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Abstract

Inverse dynamics is a technique in which measured kinematics and, possibly, external

forces are used to calculate net joint torques in a rigid body linked segment model. However,

kinematics and forces are usually not consistent due to incorrect modelling assumptions

and measurement errors. This is commonly resolved by introducing ‘residual forces and tor-

ques’ which compensate for this problem, but do not exist in reality. In this study a con-

strained optimization algorithm is proposed that finds the kinematics that are mechanically

consistent with measured external forces and mimic the measured kinematics as closely as

possible. The algorithm was tested on datasets containing planar kinematics and ground

reaction forces obtained during human walking at three velocities (0.8 m/s, 1.25 and 1.8 m/

s). Before optimization, the residual force and torque were calculated for a typical example.

Both showed substantial values, indicating the necessity of developing a mechanically con-

sistent algorithm. The proposed optimization algorithm converged to a solution in which the

residual forces and torques were zero, without changing the ground reaction forces and with

only minor changes to the measured kinematics. When using a rigid body approach, our

algorithm ensures a consistent description of forces and kinematics, thereby improving the

validity of calculated net joint torque and power values.

Introduction

In the field of biomechanics, inverse dynamics analysis is commonly used to investigate

aspects of the mechanics, energetics and control of movement. An inverse dynamics analysis is

typically based on measurement of the kinematics of the body segments, often complemented

with measurement of selected external forces (e.g. the ground reaction force). Using these

data, the net joint torques and net joint reaction forces are calculated using Newton’s equations

of motion applied to a model containing a (chain of) rigid segments [1]. Classically, these
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equations are solved consecutively for each body segment, starting at a segment for which the

number of unknowns matches the number of equations. Although inverse dynamics is

straightforward, it is not without problems [2–4]. First, classical inverse dynamics assumes ide-

alized pin joints and rigidity of body segments, which in reality don’t occur. Second, measure-

ment errors in kinematic data caused by noise and skin artifacts lead to incorrect joint centre

locations, velocities and accelerations and thereby to errors in net joint torques. Third, the

anthropometric parameters for a particular subject (such as segment masses, mass center loca-

tions and segmental inertia) are typically estimated on the basis of a limited number of anthro-

pometric characteristics in combination with results of cadaver studies [5]. Their values will

deviate from the actual values, resulting in errors in net joint torques. In an attempt to mitigate

these problems, external forces are often accurately measured and used as an additional input

in the inverse dynamics analysis, thereby improving on its quality. However, using both mea-

sured kinematics and measured external forces in an inverse dynamics analysis introduces a

new problem, since they will typically be inconsistent due to the aforementioned problems.

This new problem is commonly formulated as follows [6]: the net joint torques obtained from

an inverse dynamics analysis starting at the unconstrained end of a chain of segments (e.g. the

hands of a free standing person) and ending at the feet are different from those obtained when

the analysis is started at the feet. In more formal terms the new problem is that the system of

equations of motion for a complete linked segment model is overdetermined. One way to

evade the inconsistency is to ignore information, i.e. to discard the equations of motion, about

the mechanics of the last segment. Another way is to use all equations, which results in a resid-

ual force and torque typically applied at the last segment by an unspecified actor in the envi-

ronment. In fact, both will result in the same values for the joint torques. The residual force

and torque compensate for the measurement errors in kinematics and incorrect model

assumptions, but do not exist in reality. Their values can actually be considered as an indica-

tion of the validity of the calculated joint forces and torques. Furthermore, the residual force

and torque do perform mechanical work that does not exist in reality and therefore may com-

promise energetic analyses.

In sum, in an inverse dynamics analysis, assuming a rigid body linked segment model as a

basis, kinematics are in general inconsistent with measured external forces, i.e. result in non-

zero residual forces and torques. The question then arises how the inconsistency can be

reduced or, even better, completely removed under the assumption of segment rigidity. This

can be accomplished in three ways: by adjusting i) the (time-invariant) anthropometric data,

ii) the kinematics or iii) the external force(s). Several studies have used (combinations of) these

ways in an attempt to reduce or remove the residual forces and torques. For example, Vaughan

[7] optimized body segment parameters to minimize residual forces and torques. A complete

removal of the residual forces and torques will in general not be possible since the number of

anthropometric variables is typically smaller than the number of time nodes in the analysis.

Delp et al [8] optimized model mass parameters and kinematics to reduce residual forces and

torques, but did not succeed in completely removing the residual forces and torques. De

Groote et al [9] adjusted the kinematic data by employing a Kalman smoother that used the

complete kinematic dataset. Even though this method improved the estimate of joint kinemat-

ics, it did not address the problem of the residual forces and torques. Chao and Rim [10], using

an optimal control approach, optimized joint torques to minimize the squared differences

between measured and calculated segment angles. However, ground reaction forces were not

investigated and hence this method did not remove the residual forces and torques. Thelen

and Anderson [11] calculated translational accelerations of the pelvis and low back angles

assuming that the ground reaction forces and all other generalized coordinates were well rep-

resented by measurements. Integration of the accelerations over time yielded the pelvis and
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low back kinematics with residuals removed. Boundary values for pelvis and low back were

subsequently optimized to minimize the difference between measured and calculated kinemat-

ics. However, it is highly unlikely to find the optimal kinematic profile by optimizing the kine-

matics of only two instead of all segments. Van Soest [12], Kuo [3] and van den Bogert and Su

[13] optimized joint torques using all segments for each time node separately such to find a

least squares solution to the overdetermined set of equations of motion, but this does not

remove the residual forces and torques. Cahouet et al [14] composed a set of equations of

motion for each time node and a centered finite difference scheme relating angular accelera-

tion and position. The resulting overdetermined set of equations was solved using a least

squares method. Their solution resulted, in the presence of measurements errors, in an incon-

sistency between position, force measurements and angular accelerations. Remy and Thelen

[15] adjusted measured ground reaction forces, ground reaction torques and segment angular

accelerations during walking, which yielded a consistent description of these quantities for

each separate time node. However, as stated, this algorithm required adjustment of the ground

reaction force and torque, which is in fact similar to applying residual forces and torques at the

feet instead of the trunk. These studies [3,12–15] combined, show that any attempt to improve

on inverse dynamics by optimizing for separate time nodes either leads to an inconsistent

mechanical description or to an undesired shift of the residual force and torque to a different

segment. Mazzà and Cappozzo [16] were one of the first to solve this problem by performing

an optimization over the whole time-series, while successfully removing the residual forces

and torques. They optimized segment angles, which were used in a top-down approach to

minimize the root mean square error between measured and calculated ground reaction force.

Among the input for their algorithm were segment angles at the start and end of the movement

which were constrained to be reproduced by their algorithm. However, they made no attempt

to ensure that the intermediate calculated and measured kinematics were similar. This was

improved upon by Riemer and Hsiao-Wecksler [17] who also optimized segment angles to

minimize the ground reaction force root mean square error. They introduced inequality con-

straints for the intermediate segment angles based on data from the literature to create a range

in which the optimized segment angles could be found. Riemer and Hsiao-Wecksler [18]

expanded the method of Riemer and Hsiao-Wecksler [17] by adding body segment parameters

to the variables to be optimized. It was shown, using an idealized dataset, that reconstruction

of net joint torques could benefit significantly from optimizing body segment parameter val-

ues. However, one problem remains in their approach. Assume n degrees of freedom for a

chain of n segments connected by pin joints representing the body, N time nodes and also

assume that the external forces are chosen such to perfectly fit the measured external forces. In

the planar case, this yields 2(n-1) joint force components, n-1 joint torques and n segment

angles summing up to 4n-3 variables to be optimized for each time node. Since there are three

equations of motion for each time node, yielding 3n equations, the complete system has 3�n�N
equations and (4�n-3)�N unknowns. If the number of degrees of freedom is three, such a sys-

tem is determined. Overdeterminacy occurs for values of n between zero and three, whereas

underdeterminacy always occurs for values of n larger than three. This means that in applica-

tions with more than three degrees of freedom, like the lifting example given by Riemer and

Hsiao-Wecksler [17], there are many optimal kinematic profiles, i.e. kinematic profiles yield-

ing a perfect fit of the calculated and measured ground reaction force. The method by Riemer

and Hsiao-Wecksler is not guaranteed to find the optimal kinematic profile that best fits the

measured kinematics. The under determinacy could therefore be used to find the unique solu-

tion that leads to an optimal fit between measured and optimized kinematics, while removing

the residuals completely.

Mechanically consistent inverse dynamics
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To conclude, no inverse dynamics method is currently available in which i) all residual

forces and torques are removed, ii) segment angles at all time nodes are optimized together,

and iii) the problem is defined such that it always produces a unique solution, i.e. it results in

minimal adaptation of the kinematics while the external forces are not accommodated. The

purpose of this study was to develop an algorithm that improves on inverse dynamics while

meeting these demands. To show the significance of the inconsistency between kinematics and

external forces, the magnitudes of the residual force and torque values of a classical inverse

dynamics analysis were obtained from a dataset concerning human gait. The resulting optimi-

zation algorithm was evaluated by applying it to the same dataset, comparing the results (kine-

matics and joint torques) to those obtained using a classical inverse dynamics analysis. In the

example application, the dataset consisted of the sagittal plane coordinates of markers attached

to body segments, sagittal plane ground reaction force data (including point of application)

and segment parameter values. After optimization of the dataset, the measured ground reac-

tion force and kinematics were fully consistent.

Results

Residual force and torque for the classical inverse dynamical analysis

We performed a classical inverse dynamics analysis on one complete stride of a subject walk-

ing at 1.8 m/s, which yielded the residual forces on the trunk (see Fig 1). This trial will be

referred to as the typical example. The onset of the stride was defined by toe off of the right leg.

Fig 1. Residual force resulting from a classical inverse dynamics analysis on the typical example. Zero percent of

the stride coincides with right toe off for all time series. Force was expressed in percentage of body weight. The analysis

shows considerable residual forces to enforce consistency between kinematics and measured ground reaction forces.

Zero crossings indicate the time nodes where measured ground reaction forces and kinematics were ‘accidentally’

consistent. Hcr: heel contact right foot, Tol: toe off left foot, Hcl: heel contact left foot. Right toe off is defined as the

onset of the stride.

https://doi.org/10.1371/journal.pone.0204575.g001
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Positive x- and y-forces were defined as in the walking direction (forward) and upward,

respectively. From Fig 1 it can be observed that in particular the horizontal component of the

residual force at the trunk was substantial. Note again that these forces do not exist in reality.

The values of the residual force were directly related to the inconsistency between measured

ground reaction forces and acceleration of the body’s center of mass and hence were not

affected by its presumed point of application. In contrast, the value of the residual torque was

affected by the (arbitrarily chosen) point of application of the residual force. To illustrate this,

two classical inverse dynamics analyses were performed. In the first, the residual force was

applied at the shoulder, while in the second it was applied at the trunk’s center of mass (Fig 2).

Marked differences for the residual torque value were observed between these two analyses.

This indicates that the value of the residual torque by itself is meaningless. An interaction

between the residual force and torque was observed. The relatively large positive horizontal

residual force at the shoulder, for example at t = 0 in Fig 1, yielded a negative (flexion) torque

at the trunk. This was compensated for by an opposite (positive) residual torque applied at the

trunk (Fig 2), which largely explained the in phase behavior of the horizontal residual force

component and the residual torque.

Optimization results

A rigid body linked segment model was defined to describe the kinematics, forces and torques

during a set of walking trials. The kinematic profiles were found by minimization of the sum

of all the Euclidean distances between measured and model skin marker positions. Removal of

the residual forces and torques was ensured by adding the equations of motion of all segments

Fig 2. Residual torque on the trunk of the typical example. To show the effect on the residual torque, the residual

force (Fres) was assumed to either apply at the shoulder or at the center of mass of the trunk. Clockwise torques were

defined positive. Hcr: heel contact right foot, Tol: toe off left foot, Hcl: heel contact left foot.

https://doi.org/10.1371/journal.pone.0204575.g002

Mechanically consistent inverse dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0204575 September 28, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0204575.g002
https://doi.org/10.1371/journal.pone.0204575


with no residuals as equality constraints. The resulting single core optimization of one stride

took on average 2 minutes on an Intel i7-4770 (3.4 GHz) processor, using the measured data

as the initial guess. The solutions always converged and the residual force and torque were

completely removed. In Figs 3 and 4 the measured and optimized segment angles and angular

velocities of the right leg and trunk were compared for the same typical example used for Figs

1 and 2. The results showed that only small changes in optimized angles were necessary to

completely remove the residual forces and torques. We then performed comparisons for 61

strides in nine different subjects walking at three different speeds (0.8, 1.25 and 1.8 m/s) and

calculated root mean square (RMS) values for the differences between trunk and lower seg-

ment angles before and after optimization. Table 1 provides the average RMS values of the

foot, shank, thigh and trunk angles. These values indicate that on the whole, like with the typi-

cal example, only small changes in kinematics were required to completely remove the residual

forces and torques.

We also compared the distances between the markers, located at the joints (indicated in

Table 2), before and after optimization. RMS values for the markers (RMSs in Table 2) were in

the order of 1 cm which also indicated good agreement between measured and optimized

kinematics. Net joint torques were calculated before and after optimization (Fig 5) and the dif-

ferences were quantified by a relative measure as shown in Table 2. RMS values of the relative

differences for the joint torques before and after optimization indicated larger differences than

for the measured and optimized joint angles. Both sets of torques showed similar patterns,

although hip torque peak values before and after optimization were substantially different.

Fig 3. Typical example of segment angles during a stride. The respective segments are denoted by color. Segment

angles before and after optimization are denoted by dashed and solid lines respectively. For definitions of the segment

angles, see the Materials and Methods section. Hcr: heel contact right foot, Tol: toe off left foot, Hcl: heel contact left

foot.

https://doi.org/10.1371/journal.pone.0204575.g003
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The net joint powers depicted in Fig 6 both before and after optimization were shown to be

substantially larger than the residual power (when the residual force was applied at the shoul-

der) for the typical example. The absolute peak power of the residual force was in the order of

50 Watt. Removing the residual force and torque led to a maximum adjustment of the ankle

power (at 90 percent of the stride) in the order of 100 Watt.

Discussion

In a classical inverse dynamics analysis, based on a rigid linked segment model, measured

kinematics and external forces are in general not mechanically consistent. In this study, an

algorithm was developed to remedy this by modifying the measured kinematics as little as

Fig 4. Typical example of segment angular velocities during a stride. The respective segments are denoted by color.

Angular velocities before and after optimization are denoted by dashed and solid lines respectively. Hcr: heel contact

right foot, Tol: toe off left foot, Hcl: heel contact left foot.

https://doi.org/10.1371/journal.pone.0204575.g004

Table 1. Average RMS values of the segment angles with standard deviations.

Segment angle Average RMSq (sd) Maximum deviation
Right foot 0.056 (0.019) 0.276

Right lower leg 0.024 (0.011) 0.153

Right upper leg 0.025 (0.012) 0.158

Trunk 0.022 (0.011) 0.222

These values provide an indication of the difference in segment angles in radians before and after optimization.

Subscript q refers to the degrees of freedom (segment angles) as explained in the Materials and Methods section.

https://doi.org/10.1371/journal.pone.0204575.t001

Mechanically consistent inverse dynamics
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possible such that the resulting optimized kinematics are mechanically consistent with mea-

sured external forces. As an example, this algorithm was applied to a dataset of human walking

containing 2D joint positions. Our analyses show that the algorithm was capable of completely

removing the residual forces and torques during a stride with minor changes to the measured

kinematics, while leaving the measured ground reaction forces unchanged. As a result, joint

torque profiles before and after optimization showed similar patterns.

The example used in this study was a 2D representation of walking. However, we stress that

it is straightforward to extend the algorithm in several directions. First, we note that extension

Table 2. RMS values of the marker positions and net joint torques.

Marker Average RMSs (sd) Maximum distance markers Average RMST,rel (sd) Maximum range RMST,rel

Right fifth MTP joint 0.7 (0.4) 4.8 NA NA
Right ankle 1.0 (0.4) 4.7 0.127 (0.157) 0.8

Right knee 1.1 (0.4) 5.8 0.419 (0.198) 2.2

Right hip 1.3 (0.7) 10.1 0.480 (0.255) 2.6

Right shoulder 1.2 (0.7) 15.0 NA NA

First column: RMS values of the difference in marker positions (RMSs) before and after optimization (cm). Second column: maximum distance between markers before

and after optimization (cm). Third column: relative differences in net joint torques before and after optimization (RMST,rel). Calculation of these values was performed

according to Eq (5) of the Methods section. Fourth column: maximum relative deviations of RMST,rel. NA: not applicable. MTP joint: metatarsophalangeal joint.

https://doi.org/10.1371/journal.pone.0204575.t002

Fig 5. Net joint torques of the typical example before and after optimization. Optimized and classical net joint

torques were similar. Thin dashed lines indicate joint torque values prior to optimization. Thick solid lines indicate

joint torque values after optimization. Positive values denote plantar flexion, knee flexion and hip extension torques.

Hcr: heel contact right foot, Tol: toe off left foot, Hcl: heel contact left foot.

https://doi.org/10.1371/journal.pone.0204575.g005

Mechanically consistent inverse dynamics
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to 3D is straightforward. For example, in walking experiments with ground reaction force and

3D measurement of kinematics, three residual force components and three residual torque

components will arise at the trunk. These can be treated the same way as in the planar case.

However, due to increased model complexity in 3D applications, it should be established in

future work how this affects the calculation time of the optimization. Second, as mentioned in

the introduction, several methods exist in which body segment parameter values are added to

the variables to be optimized. These were not included in our algorithm because we focused

on altering the kinematics and its effect on the residual force and torque values. However,

including body segment parameter values and imposing reasonable bounds is a relatively sim-

ple extension, which can contribute to improving inverse dynamics analysis. Third, human

walking is an example of a (nearly) periodic movement. Conceivably, researchers may want to

impose strict periodicity on such a movement. In that case, the external forces should be (min-

imally) adjusted such that the cycle average of the sums of all forces and torques equal zero.

Also, constraints should be added to enforce equal positions and velocities at the start and end

of the cycle.

Summarizing, a straightforward algorithm was developed that completely removed residual

forces and torques in an inverse dynamics analysis. It was found that small adjustments to the

kinematics only, in the order of 1 cm marker displacements, were sufficient to obtain a consis-

tent mechanical description. The algorithm provides a clear improvement over current

Fig 6. Net joint and residual power values of the typical example before and after optimization. Residual power is

the sum of the power of the residual torque and force at the shoulder before optimization. Hcr: heel contact right foot,

Tol: toe off left foot, Hcl: heel contact left foot.

https://doi.org/10.1371/journal.pone.0204575.g006
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methods in calculating net joint torques and it should, in our opinion, therefore be included in

any rigid body inverse dynamics analysis.

Materials and methods

Description of the proposed algorithm

For any application, depending on the analyzed movement, the first step is to define a model

consisting ofm rigid bodies that are connected by joints, represented by kinematic constraints

imposed on the kinematics of the rigid bodies. Next, values are assigned to the time-invariant

properties of each of these segments (length, center of mass position in a local frame of refer-

ence and inertial properties). When the model has n degrees of freedom, n generalized coordi-

nates q suffice to fully describe the position of the model at a particular time node i. Thus

Q ¼ �qðtðiÞÞ ¼ ðq1ðtðiÞÞ; q2ðtðiÞÞ; . . .; qnðtðiÞÞÞ contains the full description of the position of

the system at time t(i). If the total number of time nodes considered is N, then the position of

the system over time is completely described by an Nxnmatrix Q, containing the �qðtðiÞÞ as

rows. This implies that all other kinematic variables of interest can be calculated from Q. In

particular, we calculate the matrix Z, containing the Cartesian coordinates of the centers of

mass of all segments at all times, the matrix P containing the Cartesian coordinates of all joint

centers and the matrix S containing the predicted positions of the skin markers used in the

kinematics registration. Note that the latter contain time-invariant coordinate values relative

to a segment-fixed frame of reference, which can be obtained by calibration measurements.

Given these matrices, the relevant second derivatives with respect to time are approximated

using central differences:

�qðtðiÞÞ ¼
�qðtði � 1ÞÞ � 2 � �qðtðiÞÞ þ �qðtðiþ 1ÞÞ

ðtðiþ 1Þ � tðiÞÞ2
ð1Þ

In general terms, the optimization problem is to minimize the sum of the weighed squared

Euclidian distances between the segment model markers S and the corresponding experimen-

tally observed markers S’, without the introduction of residual forces and torques. A matrix R,

containing the measured points of application of the external forces is fed into an inverse

dynamics analysis, which yields the residual forces (Fres) and the residual (Tres) and net joint

torques (T). The constrained optimization problem is solved by the proposed algorithm as

indicated in Fig 7.

Formally, the optimization problem can be summarized as follows:

Find Q that minimizes:

J ¼
XN

i¼1

Xc

k¼1

wj �sjðtðiÞÞ � �s0jðtðiÞÞ
�
�

�
�

2
ð2Þ

Subject to:

Tres;mðtðiÞÞ ¼ 0 and �Fres;mðtðiÞÞ ¼ 0; for all i:

Where:

�sjðtðiÞÞ : vector containing coordinates of the j� th calculated marker at time node i

�s0jðtðiÞÞ : vector containing coordinates of the j� th measured marker at time node i

..

Mechanically consistent inverse dynamics
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wj: an optional weight for the relative contribution of the marker to the minimization

criterion

Tres,m(t(i)):m-th residual torque at time node i

�Fres;mðtðiÞÞ : m� th residual force at time node i

N: number of time nodes

c: number of markers

As stated before, the segments’ centers of mass accelerations are calculated by direct numer-

ical differentiation of the center of mass position, which are functions of the generalized coor-

dinates. A different method that should produce similar results, would be to express the

accelerations in terms of the generalized coordinates and their infinitesimal derivatives, subse-

quently numerically differentiate the generalized coordinates and replace the infinitesimal

derivatives by the numerical analogues. This was found to result in a slightly lower value for

the minimization criterion J, but introduced numerical instabilities in the form of high fre-

quency oscillations of the calculated generalized coordinates. This was never observed with the

direct differentiation as indicated in Fig 7.

Fig 7. Scheme of the proposed algorithm. The optimization starts by providing an initial guess for the matrixQ0 that

contains the values for the degrees of freedom at each time node, calculated from the measured marker coordinates.

The optimizer generates a modified version ofQ. Using rigid body kinematics and numerical differentiation, the

kinematic variables relevant for inverse dynamics are calculated. In the inverse dynamics block, net joint torques and

forces (including residual forces and torques) are calculated on the basis of these kinematic variables, in combination

with the measured external forces Fext, and their points of application R. The residual forces Fres and torques Tres and

the predicted marker positions are fed back to the optimizer, which updatesQ such that, ultimately, the residuals are

zero and the sum of the weighed squared Euclidian distances (J) between predicted (S) and measured (S’) marker

positions is minimal.

https://doi.org/10.1371/journal.pone.0204575.g007
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Application to human walking

To test the optimization algorithm, we applied it to human walking. To do so, we measured

the kinematics and ground reaction forces during shod walking of nine subjects (all female).

This study was approved by the local ethics committee (Ethische Commissie Bewegingswe-

tenschappen) and all procedures were carried out with adequate understanding and after writ-

ten consent of the subjects. Age was 23.6 ± 1.4 yr (average ± SD). Height was 1.75 ± 0.05 m

and body mass 66.1 ± 4.9 kg. Subjects walked for five minutes on an instrumented split belt

treadmill (R-Mill, Forcelink, Culemborg, The Netherlands) to get accustomed to the experi-

mental situation. Subjects were instructed to walk with their left and right foot on the separate

belts of the treadmill. Subsequently they walked at three different speeds (0.5 m/s, 1,25 m/s

and 1.8 m/s) for five minutes at each speed. Optotrak CERTUS Position Sensors (Northern

Digital, Waterloo, Ontario) were used to collect kinematics at a sample rate of 100 Hz. In this

study single markers were placed at both sides of the body at the fifth metatarsophalangeal

joint, the lateral malleolus, the lateral knee epicondyle, greater trochanter and acromion; it was

assumed that the marker positions represented the positions of the corresponding joint axes.

Raw data was filtered using a zero lag 4th order low-pass filter with a cut-off frequency of 10

Hz. Only sagittal plane projections were used in this study. Ground reaction forces (FGR) were

measured at a sample frequency of 200 Hz using two force plates embedded in the treadmill.

Raw FGR data was filtered using a zero-lag 4th order low-pass filter with a cut-off frequency of

20 Hz from which the center of pressure (r) was calculated for each foot. Subsequently FGR and

r data were down sampled to 100 Hz to match the Optotrak sample rate.

61 strides were selected from the data. All nine subjects and all three velocities were repre-

sented in this selection. Start and end of one complete stride was defined by toe off of the right

foot (first sample with FGR equal to zero). Only strides with two distinct swing phases, where

FGR was very close to zero, were selected by visual inspection. Kinematics and FGR were used

both for a classical inverse dynamics and as input for the optimization algorithm. The two hips

and two shoulders were lumped together and regarded as one joint. Anthropometric parame-

ters were obtained from Winter [5]. To assess the effect of the point of application of the resid-

ual force (before optimization) on the residual torque value, it was applied on the trunk in a

classical inverse dynamics analysis at two different positions: the shoulder and the trunk’s cen-

ter of mass. For each case the residual torque was calculated.

For the optimization, the subjects in this study were modeled as a system of 7 rigid seg-

ments moving in a vertical sagittal plane, with pin joints connecting the segments and no kine-

matic constraints between the feet and the walking surface (see Fig 8). This model has nine

degrees of freedom, which were described by generalized coordinates q1..q9 as defined in Fig 8.

Seven coordinates are segment angles; the x- and y-coordinates of the hip were chosen to spec-

ify the model’s position in the global frame of reference. In this case, no calibration measure-

ments were required to define the time-invariant positions of the markers relative to a local

frame of reference, as the markers were assumed to be placed at the joint axes. Relative contri-

butions wj of the differences in optimized and measured marker positions to the minimization

criterion J were all set to 1. Segment lengths were calculated as the average value of the relevant

inter-marker distances.

Fig 9 shows the first segment in the inverse dynamics analysis. The external force �Fext and

its point of application �r1 have been measured. The kinematics have been measured before or

updated by the optimizer during optimization. Application of Newton’s equations of motion

yields three equations, which are solved for the net ankle torque T1 and the net ankle force �F 1.

These are subsequently reversed according to Newton’s third law and at the ankle joint applied

to the shank which yields the net knee torque and force etc.
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The constrained optimization problem was solved using the function fmincon embedded in

Matlab R2013a. To evaluate the proposed algorithm, the kinematics were compared in terms

of the root mean square value of the difference between the generalized coordinates before and

after optimization, respectively q’j(t(i)) and qj(t(i)):

RMSq;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

ðqjðtðiÞÞ � q
0

jðtðiÞÞÞ
2

s

ð3Þ

Where:

q’j(t(i)): generalized coordinates before optimization

qj(t(i)): generalized coordinates after optimization

Also, the root mean square value of the Cartesian distance between markers before and

after optimization were calculated:

RMSs;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

j�skðtðiÞÞ � �s0kðtðiÞÞj
2

s

ð4Þ

Fig 8. The mechanical model used in the evaluation of the proposed algorithm, considering sagittal plane

walking. The model consists of seven rigid segments connected with pin joints. It has nine degrees of freedom.

Angular coordinates used to describe the degrees of freedom are indicated by q1- q7. The remaining two degrees of

freedom are described by the position of the hip (q8,q9).

https://doi.org/10.1371/journal.pone.0204575.g008

Fig 9. Mechanical model of the foot as applied in inverse dynamics. The external force �Fext , its point of application

�r1 and the markers �s1 and �s2 are input of the analysis. Torques of �Fext , the net ankle force �F 1 around the foot’s center of

mass, the net ankle torque T1 and the force of gravitym1g are inserted into Newton’s equations of motion and solved

for �F 1 and T1. These are subsequently reversed according to Newton’s third law and input for the same procedure on

the shank.

https://doi.org/10.1371/journal.pone.0204575.g009
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Where:

�s 0kðtðiÞÞ : marker position before optimization

�skðtðiÞÞ : marker position after optimization

i: time index

j and k: indexes for the for the generalized coordinate and the marker respectively.

The optimized net joint torques Tm(t(i))were compared to the classic joint torques T’m(t(i))
by a relative measure (joints indexed bym):

RMSTrel;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N �
XN

i¼1

ðTmðtðiÞÞ � T
0

mðtðiÞÞÞ
2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N �
XN

i¼1

T 0mðtðiÞÞ
2

s ð5Þ

Subsequently, the grand mean and standard deviations of these RMS values were calculated

over all strides. For individual trials the net joint power before and after optimization was cal-

culated as the scalar product of joint torque and joint angular velocity, whereas power by the

residual torque was calculated as the scalar product of residual torque and the trunk’s angular

velocity. Power of the residual force, applied to the shoulder, was calculated as the dot product

of the residual force and the velocity of its point of application and was added to the power of

the residual torque.
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