solutions were used
for activation. Finally, the Cu plate was cleaned using anhydrous ethanol (Sinopharm
Chemical Reagent Company, Shanghai, China). After pulse plating, the samples were
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gently washed with absolute ethanol (Sinopharm Chemical Reagent Company, Shanghai,
China) and dried in an oven at 60 ◦C.
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Figure 3. The schematic diagram of forward- and reverse-pulse currents to prepare tungsten-copper
(W–Cu) composite coatings.

Table 1. The parameters of the electroplating process.

Conditions Parameters

Current density (J) 2 A/dm2

Frequency (f ) 1500 Hz
Forward pulse duty cycle (df) 20–60%
Reverse pulse duty cycle (dr) 5–15%

Temperature 30 °C
Plating time 2 h

Scanning electron microscope (SEM, FEI-quanta200f, Hillsboro, OR, USA) was used
to observe the surface and cross-sectional morphologies. X-ray diffraction (XRD, brukerd8
X-ray diffractometer focusing (Billerica, MA, USA, Cu Kα radiations, 40 kV and 40 mA)
was used for structural analysis. The high-resolution transmission electron microscopy
(HRTEM, FEI Talos f200x, Hillsboro, OR, USA) was used to observe the electroplating layer.
The hardness was measured with a microhardness tester (HVS-1000, Shanghai Precision
Instrument Co., Ltd., Shanghai, China). The electrical conductivity was measured using a
Sigma 2008a digital conductivity meter (Xiamen, Fujian province, China). ThermoICAP-
6300 inductively coupled plasma spectrometer (ICP, Boston, MA, USA) was used for
compositional analysis.

3. Results and Discussion
3.1. Effect of Forward Duty Cycle on the Structure of W–Cu Composite Coatings

Figure 4 presents the effect of pulse current forward duty cycle on the surface mor-
phology of W–Cu composite coatings. At df = 20%, the composite surface was rough
with obvious large granular protrusion. However, when the df was increased to 40%, the
composite surface was found to be much flatter without obvious granular structure. As the
df is further increased to 60%, the composite surface became loose with a high concentration
of holes. As shown in Equation (1), when the pulse current is the same, the peak current
density of the cathode increases with the decrease of the duty cycle. The excessive peak
current density results in cathode over-potential and the Cu2+ ions near the cathode cannot
be replenished in time. These results lead to severe concentration polarization and the
formation of coarse grains. At the same time, if the cathode peak current is too high,
the higher degree of side reactions, such as hydrogen evolution, generates H2 bubbles
and forms holes because the H2 bubbles cannot be discharged in time, causing an uneven
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structure [23]. Therefore, we have observed a rough surface and coarse particles at df = 20%.
However, when the forward duty cycle of pulse current increases to 60%, the peak current
density obviously decreases and significantly slows down the formation speed of Cu seed,
resulting in inferior plating efficiency [19] and, in turn, a loose structure.
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In order to observe the internal structure of W–Cu composite coatings, composite
coatings were cut perpendicular to the surface. Then the cross section was polished with
sandpaper to test the cross-sectional morphology of samples. samples were also prepared
using an ion thinner for TEM observation. Figure 5 presents the cross-sectional SEM images
of W–Cu composite coatings with different forward duty cycles. All observed in the picture
are composite coatings obtained by electroplating, and there is no substrate. The thickness
of the composite coating is about 700 µm. It can be readily observed that the forward
duty cycle of pulse current renders a significant influence on the microstructure of W–Cu
composites. At df = 40%, the composite coating is dense and uniform than the other two
conditions. A loose structure is obtained at df = 60%, which is consistent with Figure 4c.
The EDS analysis of W–Cu composite (df = 20%) shows that the uniformly dispersed white
particles belong to the W dispersed in the Cu matrix (Figure 6). W particles distributed
in the Cu matrix can be observed in Figure 5a,b, and the distribution of W particles in
Figure 5b is relatively uniform and large in number. It can be also observed that there are
more W particles dispersed on the surface of the composite in Figure 4b indicating that
the W–Cu composite prepared at df = 40% has a higher W content. However, W particles
were not observed on the surface and cross section of the composite prepared at df = 60%
(Figures 4c and 5c). This is due to the loose structure of the composite. W particles fall
off from the Cu surface during the cleaning and drying process. Hence, the df of 40% was
selected for subsequent experiments because it renders a compact structure.
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3.2. Effect of Reverse Duty Cycle on the Structure of W–Cu Composite Coatings

Figure 7 presents the effect of pulse current reverse duty cycle on the surface morphol-
ogy of W–Cu composite coatings. The surface of the W–Cu composite became smooth and
the particles were refined with the increase of the reverse duty cycle. The results show
that the reverse pulse current is beneficial to the anodization dissolution of the cathode
and caused the Cu grains smaller [19]. When reverse pulse current is applied, the coarse-
grained Cu obtained by forward-pulse current plating loses electrons, turns into Cu2+ ions,
and dissolves into the bath again. The concentration of Cu2+ ions is rapidly increased on
the cathode surface, which is conducive to the use of high pulse current density in the
subsequent pulse cycle to obtain a compact coating with fine particles.
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Figure 7. Surface SEM images of W–Cu composite coatings under different reverse duty cycles: (a) dr = 5%, (b) dr = 10%,
and (c) dr = 15%, (J = 2 A/dm2, f = 1500 Hz and df = 40%).

Figure 8 presents the cross-sectional SEM images of W–Cu composite coatings with
different reverse duty cycles. From the analysis in Figure 5, it can be derived that when
dr = 5%, the thickness of the composite coating is about 700 µm. However, it can be
estimated from Figure 8b,c that the thickness of the composite coating under different
reverse duty cycles (dr = 10% and dr = 15%) is 190 and 170 µm. In order to observe and
compare at the same multiple, the composite coating that is shown in Figure 8a has no
substrate. The thickness of the composite coating decreases with the increase of the reverse
duty cycle. This is due to the increase of the reverse duty cycle and the increase of the
reverse electroplating time, which leads to an increase in the dissolution of the composite
coating and ultimately to a decrease in the thickness of the composite coating. At dr = 5%
(Figure 8a), the internal structure of W–Cu composite contains a large number of holes and
the W particles are embedded in the coating. However, the distribution of W particles is
not uniform, showing severe agglomeration. At dr = 10% (Figure 8b), W–Cu composites are
dense and the concentration of uniformly distributed W particles is significantly increased.
At dr = 15% (Figure 8c), the microstructure of W–Cu composite is more refine and uniform;
however, the relative concentration of W particles is compromised. These results could be
ascribed to the anodized peeling by reverse pulse current, desorbing the already adsorbed W
particles from the coating. Figure 9 shows the TEM and EDS maps of W–Cu composite with
dr = 10%, confirming that W nanoparticles are successfully embedded in the Cu matrix.
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Figure 9. TEM image and EDS maps of W–Cu composite (J = 2 A/dm2, f = 1500 Hz, df = 40% and dr = 10%).

Figure 10a is the TEM image of W–Cu Composite under a low-power microscope.
It can be observed that W particles exist between Cu grains, and Cu grains are closely
bonded. However, there are voids at the boundary between W and Cu, which will affect
the properties of W–Cu composites. Figure 10b shows the electron diffraction pattern of
area B in Figure 10a, and Figure 10c shows the electron diffraction pattern of area C, which
further proves the existence and distribution of W and Cu phases in the composite.
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Figure 10. TEM images of W–Cu composite (J = 2 A/dm2, f = 1500 Hz, df = 40% and dr = 10%): (a) TEM image of W−Cu
composite; (b) electron diffraction pattern of position B in Figure 10a; and (c) electron diffraction pattern of Position C in
Figure 10a.

Figure 11 shows the XRD patterns of W–Cu composites with different reverse duty
cycles. It can be seen that the diffraction peaks are consistent with the main peaks of Cu,
corresponding to (111), (200), (220) and (311) planes of Cu. A small peak is observed at
2θ ≈ 40◦, which corresponds to (110) planes of W. Apart from that, the other diffraction
peaks of W were not obvious in XRD patterns. The inset in Figure 11 shows that the peak
intensity of W (110) planes in the W–Cu composite (dr = 10%) is higher than the other two
conditions, corresponding to relatively higher W content. The results of ICP show that the
W content in W–Cu composites prepared under the conditions of dr = 5%, dr = 10% and
dr = 15% is 1.16 wt.%, 8.33 wt.% and 2.97 wt.%, respectively.
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3.3. Densification Mechanism of Pulse Electroplated W–Cu Composites

The aforementioned results confirm that highly dense W–Cu composite coatings can
be prepared by adjusting the forward and reverse duty cycles of the pulse current. The
whole electroplating process is schematically illustrated in Figure 12.
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Figure 12. The densification mechanism of W–Cu composite coatings prepared by pulse electroplating.

The complete densification of W–Cu composite coatings is achieved in four steps. First,
when the pulse power is turned ON, Cu2+ ions move to the cathode, and W nanoparticles
are driven to the cathode due to the adsorption of Cu2+ ions. Due to the large specific
surface area and surface energy of W nanoparticles, Cu2+ ions preferentially reduce on
the surface of W particles to form Cu nuclei [17]. Second, the Cu nuclei continuously
grow to form a Cu coating during the forward pulse. However, with the continuous
growth of Cu nuclei, coarse particles are easy to form and Cu2+ near the cathode cannot be
replenished in time, resulting in concentration polarization and formatting a rough and
uneven surface [18,22]. Third, when the reverse pulse current is switched on, the cathodic
Cu coating is dissolved due to anodization and Cu2+ ions are again dissolved in the plating
bath [15]. At the same time, the desorption of W particles results in refined and uniform Cu
grain size. Fourth, a uniform and dense W–Cu composite coating is formed by alternating
the forward and reverse pulse electroplating at high frequency.

3.4. Microhardness and Electrical Conductivity of W–Cu Composites

The Vickers hardness and conductivity of W–Cu composites, prepared under J = 2 A/dm2,
f = 1500 Hz, df = 40% and different reverse duty cycles dr = 5%, dr = 10% and dr = 15%, are
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shown in Table 2. The polished W–Cu composite coatings were placed on the hardness
tester, and the hardness of the samples was tested by using a pressure load of 200 g and
a holding pressure of 15 s. The hardness values of five different positions were measured,
and the average value was taken as the hardness of the W–Cu composite. The hardness
values under different reverse duty cycles, i.e., dr = 5%, dr = 10% and dr = 15%, are found to
be 90, 127 and 103 HV, respectively, which are higher than the hardness of the experimental
Cu cathode (85 HV). Hence, the hardness is improved by the incorporation of W particles
(300–650 HV) and increased with increasing W content. At dr = 5%, the hardness of W–Cu
composites is the lowest because of the porous structure. On the other hand, the electrical
conductivity increased with the increase of the reverse duty cycle. The conductivity values
of the composites prepared under different reverse duty cycles, i.e., dr = 5%, dr = 10%, and
dr = 15%, are found to be 48.0, 53.7 and 56.5 MS/m, respectively. As expected, the conductivity
of W–Cu composites is found to be lower than pure Cu (57.1 MS/m) due to the presence
of W (17.7 MS/m) and the existence of holes. The structural analysis of W–Cu composite
revealed that the microstructure of W–Cu composite is more uniform and compact at dr = 15%,
forming a continuous Cu structure and facilitating the electron transfer process. Therefore, the
conductivity of the W–Cu composite is highest at dr = 15%; however, the hardness decreased
to 103 HV. Hence, J = 2 A/dm2, f = 1500 Hz, df = 40% and dr = 10% are selected as optimal
processing parameters for pulse electroplating.

Table 2. The comparison of Vickers hardness and electrical conductivity of W–Cu composites under different reverse duty
cycles: dr = 5%, dr = 10%, and dr = 15%.

Properties Cu W
W–Cu Composite (J = 2 A/dm2, f = 1500 Hz, df = 40%)

dr = 5% dr = 10% dr = 15%

Vickers hardness (HV) 85 300–650 1 90 (SD 2 = 1.75) 127 (SD = 0.84) 103 (SD = 1.21)
Electrical conductivity (MS/m) 57.1 17.7 48.0 (SD = 2.05) 53.7 (SD = 0.75) 56.5 (SD = 0.85)

1 The hardness of tungsten is different due to the different crystal state and crystallization mode of tungsten. 2 SD is the standard deviation
of the value of five measurements.

4. Conclusions

By adjusting the forward and reverse duty cycles of the pulse current, W–Cu composite
coatings with uniform microstructure can be directly prepared by a one-step electroplating
method using nano-W powder as a raw material. At df = 40% and dr = 10%, W content in W–
Cu composite was found to be 8.3 wt.%, which increased the hardness to 127 HV without
compromising the electrical conductivity (53.7 MS/m). Although the higher electrical
conductivity of W–Cu composites can be maintained by decreasing the W content, the
hardness cannot be maintained. Hence, the optimal pulse plating parameters are found to
be J = 2 A/dm2, f = 1500 Hz, df = 40%, and dr = 10%. The densification mechanism of the W–
Cu composite coatings mainly relies on controlling the forward duty cycle, increasing the
peak current density, switching on the reverse pulse current, and reducing the concentration
polarization. Overall, the present study demonstrates that the electrical and mechanical
properties, which mainly depend on the microstructure and phase composition, can be
tuned by optimizing the pulse plating parameters. This lays a good foundation for the
application of such electrical contact materials widely used in electronics fields.
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